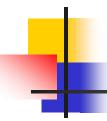


Литература:

В.Е.Гмурман. Теория вероятностей и математическая статистика

Теория вероятностей изучает вероятностные закономерности массовых однородных случайных событий


Терминология

- Достоверным называют событие, которое при осуществлении совокупности условий обязательно произойдет
- **Невозможным** называют событие, которое при осуществлении совокупности условий заведомо не произойдет


Терминология

- Случайным называют событие, которое при осуществлении совокупности условий может либо произойти, либо не произойти
- События называют несовместными, если появление одного из них исключает появление других событий в одном и том же испытании

Терминология(продолжение)

- События называют
 равновозможными, если есть основания считать, что ни одно из них не является более возможным, чем другое
- Каждый из возможных результатов испытания называется
 элементарным событием

Полная группа событий

 События образуют полную группу, если в результате испытания обязательно произойдет хотя бы одно из этих событий

Классическое определение вероятности

• **Вероятность события А** определяется формулой

$$P(A) = m/n$$

где m — число элементарных событий, благоприятствующих событию A, n — число всевозможных элементарных событий

 Вероятность события удовлетворяет двойному неравенству

$$0 \le P(A) \le 1$$

Оцените следующие вероятности:

$$P(W > 60 \text{ kg})$$

= $12/20 = 0.6$

$$P(50 \text{ kg} < W < 60 \text{ kg})$$

= $5/20 = 0.25$

$$P(H < 1.8 m)$$

= $5/20 = 0.25$

(W)	(H)		
43,5	1,76		
45,2	1,90		
48,4	1,86		
51,8	1,83		
53,0	1,61		
55,2	1,53		
57,2	1,81		
59,3	1,90		
61,0	1,90		
61,4	1,85		
63,4	1,98		
65,2	1,53		
65,6	1,96		
67,8	1,86		
68,0	1,75		
68,3	1,85		
68,5	1,81		
76,2	1,82		
76,3	1,87		
84,7	1,88		

Относительная частота

Относительной частотой события называют отношение числа испытаний, в которых событие появилось, к общему числу фактически проведенных испытаний:

W(A) = m/n

Относительную частоту принимают в качестве статистической вероятности события

Теорема сложения вероятностей

Вероятность появления одного из двух несовместных событий равна сумме вероятностей этих событий:

$$P(A+B) = P(A) + P(B)$$

Вероятность совместного появления двух событий равна произведению вероятности одного из них на условную вероятность другого, вычисленную в предположении, что первое событие уже наступило:

P(AB) = P(A) P(B/A)

Независимые события

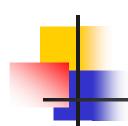
Событие В называют **независимым** от события А, если появление события А не изменяет вероятности события В, т.е. если условная вероятность события В равна его безусловной вероятности:

$$P(B/A) = P(B)$$

Теорема умножения независимых событий:

Вероятность совместного появления нескольких событий, независимых в совокупности, равна произведению их вероятностей:

P(ABC) = P(A) P(B) P(C)



- **Случайной называют величину**, которая в результате испытания примет одно из возможных значений.
- Дискретной называют случайную величину, которая принимает отдельные, изолированные значения с определенными вероятностями.
- **Непрерывной** называют случайную величину, которая может принимать все значения из некоторого конечного или бесконечного промежутка.

Закон распределения

Законом распределения дискретной случайной величины (ДСВ) называют соответствие между возможными значениями и их вероятностями

X	1	2	3	4	5	6
р	1/6	1/6	1/6	1/6	1/6	1/6

Числовые характеристики ДСВ

Математическим ожиданием ДСВ

называют сумму произведений всех ее возможных значений на их вероятности:

$$M(X) = x1 p1 + x2 p2 + ... + xn pn$$

Математическое ожидание приближенно равно **среднему арифметическому** наблюдаемых значений случайной величины

Дисперсия ДСВ

Дисперсией ДСВ называют математическое ожидание квадрата отклонения случайной величины от ее математического ожидания:

$$D(X) = M[X - M(X)]^2$$

Дисперсия это **оценка рассеяния** возможных значений случайной величины вокруг ее среднего значения