### Временные ряды и их виды





- Определение временного ряда
- 2. Цели анализа
- з. Методы анализа
- 4. Пример

# Представление статистических данных

Статистические данные могут быть представлены в одном из двух видов:

- Перекрестные данные
- 2. Временные ряды



**Перекрестные данные** - это данные по какому-либо экономическому показателю, полученные для различных объектов в один и тот же период времени

**Временные ряды** - это данные, характеризующие один и тот же объект, но в различные моменты времени

### Пример

#### Перекрестные данные

| Фермерские<br>хозяйства | 1    | 2  | 3    | 4    | 5  | 6    | 7    | 8    | 9    | 10   |
|-------------------------|------|----|------|------|----|------|------|------|------|------|
| Урожайность (2020 г.)   | 25,5 | 31 | 27,3 | 21,4 | 28 | 27,8 | 29,1 | 26,6 | 26,7 | 28,5 |

#### Временной ряд

| Годы         | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 |
|--------------|------|------|------|------|------|------|------|------|------|------|
| Урожай-      |      |      |      |      |      |      |      |      |      |      |
| ность        | 24,5 | 22,6 | 24,3 | 21,4 | 28,4 | 27,1 | 23,1 | 26,6 | 25,2 | 25,5 |
| (фермерское  | 24,3 | 22,0 | 24,3 | 21,4 | 20,4 | 27,1 | 23,1 | 20,0 | 25,2 | 25,5 |
| хозяйство 1) |      |      |      |      |      |      |      |      |      |      |



#### Определение

- Временной ряд (ВР)- это последовательность значений, описывающих протекающий во времени процесс, измеренных в последовательные моменты времени, обычно через равные промежутки.
- Данные типа временных рядов широко распространены в самых разных областях человеческой деятельности. В экономике это ежедневные цены на акции, курсы валют, еженедельные и месячные объемы продаж, годовые объемы производства и т.п.



#### Цели анализа ВР

- краткое описание характерных особенностей ряда
- подбор статистической модели, описывающей ВР
- предсказание будущих значений на основе прошлых наблюдений
- управление процессом, порождающим ВР



#### Методы анализа ВР

- корреляционный анализ позволяет выявить существенные периодические зависимости
- спектральный анализ позволяет находить периодические и квазипериодические составляющие ВР



#### Методы анализа ВР

- сглаживание и фильтрация
  предназначены для преобразования ВР
- прогнозирование позволяет на основе подобранной модели поведения ВР предсказывать его значения в будущем



- тренд (Т) плавно изменяющаяся компонента, описывающая чистое влияние долговременных факторов (рост населения, изменение структуры возрастного состава и т.д.)
- циклическая компонента (С) плавно изменяющаяся компонента, описывающая длительные периоды относительного подъема и спада, состоит из циклов, меняющихся по амплитуде и протяженности



- сезонная компонента (S) состоит из последовательности почти повторяющихся циклов (объем продаж накануне Нового Года, объем перевозок пассажиров городским транспортом)
- случайная компонента (e) остается после полного выделения закономерных компонент



#### Анализ временных рядов

- Проверка наличия автокорреляции
- Критерий Дарбина-Уотсона
- Авторегрессионная схема первого порядка:

$$u_t = \rho u_{t-1} + \varepsilon_t$$

### Автокорреляция

Если третье условие Гаусса-Маркова (случайные составляющие в разных наблюдениях абсолютно независимы друг от друга) не выполняется, то говорят, что имеет место *автокорреляция*.

Один из наиболее распространенных методов определения автокорреляции — это расчет критерия Дарбина-Уотсона

# 4

### Критерий Дарбина-Уотсона

$$d = \frac{\sum_{t=2}^{T} (e_t - e_{t-1})^2}{\sum_{t=1}^{T} e_t^2}$$

$$d = 2 - 2\rho$$

## Критерий Дарбина-Уотсона

Критерий Дарбина-Уотсона **d** принимает значения от **0** до **4**:

Если d = 2, то автокорреляция отсутствует

Если d = 0, то существует положительная автокорреляция

Если d = 4, то существует отрицательная автокорреляция

### Пример

- 1. Вычислить статистику Дарбина-Уотсона *(d)* для следующих данных.
- 2. Провести анализ полученных результатов.

| T  | e     |
|----|-------|
| 1  | -0,51 |
| 2  | -0,25 |
| 3  | -0,88 |
| 4  | 0,05  |
| 5  | -0,35 |
| 6  | -2,19 |
| 7  | 1,03  |
| 8  | 0,31  |
| 9  | 2,61  |
| 10 | -0,13 |

| T  | e     |       |       |       | d    | Автокорреляция |
|----|-------|-------|-------|-------|------|----------------|
| 1  | -0,51 |       |       | 0,26  |      |                |
| 2  | -0,25 | 0,26  | 0,07  | 0,06  |      |                |
| 3  | -0,88 | -0,63 | 0,40  | 0,77  |      |                |
| 4  | 0,05  | 0,93  | 0,86  | 0,00  |      |                |
| 5  | -0,35 | -0,40 | 0,16  | 0,12  |      |                |
| 6  | -2,19 | -1,84 | 3,39  | 4,80  |      |                |
| 7  | 1,03  | 3,22  | 10,37 | 1,06  |      |                |
| 8  | 0,31  | -0,72 | 0,52  | 0,10  |      |                |
| 9  | 2,61  | 2,30  | 5,29  | 6,81  |      |                |
| 10 | -0,13 | -2,74 | 7,51  | 0,02  |      |                |
|    |       |       | 28,56 | 14,00 | 2,04 | Отсутствует    |



#### Задание

- Вычислить критерий Дарбина-Уотсона для следующих данных
- Обобщить результаты разных наблюдений
- Провести анализ полученных результатов





#### СПАСИБО ЗА ВНИМАНИЕ!



+ 998 71 237 1948



smirzaev@tiiame.uz