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Abstract. The problem of dynamic vibration dampers of inherited-deformable systems with 

finite number of degrees of freedom is considered. Rheological properties of spring 

(suspension) are taken into account using integral model with Koltunov-Rzhanitsin relaxation 

core. The behavior of the system with a damper is considered at free attenuation oscillations 

caused by the specified initial conditions, as well as at constant, pulse and periodic external 

impacts. The obtained results make it possible to conclude on the expediency of using dynamic 

dampers to reduce amplitude of oscillations, both in perfectly elastic and in inherited-

deformable systems during transient processes. A computational algorithm based on quadrature 

formulas is used to solve the problem. 

1.  Introduction 

The high level of vibration of machines often causes their fatigue damage and, in some cases, total 

destruction. In order to increase the reliability of machines, the vibration level must be reduced by 

setting off resonance zones or introducing various damping devices. In some cases, retraction from 

resonance zones may require changes in the stiffness and mass of machine design, which may be less 

advantageous than the use of dynamic vibration dampers of inherited-deformable systems. 

Dynamic vibration dampers, like some additional devices introduced into the original design 

circuits of vibration protection systems, can be considered as one of the means of controlling the state 

of the protection object. Mathematical models of oscillatory systems in the form of structural diagrams 

of dynamically equivalent automatic control systems are shown to have certain advantages over 

conventional approaches based on the use of differential equations. Dynamic blanking in structural 

models is interpreted as introducing additional negative feedback circuits. Such circuits are formed on 

the basis of structural transformations of the initial model according to the rules of parallel and serial 

connection of spring [1-3]. 

It has been found that introduction of additional tuning masses significantly changes the type of 

amplitude-frequency characteristics, in particular, formation of such forms, which create the 

possibility of erosion of point frequencies of dynamic damping of oscillations until their representation 

in the form of zones with average-constant value of transmission coefficients of amplitude of 

vibrations from the source of disturbances to the object [4]. 
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The urgency of the problem is constantly increasing due to the increase in the size of the structure, 

the increase in the speed of the machines, the tightening of sanitary and technological requirements to 

permissible vibration levels [5]. When investigating this problem, it is important to consider the non-

elastic resistance of the damper and the protected system. In papers [6-9] non-elastic resistance is 

taken into account according to elementary theory of viscoelasticity and model "Complex stiffness" 

proposed by E.S. Sorokin [10]. These theories have serious disadvantages, they do not take into 

account the time factor associated with creep and stress relaxation. Hereditary viscoelastic theories are 

the most common when considering the material 's non-elastic resistances, as they simultaneously 

account for both internal friction and creep deformation and stress relaxation of the material. 

Therefore, the development of more efficient methods of calculating fluctuations taking into account 

their rational use in solving various tasks of inherited-deformable elements of machine structures is 

very relevant. 

Problem definition. Let the protected structure with mass of m1 be given, resting on nonlinear 

inherited-deformable spring (suspension) with instantaneous rigidity of c1, which is under action of 

external load q(t) (Figure 1, System I). Consider the motion of system I, whose position is determined 

by the generalized coordinates u1(t). We attach to this system a special device with mass of m2, which 

with the help of nonlinear inherited-deformable spring, with instantaneous rigidity of the c2, is 

connected to the protected structure. Then we get system II with two degrees of freedom (Figure 1, 

System II), positions of which at any moment are determined by generalized coordinates u1(t) and 

u2(t). 

 

 
Figure 1. Investigated systems 

 

Rheological properties of suspension are assumed to be different and subject to cubic nonlinear 

hereditary theory of viscoelasticity [11,12]. Then, according to the variation principle of inheritance 

theory of viscoelasticity [11], kinetic energy, potential energy and operation of external forces are 

calculated as follows: 

𝑇 =
1

2
(𝑚1�̇�1

2 + 𝑚2�̇�2
2), 𝑃 = 𝑞(𝑡)𝑢1 

П =
𝑐1

2
{𝑢1 [𝑢1 +

𝛾1

2
𝑢1

3 − 2𝑅1
∗(𝑢1 + 𝛾1𝑢1

3)]} + 

+
𝑐2

2
{(𝑢1 − 𝑢2) [𝑢1 − 𝑢2 +

𝛾2

2
(𝑢1 − 𝑢2)3 − 2𝑅2

∗[𝑢1 − 𝑢2 + 𝛾2(𝑢1 − 𝑢2)3]]} 
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here 𝛾𝑖 , (𝑖 = 1,2) − is a physical nonlinearity coefficient that is less than zero (𝛾𝑖 < 0) for a soft 

material and greater than zero (𝛾𝑖 > 0) for a rigid material. 𝑅𝑖
∗ − are Volterra integral operators for 

which 

𝑅𝑖
∗𝑓(𝑡) = ∫ 𝑅𝑖(𝑡 − 𝜏)

𝑡

0

𝑓(𝜏)𝑑𝜏, 

here 𝑅𝑖(𝑡) = 𝜀𝑖𝑒−𝛽𝑖𝑡𝑡𝛼𝑖−1 − is a core of inheritance having weakly singular Abel-type features. 

The Lagrange equation for the system in question is: 
𝜕𝐿

𝜕𝑢𝑖
−

𝑑

𝑑𝑡

𝜕𝐿

𝜕�̇�𝑖
= 0,  𝑖 = 1,2                                                          (1) 

here 𝐿 = П − 𝑇 − 𝑃; 
𝜕𝐿

𝜕𝑢1
= 𝑐1(1 − 𝑅∗)(𝑢1 + 𝛾1𝑢1

3) + 𝑐2(1 − 𝑅∗)[𝑢1 − 𝑢2 + 𝛾2(𝑢1 − 𝑢2)3] − 𝑞(𝑡); 

𝜕𝐿

𝜕�̇�1
= −𝑚1�̇�1;        

𝜕𝐿

𝜕�̇�2
= −𝑚2�̇�2;                                                 (2) 

 
𝜕𝐿

𝜕𝑢2
= −𝑐2(1 − 𝑅∗)[𝑢1 − 𝑢2 + 𝛾2(𝑢1 − 𝑢2)3]. 

By adjusting (2) to (1), we obtain: 

{
𝑚1�̈�1 + 𝑐1(1 − 𝑅1

∗)(𝑢1 + 𝛾1𝑢1
3) + 𝑚2�̈�2 = 𝑞(𝑡)

𝑚2�̈�2 − 𝑐2(1 − 𝑅2
∗)[𝑢1 − 𝑢2 + 𝛾2(𝑢1 − 𝑢2)3] = 0.

                                  (3) 

The system of nonlinear weakly singular integral-differential equations (IDE) (3) describes a 

mathematical model of the problem of dynamic vibration dampers of systems with nonlinear 

inherited-deformable suspensions. 

In case of transient process, initial conditions shall be added to IDE system (3), i.e.:           

𝑢𝑖(0) = 𝛼0𝑖,   �̇�𝑖(0) = 𝛼1𝑖,      𝑖 = 1,2.                                               (4) 

The IDE system (3) is quite general: if the suspensions of the protected structure are perfectly 

elastic, then 𝑅1
∗ = 0; if the problem is linear, then 𝛾1 = 𝛾2 = 0. 

2.  Methods 

Assuming 𝜏 = 𝜔0𝑡, 𝜔0 = √
𝑚1

𝑐1
, we write the equations of vibrations of the protected system and the 

damper in a dimensionless form: 

{
�̈�1 + (1 − 𝑅1

∗)(𝑢1 + 𝛾1𝑢1
3) + 𝜈�̈�2 = 𝑞0 ∙ 𝑞(𝑡)

�̈�2 − 𝜇2(1 − 𝑅2
∗)[𝑢1 − 𝑢2 + 𝛾2(𝑢1 − 𝑢2)3] = 0.

                           (5) 

The parameters =
𝑚2

𝑚1
 , 𝜇2 =

𝑐2

𝑚2
𝜔2 play a major role in the theory of dynamic vibration dampers 

(DVD), and are hereinafter referred to as the relative mass and setting of the damper. DVD is a device 

in which an inertia force occurs that reduces the vibration level of the protected structure. The 

parameters of the damper should be selected so that they substantially reduce the amplitude or 

completely extinguish the forced oscillations determined by the first generalized coordinate in the 

main system I with one degree of freedom, in the case where, in the absence of the damper, a 

resonance phenomenon would occur at harmonic loads. 

The main task of the transient process is that with the help of a computational experiment to find 

DVD parameters significantly increasing the rate of attenuation of the transient process. Installation of 

dynamic damper with inherited-deformable suspensions should significantly increase energy 

dissipation in the system and positively affect transient modes of forced oscillations of the protected 

structure taking into account and without taking into account inherited-deformable properties of the 

suspension. To trace this process, consider a numerical solution to the system of nonlinear weak- 

singular IDEs (5). 

By solving the system (5) under initial conditions (4) by the method given in [13, 14], we have: 
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𝑢1𝑛 = 𝛼01 + 𝛼11𝑡𝑛 + 𝑞0 ∑ 𝐴𝑖(𝑡𝑛 − 𝑡𝑖)𝑞𝑖 −

𝑛−1

𝑖=0

− ∑ 𝐴𝑖(𝑡𝑛 − 𝑡𝑖)

𝑛−1

𝑖=0

{𝑢1𝑖 + 𝛾1𝑢1𝑖
3 + 𝜈𝑓2[𝑢1𝑖 − 𝑢2𝑖 + 𝛾2(𝑢1𝑖 − 𝑢2𝑖)3]} + 

+ ∑ 𝐴𝑖Г1(𝑡𝑛 − 𝑡𝑖)(𝑢1𝑖 + 𝛾1𝑢1𝑖
3 )

𝑛−1

𝑖=0

+ 𝜈𝑓2 ∑ 𝐴𝑖Г2(𝑡𝑛 − 𝑡𝑖)[𝑢1𝑖 − 𝑢2𝑖 + 𝛾2(𝑢1𝑖 − 𝑢2𝑖)3]

𝑛−1

𝑖=0

;        (6) 

𝑢2𝑛 = 𝛼02 + 𝛼12𝑡𝑛 − 𝑓2 ∑ 𝐴𝑖Г2(𝑡𝑛 − 𝑡𝑖)[𝑢1𝑖 − 𝑢2𝑖 + 𝛾2(𝑢1𝑖 − 𝑢2𝑖)3]

𝑛−1

𝑖=0

; 

Here 𝑡𝑛 = 𝑛 ∙ ∆𝑡, (𝑛 = 0,1,2, … );   𝑢1𝑖 = 𝑢1(𝑡𝑖);    𝑢2𝑖 = 𝑢2(𝑡𝑖);    𝑞𝑖 = 𝑞(𝑡𝑖);  𝐴0 = 𝐴𝑛 =
∆𝑡

2
;   𝐴𝑗 =

∆𝑡, 𝑗 = 1, 𝑛 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ .   

Г𝑝(𝑡𝑛 − 𝑡𝑖) = ∫ (𝑡𝑛 − 𝑡𝑖 − 𝜏)𝑅𝑝(𝜏)𝑑𝜏

𝑡𝑛−𝑡𝑖

0

,   (𝑝 = 1,2);     𝑅𝑝(𝑡) = 𝜀𝑝𝑒−𝛽𝑝𝑡 ∙ 𝑡𝛼𝑝−1. 

3.  Results and discussion 

A computer program for numerical implementation of the developed calculation algorithm under 

arbitrary external influences has been compiled. The behavior of the system with a damper at free 

attenuation oscillations caused by the specified initial conditions is considered. Figures 2-5 show an 

influence of quencher on free fluctuations of a system under entry conditions of 𝑢𝑖(0) =
0,4  𝑎𝑛𝑑   �̇�𝑖(0) = 0, (𝑖 = 1,2). 

Here and hereinafter, solid and dashed lines correspond to the solution of the problem without a 

damper (𝜈 = 0) and with a damper. 
 

 

Figure 2. 𝛼 = 0.8;   𝛽 = 0.05;   𝜀 = 0;    𝛾 = 0;    𝜈 = 0.001 𝑢1(𝑡) 
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Figure 3. 𝛼 = 0.8;   𝛽 = 0.05;   𝜀 = 0.1;    𝛾 = 0;    𝜈 = 0.01 

 

 

Figure 4. α = 0.8;   β = 0.05;   ε = 0;    γ = 2;    ν = 0.001 
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Figure 5. α = 0.8;   β = 0.05;   ε = 0.01;    γ = 2;    ν = 1.2 
 

DVD can be used not only in the case of attenuation free oscillations caused by initial conditions, 

but also in the case of constant, pulse and periodic external effects. Here, the optimum parameters of 

the damper are suitably selected from the condition that during the final period of time the fluctuations 

of the main mass caused by said external effects must be reduced to a predetermined level. In such 

cases, the transition process accompanied by the beats may be more acceptable than uniformly fading 

over an infinite period of time. 

Figures 6-9 show the effect of DVD on forced oscillations at:   𝑞0 = 1;   𝑞 = 0.07;  𝜈 =
0.001;   0.05;   0.075;  1;   𝑊0 = 1;   𝑞0 = 1;  𝑢1(0) = 0.4;  𝑢2(0) = 0.4;   �̇�1(0) = 0;   �̇�1(0) = 0.  

Similar results are shown in Figures 10-15 at:  𝑞0 = 1;    𝑞(𝑡) = 𝑠𝑖𝑛𝜃𝑡;   𝜃 = 0,
𝜋

2
, 1  . 
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Figure 6. α = 0.8;   β = 0.05;   ε = 0;   q = 0.07;   γ = 0;    ν = 0.001 

 

 
Figure 7. α = 0.8;   β = 0.05;   ε = 0;   q = 0.07;   γ = 2;    ν = 0.001 
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Figure 8. α = 0.8;   β = 0.05;   ε = 0.05;   q = 1;   γ = 0;    ν = 1.5 

 

 
Figure 9. α = 0.8;   β = 0.05;   ε = 0.05;   q = 1;   γ = 0.5;    ν = 0.01 
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Figure 10. α = 0.8;   β = 0.05;   ε = 0;   q = sin
πt

2
;   γ = 0;    ν = 0.01 

 

 

Figure 11. α = 0.8;   β = 0.05;   ε = 0;   q = sin
πt

2
;   γ = 2;    ν = 0.1 
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Figure 12. α = 0.8;   β = 0.05;   ε = 0;   q = sin
πt

2
;   γ = 2;    ν = 0.1 

 

 
Figure 13. α = 0.8;   β = 0.05;   ε = 0.1;   q = sint;   γ = 0;    ν = 0.1 
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Figure 14. α = 0.8;   β = 0.05;   ε = 0;   q = sint;   γ = 0.5;    ν = 0.7 

 

 
Figure 15. α = 0.8;   β = 0.05;   ε = 0.1;   q = sint;   γ = 0.5;    ν = 0.7 

4.  Conclusions 

Thus, the solution of vibration damping problems is connected with the need to carry out repeated 

calculations in the process of optimization of damper parameters. Therefore, in some cases it is 

advisable to carry out preliminary calculations according to simplified calculation schemes to 

determine the estimated efficiency and parameters of the vibration protection system. The use of 

circuits capable of obtaining a solution in closed form or using algorithms of type (6) is of great 

interest. It is these possibilities that provide a significant part of this work, not to mention, of course, 

when the design is directly reflected by the inherited-deformable models discussed herein. The 
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obtained results make it possible to conclude on the expediency of using dynamic dampers to reduce 

amplitude of oscillations, both in perfectly elastic and in inherited-deformable systems during transient 

processes.  

References 

[1] Eliseyev S V and Artyunin A I 2016 Applied Theory of Fluctuations in the Dynamics of Linear 

Mechanical Systems (Novosibirsk: Science) 

[2] Eliseyev S V 2011 Dynamic Vibration Damper as a means of controlling the dynamic state of the 

vibration protection system Scientific publication of the N.E. Bauman MGTU, Science and 

Education 8 1-11 

[3] Khomenko A P and Eliseyev S V 2000 About some properties of dynamic vibration damping in 

mechanical systems (Irkutsk: IGU) 

[4] Nguyen D H 2017 Possibilities of lever corrector in tasks of dynamic vibration damping Journal 

of IrGTU 21 38-48 

[5] Aldoshin G T 2013 Theory of Linear and Nonlinear Fluctuations (St. Petersburg: LAN 

Publishing House) 

[6] Korenov B G and Resnikov L M 1988 Dynamic vibration dampers (Moscow: Science) 

[7] Karamyshkin I I 1988 Dynamic vibration damping (Moscow: Mechanical Engineering)  

[8] Eliseyev S V and Nerubenko G P 1982 Dynamic dampers of fluctuations (Novosibirsk: Science) 

[9] Panovka Y G and Lubanov I I 1987 Stability and fluctuations of elastic systems (Moscow: 

Science) 

[10] Sorokin E S 1960 To the theory of internal friction at fluctuations of elastic systems (Moscow: 

Gosstroizdat) 

[11] Worknov Yu N 1977 Elements of hereditary mechanics of solid bodies (Moscow: Science)  

[12] Kauderer G 1961 Nonlinear Mechanics (Moscow: Mir) 

[13] Badalov F B, Eshmatov H and Yusupov M 1986 On some methods of solving systems of integro-

differential equations found in the tasks of viscoelasticity (Moscow: Applied mathematics and 

mechanics) 

[14] Abdullaev Z, Mirzaev S and Mavlanov S Nonlinear deformation of flexible orthotropic shells of 

variable thickness in an unsteady magnetic field XXII International Scientific Conference on 

Advanced in Civil Engineering "Construction the formation of living Environment" FORM-2019 


