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Abstract. The effect of the inertia term on the longitudinal displacements of an underground pipeline is shown 

for various cases of pipe fastening, when a seismic wave propagates along its axis. The problem is solved by analytical 

and numerical methods. The pipe-soil interaction is assumed to be elastic (shear stress generated in soil is proportional to 

the relative displacement between the pipe and soil). 
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1. Introduction 

Damage to underground pipelines during an earthquake is associated with a combination of different types of 

hazards: permanent soil deformations (landslides, liquefaction, and seismic settlement) and wave propagation effect. The 

latter is characterized by transient deformation and curvature in the ground due to the traveling wave effect. For the 

analysis of wave propagation, Rashidov and Newmark [1, 2] proposed a simple procedure taking into account one 

traveling wave with an undamped (traveling) waveform. Therefore, the maximum axial deformation of the pipe is the 

same as the maximum axial deformation of the ground. 

However, the above procedures consider infinite pipe lengths and therefore do not take into account their 

effective length and construction works (constraint conditions). In [3], analytical relations were developed for a pipe of 

finite length subjected to various combinations of boundary conditions (i.e., the free end, fixed or elastic boundary) for 

pipelines of different lengths. In 1962, T. Rashidov proposed a differential equation for an underground pipeline, which 

became the basis of the dynamic theory. Rashidov [1, 3], De Martino et al. [4] and Corrado et al. [5] developed models 

for the pipe-soil interaction, taking into account the limited length of the pipeline. Assuming a linear elastic model of 

ground motion and ignoring the slip at the pipe-soil contact interface, the models analyze the dynamic behavior of a 

finite-length pipeline taking into account the boundary conditions at the ends. The pipeline was supposed to be 

continuous; that is, any fluctuations between the characteristics (parameters) of the pipeline and its joints are considered 

insignificant. A.A. Ilyushin and T. Rashidov [6] proposed a visco-elastoplastic model of the interaction of an 

underground structure with soil. 

In the works [7-8] the use of different mechanical mathematical models was analyzed and a number of urgent 

problems of underground and ground structures were solved. 

The study in [9] shows the comparison between the methods of Crank-Nicholson, McCormack, and Courant-

Friedrichs-Lewy (explicit scheme), and shows the accuracy of the explicit scheme relative to other methods when 

solving discontinuous problems of underground pipeline vibrations. In that study, the problem is solved by the finite 

difference method in an explicit scheme. Careful numerical calculations are performed to prevent unwanted vibrations 

near the discontinuity (the deformation wave front) [10-12]. 

In [10-14], the effect of the coefficients of elasticity, viscosity, and plasticity of the pipeline contact interaction 

with soil on the stress-strain state of an underground pipeline is studied in detail. In [5, 12], the results of longitudinal 

vibration of an underground pipeline with and without inertia forces are compared for an infinite pipeline and a pipeline 

of finite length with rigid fixing at the ends.  

 Seismic analysis of the pipeline interaction with surrounding soil was performed. The pipe-soil interaction is 

assumed to be elastic (shear stress generated in soil is proportional to the relative displacement between the pipe and 

soil). The effect of the inertial term on the longitudinal displacements of an underground pipeline in various cases of pipe 

fastening, when a seismic wave propagates along its axis, is shown in the article. The problem is solved by analytical and 

numerical methods [15-17]. 

2. Statement of problem 

Consider a pipe of length L for which the equation of motion is written in the following form: 
2 2
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where x  and t  –are the spatial and temporal variables; u  and gu  - are the axial displacements of the pipe and soil, 

respectively; pm - is the mass per unit length; E - is the Young's modulus of the pipe material; ( )F s D s   – is 

the cross-sectional area of the pipe, where s  and D  are the thickness and outer diameter of the pipe, respectively; 

XK k D , where Xk
 
is the coefficient of elastic interaction in the "pipe - soil" system. 
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Ground motion is given by a sine wave. Soil displacement parallel to the pipe can be written as:  
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where A  –is the maximum displacement of soil,   is the vibration frequency of the seismic wave, determined by 

formula  2 , where   is the frequency;
 pC  - is  the velocity of seismic wave propagation. 

Suppose that at the beginning of motion, the underground pipeline was at rest and in an undeformed state, then, 

the initial conditions are formulated as follows: 
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Let us take the boundary conditions in a more general form, that is, let us assume that both ends of the pipeline 

are flexibly fixed, and then the boundary condition has the form: 
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Here 0k
 
and 1k

 
are the yielding coefficients at the left and right boundaries, respectively. 

This boundary condition is universal, by varying values of 
0

k  and 
1

k   we obtain different boundary 

conditions. If the values of 
0

k  and 
1

k   are zero, then we obtain the free ends; if these values are equal to infinity, then 

we get the rigid ends. 

With the movement of an underground pipeline, the absolute movement of the pipe is equal to the sum of the 

so-called relative and transfer movement of the pipe. For the relative displacement, we take the pipe displacement 

relative to soil, and the transfer displacement of soil is determined by 

,r e e gu u u u u          

Consider equation (1) without inertial term generated by the relative displacement of the pipe. Equation (1) 

takes the following form: 
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Now let us consider the same problem, but without the absolute inertial term of the pipe. Then, equation (1) 

takes the following form [5]: 
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3. Methods of solution 

Equation (1) is solved taking into account the initial conditions (3) and boundary conditions (4), using an 

explicit finite-difference scheme, with the choice of the ratio of increment steps in coordinate and time as /x t a   , 

where / pa E F m 
 

– is the velocity of wave propagation in the pipeline. The calculations were performed at 

0.01x  m. 

The general solution of equations (5) and (6) has the form: 

1 1 2 2 ,u C u C u u         (7) 

where 1C  and 2C  – are the constants; 1u  and 2u  are two independent solutions of the homogeneous equation; u is 

the particular solution of equation (5) and (6). 

Let the ground moves according to formula (2). Then, solving the corresponding homogeneous equation, we 

obtain the general solution of equations (5) and (6) in the form 
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where B  –is an arbitrary constant, determined for equation (5) by the following formula: 
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and for equation (6) it is determined by [5]: 
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When considering a pipe of finite length L , the constants 
1C  and 

2C ,  entering (8), are nonzero; their 

corresponding values are calculated depending on the boundary conditions (4). 

The above systems are quasi-static: it is easy to determine the values of the two constants for the specified 

boundary conditions changing the values of t . 

The axial displacement and the pipe deformation for the analyzed boundary conditions can be easily calculated. 

Consider a solid steel pipeline with the following pipe and soil characteristics. 

Steel pipe characteristics are diameter D 0.5 m; thickness s  0.01 m; Young's modulus E  2.0 10
8
 kN/m

2
; 

length L 100.0 m; density   7800.0 kg/m
3
. 

Soil characteristics are elastic soil resistance 
Xk (0.5 – 4) 10

7
 N/m

3
; wave propagation velocity 

PС  500.0 

m/s; period of basic vibrations T  0.3 s; vibration amplitude A  0.004 m. 

 

4. Results and discussion 

First, we analyze the solution to differential equation (1). Underground pipeline with boundary conditions, its left 

end is rigidly fixed and the right end is free. That is, with the boundary conditions (4) k0=∞ и k1=0, equation (1) is solved 

using the numerical finite difference method [18]. The results obtained are shown in Figs. 1 and 2. Figure 1 shows the 

absolute motion of an underground pipeline 100 meters long in time for 10, 40, 90-meter sections of the pipeline. From 

this figure, it can be seen that with the distance from the fixed end, the displacement up to the distance of 30 meters 

increases faster, and after this point, it becomes slower. Figure 2 shows the change in displacement along the pipeline for 

different points in time, that is, at 0.1, 0.2, 0.3 s. At 0.1 s, a traveling wave of the velocity of 500 m/s will not reach the 

right boundary of an underground pipeline 100 meters long. Therefore, as seen from Fig. 2, the underground pipeline is 

moving up to a point of 70 meters. The wave has not yet reached the 70-100 meter section, therefore this section of the 

pipeline is at rest. Before the traveling wave reaches the right boundary, the maximum displacement increases, and, 

reaching the maximum, it remains approximately unchanged. From Fig. 2, it can be seen that the pipe is stretched when 

the wave reaches the second end of the pipeline; after reaching the second end, the situation changes: one part is 

stretched and the other part is compressed; such a point is determined as an imaginary rest. 

 

  
Figure 1. Change in displacement with time when 

boundary condition are: the left end is rigidly fixed and the 

right end is free. 

Figure 2. Change in displacement along the pipeline length 

when boundary condition are: the left end is rigidly fixed and 

the right end is free. 

 

Figure 3 shows the change in deformation in the time range 0 - 0.4 seconds, that is, one period of ground 

vibration. The deformation reaches its maximum value at the rigidly fixed end. The maximum deformation value 

decreases rapidly by approximately 3.2 times over the interval from 0 to 10 meters. In the 10 - 90 meter section, the 

deformation decreases by approximately1.75 times slower. From the results given above, it can be concluded that the 

dangerous zones under traveling harmonical ground motion are the zones located closer to the rigidly fixed end of the 

underground pipeline. Investigation of the consequences of the Tashkent earthquake, 1966, revealed damage to 

underground pipelines in the vicinity of wells, pumping stations and abrupt turns [19]. This proves the reliability of our 

results. Figure 4 shows the change in deformation along the underground pipeline at the points of time 0.1, 0.2 and 0.3 

seconds, this also confirms the above conclusions. 
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Figure 3. Change in deformation with time at different 

sections of the pipeline. The left end is rigidly fixed and the 

right end is free. 

Figure 4. Change in deformation along the pipeline at 

different time points when the left end is rigidly fixed and the 

right end is free.  

 

Now let us consider the effect of changing the yielding coefficient of fastenings. Figures 5 and 6 show the 

change in displacement along the underground pipeline at time 0.2 seconds, under three values of the yielding coefficient 

of fastenings. Near the yielding fastening, there is a difference in the graphs at different values of the yielding 

coefficient, but results coincide with the distance from the yielding fastening. 

 

  
Figures 5 and 6. Change in displacement along the pipeline at different values of the yielding coefficient of the left 

boundary at the moment t = 0.2 s. (The right end is free) 

 

Fig. 7 shows a graph of the change in deformation of an underground pipeline with time under the following 

boundary conditions: the left end is flexibly fixed, and the right end is free. Figure 7 shows that with an increase in the 

yielding coefficient, the maximum deformation value increases. Figure 8 shows the change in deformation along the 

underground pipeline length at 0.2 s at different values of the yielding coefficient of fastenings. The deformation differs 

for different values of the yielding coefficient of fastenings near the boundary but in other sections, the values are the 

same. 

 

  
Figure 7. Change in deformation with time at the left end 

under different values of the yielding coefficient of fastenings 

on the left boundary  

Figure 8. Change in deformation along the pipeline under 

different values of the yielding coefficient of the left 

boundary at time t = 0.2 s. 

 

Fig. 9 shows the change in deformation with time. A comparison of the solution of equations (1), (5), and (6) 

gives the following conclusions; from the graphs it is seen that the differences are observed only at the beginning of the 
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motion, and then they coincide. Figure 10 shows the change in deformation along the length; it is seen that only in the 

case when the traveling wave reaches the right end of the pipeline at the wave front, there is a difference between the 

solutions to the equation with and without inertia. With Figs. 9 and 10, it can be seen that the results coincide without 

considering the absolute and relative accelerations. Therefore, in the following discussions, we only compare the two 

cases with and without absolute acceleration.  

 

  
Figure 9. Change in deformation with time:       1– with 

absolute acceleration; 2– without relative acceleration; 3– 

without absolute acceleration.  

Figure 10. Deformation change along the length (t=0.185 

s.): 1– with absolute acceleration;            2– without relative 

acceleration; 3– without absolute acceleration. 

 

For the problems in seismic dynamics, the maximum values of displacement and deformation are the most 

interesting factors. Therefore, below we compare the problems with and without inertia in the maximum deformations. 

We will show whether the results with and without inertia always coincide. 

Fig. 11 shows the change in maximum deformation with a change in the yielding coefficient at the left end 

when the right end is free. With a yield coefficient in the range of 0-10, 10
4
 kN/m, the maximum deformation does not 

change; when the coefficient is greater than 10
5
 kN/m, the maximum deformation increases monotonically. Comparison 

of results are shown in Table 1. 

 

 
Figure 11. Change in the maximum deformation with a change in the yielding coefficient 

at the left end: 1 - with absolute acceleration; 2 - without relative acceleration; 3- without 

absolute acceleration.  

 

Table1 

 

Comparison of the results of equations (1), (5), and (6) at different values of the yielding coefficient at the left 

end of the pipeline. 
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40  2,45874554583607 2,45845615643537 2,45691151140013 
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Fig. 12 shows the change in maximum deformation depending on the coefficient of elastic interaction. As seen 

from this figure, the results obtained with and without this coefficient coincide; only in the range from 0.5·10
4
 kN/m to 

10
4
 kN/m there is a slight difference. Table 2 shows the maximum deformation values for some values of the elastic 

interaction coefficient. Based on the data from Table 2, we can compare the difference between the results obtained with 

absolute acceleration, without absolute acceleration and without relative acceleration. 

 

 
Figure 12. Change in maximum deformation depending on the coefficient of elastic 

interaction of the "pipe-soil" system: 1- with absolute acceleration; 2 - without relative 

acceleration; 3- without absolute acceleration.  

 

Maximum deformation changes with a change in the yielding coefficient at the left end. 

Table 2. 

 

Comparison of the results of equations (1), (5), and (6) at different values of the coefficient of elastic interaction 

of the "pipe-soil" system. 
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Maximum deformation value 

With absolute acceleration, 

10
-4

 

Without relative 

acceleration, 10
-4

 

Without absolute 

acceleration, 10
-4

. 

0,5 1,25944489837928 1,24436308824335 1,23968678785595 

3 2,45874554583607 2,45845615643537 2,45691151140013 

 

Fig. 13 shows a comparative graph of the maximum deformation value depending on the period of ground 

vibration under seismic impact at small values of the period, from 0.1 s to 0.3 s. The difference in results of the above-

mentioned problems is shown in Table 3. In the case of account for inertia in this interval, the difference is more 

pronounced than without inertia. 

 

 
Figure 13. Change in maximum deformation depending on the period of ground vibration: 1- 

with absolute acceleration; 2 - without relative acceleration; 3- without absolute acceleration. 
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Table 3. 

Comparison of the results of equations (1), (5), and (6) at different values of the period of ground vibration. 

 

 
Maximum deformation value 

 

Ground vibration 

period in seconds 

With absolute acceleration, 

10
-4

 

Without relative 

acceleration, 10
-4

 

Without absolute 

acceleration, 10
-4

. 

0,2 4,45224164558535 4,4233544991188 4,41225866045733 

0,5 4,85039138183247 4,85156531550118 4,84961405753406 

 

 
Figure 14. Change in maximum deformation depending on the length of the 

pipeline: 1- with absolute acceleration; 2 - without relative acceleration; 3- 

without absolute acceleration. 

 

Fig. 14 shows a comparative graph of the maximum deformation value depending on the length of the pipeline. 

Here the difference in the graphs is not seen. This result is obtained for a section of the underground pipeline100 meters 

long and the vibration period of 0.4 seconds. The traveling harmonic wave will reach its maximum value in a quarter of 

the vibration period. At a velocity of wave propagation taken as 500 m/s, the wave will reach 50 meters in 0.1 seconds. 

This can explain the fact that the maximum deformation value does not change for the underground pipelines longer than 

4pT C  (in our case it is 50 meters).  

From the comparison of the above results, several conclusions can be drawn. 

 

5. Conclusions 

Before the traveling harmonic wave reaches the second boundary of the pipeline, the difference between the 

result with and without the inertial term of equation (1) is seen only in the wave front. 

The change in the yielding coefficient of the fastenings at the boundaries does not contribute to the agreement of 

results with and without inertia. 

For any values of the coefficient of elastic interaction, the results with and without inertia coincide with each 

other by a miniscule difference. 

The change in the vibration period is observed only from 0.1 s to 0.3 s. In periods greater than 0.3 s there is a 

difference in the maximum deformation values. The values coincide. 

We can conclude that for a problem of elastic interactions, it is enough to consider the quasi-static problem to 

determine the maximum value. 

When calculating the longitudinal vibrations of an underground pipeline, with both ends flexibly fixed, the 

inertia force of the pipe can be ignored; this makes it possible to solve the problem in a simplified form. 
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