Случайная составляющая уравнения регрессии

- 1. Модель парной регрессии
- 2. Метод Монте-Карло
- 3. Пример

Модель парной регрессии

С помощью регрессионного анализа мы можем получить оценки параметров зависимости. Однако они являются лишь *оценками*. Поэтому возникает вопрос о том, насколько они надежны

Коэффициент регрессии, вычисленный методом наименьших квадратов, — это особая форма случайной величины, свойства которой зависят от свойств случайной составляющей в уравнении

4

Модель линейной регрессии

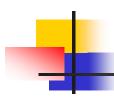
Рассмотрим линейную модель

$$y = \alpha + \beta x + u$$

где x — независимая переменная;

у – зависимая переменная;

a и β – истинные значения параметров регрессии;


u – случайная составляющая

Оценка уравнения регрессии

На основе *п* выборочных наблюдений будем оценивать уравнение регрессии

$$Y = a + bx$$

Будем предполагать, что ж — это неслучайная экзогенная переменная. Иными словами, ее значения во всех наблюдениях можно считать заранее заданными и никак не связанными с исследуемой зависимостью

Величина **у** состоит из двух составляющих. Она включает неслучайную составляющую $(\alpha + \beta x)$

(α и β могут быть неизвестными, но тем не менее это постоянные величины), и случайную составляющую ω

Коэффициент регрессии

Коэффициент регрессии **b**, полученный по любой выборке, представляется в виде суммы двух слагаемых: 1) постоянной величины, равной истинному значению коэффициента β ; 2) случайной составляющей, зависящей от Cov(x,u), которой обусловлены отклонения коэффициента \boldsymbol{b} от константы β

Метод Монте-Карло

По-видимому, никто точно не знает, почему эксперимент по методу Монте-**Карло** называется именно так. Возможно, это название имеет какое-то отношение к известному казино как символу действия законов случайности

Эксперимент по методу Монте-Карло — это искусственный контролируемый эксперимент, дающий возможность проверить хорошие или плохие оценки дает используемый метод

Эксперимент по методу Монте-Карло состоит из трех частей. **Во- первых:**

выбираются истинные значения α и β ; в каждом наблюдении выбирается значение x; используется некоторый процесс генерации случайных чисел для получения значений случайного фактора u в каждом из наблюдений.

Во-вторых, в каждом наблюдении генерируется значение y с использованием соотношения $y = \alpha + \beta x + u$ и значений α, β, x и u. **В-третьих**, применяется регрессионный анализ для оценивания параметров a и b с использованием только полученных указанным образом значений y и данных для x. При этом вы можете видеть, являются ли a и b хорошими оценками α и β , и это позволит почувствовать пригодность метода построения регрессии

Пример

Истинные значения параметров регрессии равны соответственно **2** и **0**, **5**:

$$y = 2 + 0.5x + u$$

х принимает значения от 1 до 20;

и - случайные числа.

Оценить регрессионную зависимость

Таблица 3.1					
X	и	У	X	и	У
1	-0,59	1,91	11	1,59	9,09
2	-0,24	2,76	12	-0,92	7,08
3	-0,83	2,67	13	-0,71	7,79
4	0,03	4,03	14	-0,25	8,75
5	-0,38	4,12	15	1,69	11,19
6	-2,19	2,81	16	0,15	10,15
7	1,03	6,53	17	0,02	10,52
8	0,24	6,24	18	-0,11	10,89
9	2,53	9,03	19	-0,91	10,59
10	-0,13	6,87	20	1,42	13,42

Уравнение регрессии

Методом наименьших квадратов получено следующее уравнение регрессии:

$$Y = 1,63 + 0,54x$$

Для дальнейшей проверки повторим эксперимент с тем же истинным уравнением и с теми же значениями ж, но с новым набором случайных чисел для и

Уравнение регрессии

Опять методом наименьших квадратов получим новое уравнение регрессии:

$$Y = 2,52 + 0,48x$$

Повторим эти эксперименты 10 раз

Эксперимент	a	b
	(2,00)	(0,5)
1	1,63	0,54
2	2,52	0,48
3	2,13	0,45
4	2,14	0,50
5	1,71	0,56
6	1,81	0,51
7	1,72	0,56
8	3,18	0,41
9	1,26	0,58
10	1,94	0,52

Анализ результатов

Несмотря на то, что в одних случаях оценки принимают заниженные значения, а в других — завышенные, в целом значения **а** и **b** группируются вокруг истинных значений, равных соответственно 2,00 и 0,5.

X	u'	У	Х	u'	у
1	-1,18	1,32	11	3,18	10,68
2	-0,48	2,52	12	-1,84	6,16
3	-1,66	1,84	13	-1,42	7,08
4	0,06	3,94	14	-0,50	8,50
5	-0,76	3,74	15	3,38	12,88
6	-4,38	0,62	16	0,30	10,30
7	2,06	7,56	17	0,04	10,54
8	0,48	6,48	18	-0,22	10,78
9	5,06	11,56	19	-1,82	9,68
10	-0,26	6,74	20	2,84	14,84

	а	b
Эксперимент	(2,00)	(0,5)
1	1,63	0,54
2	2,52	0,48
3	2,13	0,45
4	2,14	0,50
5	1,71	0,56
6	1,81	0,51
7	1,72	0,56
8	3,18	0,41
9	1,26	0,58
10	1,94	0,52

Эксперимент	a (2,00)	b (0,5)
1	1,26	0,58
2	3,05	0,45
3	2,26	0,39
4	2,28	0,50
5	1,42	0,61
6	1,61	0,52
7	1,44	0,63
8	4,37	0,33
9	0,52	0,65
10	1,88	0,55

СПАСИБО ЗА ВНИМАНИЕ!

+ 998 71 237 1948

smirzaev@tiiame.uz