THEME: PROBLEMS OF MATHEMATICAL PROGRAMMING

Teacher: prof. G.Shadmanova

Plan:

- General formulation of the problem of mathematical programming
- The main task of linear programming
- Classification of problems of mathematical programming

General formulation of the problem of mathematical programming

Mathematical programming is a branch of mathematics which includes the theory and methods of solving problems.
The maximum or smallest value of a given function is under certain conditions. The function's extreme value of which must be found, is called the objective.

Formally, the problem of mathematical programming reduces to the following: an objective function is defined that depends on n parameters:

$$
Z=Z\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

and m conditions that must be met:

$$
\left\{\begin{array}{c}
u_{1}=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \leq b_{1} \\
u_{2}=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \leq b_{2} \\
\ldots \ldots \ldots \ldots \ldots \ldots \ldots . \\
u_{m}=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \leq b_{m}
\end{array}\right.
$$

All the variables are subject to the conditions of nonnegativity: $x_{j} \geq 0, \mathrm{j}=1, \mathrm{n}$ (3)

The main task of linear programming

Given a system of m linear equations with n unknowns:

$$
\begin{align*}
& a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n} \leq b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n} \leq b_{2} \\
& \ldots \tag{1}\\
& a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots+a_{m n} x_{n} \leq b_{m}
\end{align*}
$$

where all the unknowns can take only non-negative values:

$$
\begin{equation*}
x_{1}, x_{2}, \ldots, x_{n} \gg 0 \tag{2}
\end{equation*}
$$

and a linear objective function of the same variables

$$
\begin{equation*}
z=c_{i} x_{i}+c_{2} x_{2}+\ldots+c_{n} x_{n} \rightarrow \max (\min) \tag{3}
\end{equation*}
$$

Definition 1. Any non-negative solution of the system of equations (1) is called a possible solution of the linear programming problem.
Definition 2. The possible solution, in which function (3) takes the largest (least) value, is called the optimal solution of the linear programming problem.

Classification of problems of mathematical programming

The tasks of mathematical programming are classified depending on the type of objective function and conditions.
If the objective function and conditions are linear, then the corresponding problem is the linear programming problem.
If in the objective function, one of the conditions is nonlinear, then the problem is called nonlinear programming.

Example.

$$
\begin{align*}
& \left\{\begin{array}{l}
2 X_{1}+4 X_{2}+3,2 X_{3}<30 \\
5 X_{1}+2,6 X_{2}+7 X_{3}<50 \\
3,5 X_{1}+5 X_{2}+2,4 X_{3}<40 \\
2 X_{1}+1,3 X_{2}+1,5 X_{3}<20
\end{array}\right. \\
& Z=30 X_{1}+20 X_{1}+40 X_{1} \rightarrow \max \\
& X_{1}, X_{2}, X_{3}>0 \tag{1}
\end{align*}
$$

This is a linear programming problem.

This problem can be solved on a computer with Excel. To do this, we enter all the data into the computer as follows.

x1	x2	x3					
30	20	40					
0	0	0	0				
2	4	3,2	0	30			
5	2,6	7	0	50			
3,5	5	2,4	0	40			
2	1,3	1,5	0	20			

Then we call the programm 'Search for a solution'

After calling the program here enter the cell address data as follows:

After clicking on the button 'Find solutions' we get the following solutions:

Now we analyze the results of solved problem:

If $x_{1}=5.6 ; x_{2}=3.11 ; x_{3}=1.96$; then $\mathrm{Z}=309.8$

THANK YOU FOR ATTENTION!

