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Abstract. Today, in public transport planning systems, it is relevant to a 

search for a possible route with a minimum time. The aim of the work is 

the development of intelligent algorithms for constructing public transport 

routes, the development of programs, and the conduct of a computational 

experiment. Research methods are the theory of neural networks. The 

paper considers Hopfield neural networks and proposed recurrent neural 

networks. However, in Hopfield neural networks, the chances of solving 

this optimization problem decrease as the matrix size increases. A recurrent 

neural network is proposed, represented by a differential equation to solve 

this problem. As a result, the number of iterative computations can be 

reduced by 2n  times than in the Hopfield network. 

1 Introduction 
Algorithms for finding the shortest path are used to build public transport routes. For those 

who want to use public transport, many online services help plan the route. However, the 

problem is a bit more complicated because the routes have to be short; for example, the 

next train cannot arrive at the station before the departure of the current train [1-7]. Besides, 

there may be several mandatory criteria. A short train/air transfer can be very important in 

reducing the overall travel time. Price may also be taken into account. In airline companies, 

sites such as http://orbitz.com or http://expedia.comgive a long list of possible routes for 

users. 

There are more sophisticated train journey planning tools in Europe, such as the 

HAFAS planning system. One of these approaches is that a network that expands over time 

can be wide. An alternative approach is to define a "time-dependent" model in which one 

node is available for each station [1]. If a modified version of Dijkstra's algorithm finds the 

optimum path between two stations, the first problem that comes to mind is whether it can 

calculate the shortest path from one node to another. For example, the time-based approach 

can be used to combine the modified Dijkstra algorithm with the A* search algorithm and 
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use the Nachtigal algorithm [2], which calculates the shortest path between nodes, and 

computes results for the German railways, consisting of 26 routes and 37 stations. 

Pyrga et al. [3] studied a two-criteria version of time-varying approaches to minimize 

transport time and the number of transfers. Their largest examples were networks with over 

30,000 ends and 90,000 edges for a time-dependent approach. 

According to the analysis, the development of hardware, computing tools, and software 

to solve the problem of traffic regulation is growing. At the same time, the number of 

addresses, ends, and edges of traffic is growing rapidly, moving from one parameter to 

more parameters and from static parameters to dynamic ones [4-7]. 

The study presents an analytical table of the level of complexity of algorithms for 

solving problems of finding the shortest path by static parameters (Table 1). 

Table 1. Algorithms for finding the shortest path based on static parameters 

Algorithm name Complexity level Author
Ford algorithm O(V2E) Ford1956

Bellman and Ford

algorithms
O(VE) Bellman 1958, Moore 1957

Denzig algorithms O(V2 log V) Denzig1958, Denzig 1960

Dijkstra algorithm
O(V2)

Leyzorek 1957, Dijkstra

1959

Dijkstra and Fibanacci 

algorithm
O(E + V log V)

Friedman & Tarjan 1984, Friedman 

& Tarjan 1987

Johnson algorithms O(E log log L)
Johnson 1982, Karlsson & Poblete 

1983

Gabov algorithm O(E logE/VL) Gabov 1983, Gabov 1985

Ahuja algorithm O(E + V√log L) Ahuja 1990

The concepts of choosing a route and the shortest path are very close to each other, and 

the problem needs to be solved. However, the shortest path problem is a special case of the 

routing problem, and routing problems can be used to find ideal solutions to this problem. 

Finding the shortest paths is integral to many routing problems [4-7].

2 Methods
To solve this routing problem, we construct the objective function of the Hopfield neural 

network. We use two indices to represent each neuron. In this case, the routing index is the 

node number, and the second index is the node access sequence number at the time of the 

route. For example, the expression 1�xiY means the input of the x-bit node as the i-th node 

in the route.

The objective function must satisfy two conditions: first, each row and each column of 

the direction matrix should have the minimum (unique)value; second, the length of the 

entire path in the chosen direction should be minimal.

The fulfillment of the first condition of the objective function can be checked based on 

the following expression [8]:
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where A, B and C are constant numbers. To achieve this aim, the following conditions must 

be met:

1. If there is no more than one unit in each row, the sum of the first three terms is zero.
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2. If there is no more than one unit in each column (the sequence number of entry into 

the node), the sum of the second triple is zero.

3. If there are V units in the matrix, the third sum is zero.

The objective function is focused on finding the minimum path based on the fulfillment 

of the second condition –introducing an additional element to the objective function:

� �.
4

1,1,4 ���
�

	� ��
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Sufficiently large values for parameters A, B, and C indicate that the route has the least 

cost, while a large value of D ensures that the shortest path is selected.

Opening the brackets of expression (1) and introducing additional variables, we create a 

matrix of weights for the following neural network connections:

� � � � � �1,1,, 11 	� ���						� ijijXTXTijijXTTiXi dDCBAw ������

where ij�  is the Kronecker parameter, which takes the value of 1 if condition � =  � is 

satisfied, otherwise, it takes the value of 0.

We proposed to choose the following function as the activation function of the Fneuron:
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where
0

u  is the threshold value of neural network connections, e is the exponential function,�
is the constant number. 

Based on experiments, it was observed that effective results could be achieved with this 

function in many cases, so we have proposed the same function to solve this problem.

Then, the initial arbitrary values of the weight coefficients of the neural network were 

obtained, and in the next steps, the parameters of the neural network were selected, which can 

solve the problem as a result of their evolutionary change.

The Hopfield network setting process continues iteratively until the network's position

remains unchanged, and the function reaches its minimum value. After the termination of the 

computational process, the neural network output is taken as the most optimal direction.

To solve this problem, the Hopfield network algorithm can be expressed in the following 

steps:

Step 1. Initialization: 

Const: A, B, C, D, 
0

u , tao=1.

CityXY is node coordinates, N is number of nodes.

Step 2. Calculation of distances between nodes:

� �jid , .

Step 3. Initialization of the initial values of the neural network weight matrix: 

X=rand(); 

� �
0

*1*2tanh uXaU 	� .
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Step 4. Calculation of the optimization function: 

The first part of the optimization function is (there is only one unit in each row of the 

matrix)

���
�

�
i j jk

kjij XXAE
2

1

. 

The second part of the optimization function is (there is only one unit in each column of the 

matrix)
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The third part of the optimization function is (one direction only)
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Minimizing the length (cost) of the sought-for path, we obtain
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Step 5. Recalculation of weights of neural connections: 

U=U+lamda*Udao;

We calculate the output value of the neuron
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Recalculation of neural output based on threshold function 

0, if 0.3;

1, if 0.7.

X F
X F
� ��
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Step 6. Testing: 

1. If there is no more than one unit in each raw, then the condition 

0
1

1

1 1
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2. If there is no more than one unit in each column (the sequence number of entry into 

the node), then the condition 0
1

1

1 1
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3. If there are N units in the matrix, then the condition �� �
i j

NX is satisfied.

Step 7. Termination.
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If all three check conditions are met simultaneously, the iteration stops, and the sequence of 

found nodes is printed; otherwise, the algorithm continues from step 3.

In many cases, the solution to combinatorial optimization problems may require a lot of 

computational processes and computational time. In such cases, to increase the program's 

speed and efficiency, there are cases of inappropriate actions, such as purchasing a number of 

additional devices and software and attracting additional services. However, intuitive 

assessment does not always lead to effective success. When calculating according to the 

Amdahl law based on ideal parallelism to processor p, the calculating speed can be expressed 

as follows [10]

� �
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   (2)

Based on this expression, 95 percent parallel computing speed of 20 processors gives a 

numerical value of 1/(0.05 + 0.95/20) = 10.26. In practice, the efficiency of parallel 

computing may be lower. Observations have shown that in a modern dual-core computer with 

two cores, the solution to a problem divided into four mutually independent processes is 1.5 

times faster than the speed of a simple, sequential solution, as long as it is possible. It should 

also be noted that the speed and quality of parallelization also depend on the communication 

parameters.

Gustafson and Barsis, in 1988, found that the execution time of the non-parallel part of the 

program takes less time than its parallel parts [10, 11]. This is especially true for the non-

parallel preparation of sections and results processing. In this case, it is convenient to load a 

non-parallel task as a parameter of a parallel task:

.
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Gustafson and Barsis combined (2) with formula (3) to get the following expression:

� �
1

1
	
	

� 	��
n

SnnnS n
nnn �� .   (4)

The resulting formula (4) allows us to estimate the percentage of the sequential part of 

the program required to achieve a given speed. For example, to increase the performance of 

a program by 19 times on 21 computers, the proportion of sequentially running programs 

on each computer should not exceed (21-19)/(21-1)=10%.

The main conclusion of the Gustafson-Barsis law is that parallelization is effective for 

large tasks when the task requires a lot of time for parallel computing. Parallelization across 

multiple processors is effective for very large tasks.

It is known that when solving this problem in the Hopfield neural network, neurons tend 

to solve the problem on the "one after another" principle. This dramatically increases the 

computational processes. If there is a matrix dimension, then based on this matrix, iterative 

calculations can be performed to solve this optimization problem using the Hopfield grid. It 

follows that as the size of the matrix increases, the chances of solving this optimization 

problem decrease.

To solve the problem (1), a recurrent neural network is proposed, represented by the 

following differential equation [12]: 
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The finite difference version of the above equation for solving the proposed neural network 

can be expressed as:
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where t% is the time step, and the value of this parameter can take values in the range 

[0,1]. Parameters �"!� ,,, are chosen based on experiments and have a significant impact 

on the speed of solving the problem and the quality of this solution. Observations show that 

the chances of obtaining an effective result

t
1
��  increase. Here t is the number of iteration 

steps. 

To speed up the solution of the above system of equations (5), it was proposed to use 

the "Winner takes all" principle [19]. Accordingly, the solution to this optimization 

problem is performed in the following sequence:

1. Matrix ijx  of random values ]1,0[0&ijx  is generated. 

2. Iteration(7) continues until the following inequality condition is met:

� � � � ,2
1 1
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n

l
ljik txtx

here' is a very small positive number. 

3. Processing of the generated elements ijx  of the matrix:

3.1. From the i-th row of matrix
max, jix , the element with the maximum value is 

obtained, where 
max

j is the column number of the element with the maximum value in the 

row. 

3.2. Replacement 1
max,
�jix  is performed by the element obtained. The values of the 

row and all other elements in the column where this element is located are replaced with 

zeros:

.,0

,,0

max,

max,

ikx
jjx

jk

ji

��

��

The next step is to go back to row 
max

j . 

Steps 3.1 and 3.2 continue until the switching processes return to the first row. This 

condition indicates that the iteration is complete.
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4. If the transition to the first row is done before n elements ijx of the matrix take the 

value of 1, than this means that the number of iterations performed was less than n. In this 

case, steps 1 and 3 are repeated.

3 Results and Discussion
When transmitting vector data coming to the input of the neural network, the initial states 

of the neurons are determined. Since the neural network has the feedback property, in the 

next steps, the outputs of the neurons again come to their inputs in the form of a new vector 

based on the feedback, and the state of the neurons changes again. It is known that recurrent 

neural networks are directly related to the concept of neuronal stasis [12–14]. According to 

the Lyapunov criterion, such a neural network is considered stable if, after a finite number 

of iterations, the state of the neurons takes a state in which the topologies do not change. 

The output signals of neurons are formed due to transferring the vector to the input of fixed 

recurrent networks. They again enter the input as unwanted signals and form a new 

precedent vector. However, as the number of iterations increases, the number of changes in

node states decreases until the final state of the network is established. It is known that 

open-loop networks are always stable because when a single unwanted vector is fed into the 

input, the nodes of the network can change their position only once due to the continuity of 

neuron inputs.

One of the most important features of artificial neural networks is the reliability of 

neural network models and systems. This feature allows the implementation of practical 

neural network systems in various sectors of the economy and solutions to problems that 

require high reliability.

Another important feature of neural networks is their ability to learn. Taking advantage 

of this ability, adequate adaptive neural network models were built to solve problems (Fig. 

1,2).

Fig. 1. Nearest distance between 100 nodes obtained from neural network models
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Fig. 2. Nearest distance between 2000 nodes obtained from neural network models

The objective function of the given optimization problem must satisfy two conditions: first, 

the resulting solution matrix is unique in each row and in each column; second, the total time 

obtained on the selected objects should be minimal.

To solve this problem, it was proposed to choose the following function as a neuron activation 

function:
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where
0

u  is the threshold value of neural network connections, e is the exponential 

function, � is the constant number.

The results of numerous studies have shown that, in many cases, effective results can be 

achieved with this function, and for this task, it was proposed to choose this particular 

activation function.

It can be seen that in the proposed neural network nn(  dimensional matrix is 

formed, as in the Hopfield network. But in this case, neurons interact not "one after 

another" but in rows and columns. As a result, the number of iterative calculations can be 

reduced by
2n  times compared with the Hopfield network [16–20].
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4 Conclusions
1. The work considers the Hopfield neural network for finding the optimal route by 

public transport. A computational experiment was carried out to find the optimal route for 

different numbers of nodes. 

2. When the number of nodes is more than 30, the time to find the optimal route based 

on the Hopfield neural network has increased dramatically. To overcome this problem, a 

recurrent neural network is presented, represented by a differential equation. 

3. The methods and algorithms used in the software package designed to find the 

optimal route for vehicles with different numbers of nodes have been tested. The method, 

algorithm, and modules of the software package presented in the research work are based 

on the effectiveness of model tests. The time to find the optimal route with the number of 

2000 nodes is equally decreased by times than in the Hopfield network. 
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