Лекция №9. Двойственность в ЗЛП. Методы создания и решения двойственных симплексных таблиц. Решение двойственных задач.

Рассмотрим математическую модель следующей задачи:

Задача №1. Предприятие использует m вида сырьё для изготовления n вида продуктов. Даны запасы сырья $a_1, a_2, ..., a_n$, прибыль от одной единицы продуктов $c_2, c_2, ... c_n$, объём сырья для изготовления единицы продуктов $a_{11}, a_{12}, ... a_{nm}$. Составить план изготовления продуктов так, чтобы при этом расход сырья не превышал запасы сырья, получить максимальную прибыль от реализации продукта. Неизвестен объём изготавливаемых продуктов. Обозначим их через $x_1, x_2, ... x_n$. 1- вид сырья, которое используется для изготовления одной единицы продуктов. Умножая a_{11} на a_{11} , получаем общий расход сырья 1-вида для изготовления продуктов 1-вида. Аналогично получаем расходы сырья для остальных продукций: $a_{12}x_2, a_{13}x_3, a_{1n}x_n$. Слагая полученные выражения, имеем общий расход сырья 1-вида:

$$a_{11}x_1 + a_{12}x_2 + ... + a_{1n}x_n$$

По условию расход сырья не должен превышать его запасы:

$$a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n \le a_1$$

Аналогичные соотношения имеем для остального сырья:

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \le a_2$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \le a_m$$

Прибыль от реализации продуктов имеет вид соответственно: $c_1x_1,\ c_2x_2,...,\ c_nx_n$. Общая прибыль от реализации всех продуктов имеет вид: $c_1x_1+c_2x_2+...+\ c_nx_n$. По условию мы должны получить максимальную прибыль:

$$z = c_1 x_1 + c_2 x_2 + \ldots + c_n x_n \rightarrow max$$

Объём выпускаемой продукции не должен принимать отрицательных значений. Это условие обозначается следующим образом:

$$x_1 \ge 0, \quad x_2 \ge 0, \quad \dots, x_n \ge 0$$

Объединив вышеуказанные соотношения, имеем математическую модель рассматриваемой задачи:

$$z = c_{1}x_{1} + c_{2}x_{2} + \dots + c_{n}x_{n} \rightarrow max$$

$$a_{11}x_{1} + a_{12}x_{2} + \dots + a_{1n}x_{n} \leq a_{1}$$

$$a_{21}x_{1} + a_{22}x_{2} + \dots + a_{2n}x_{n} \leq a_{2}$$

$$\dots$$

$$a_{m1}x_{1} + a_{m2}x_{2} + \dots + a_{mn}x_{n} \leq a_{m}$$

$$x_{1} \geq 0, \quad x_{2} \geq 0, \quad \dots, \quad x_{n} \geq 0$$

$$(1)$$

Задача №2. Предприятие должно покупать несколько видов сырья из одного хозяйства. Стоимость сырья u_1, u_2, \dots, u_m должна быть такой, чтобы была выполнялись следующие условия:

- 1) предприятие должно минимизировать стоимость сырья;
- 2) хозяйству должны платить такую сумму, чтобы эта сумма не была меньше, чем прибыль хозяйства от реализации продуктов при переработке сырья.

Обозначим через a_1 , a_2 , ..., a_n -запасы сырья, a_{ij} , i=1,2,...,n; j=1,2,...,m-объём сырья вида j, используемого для изготовления продуктов вида i, c_1 , c_2 , ..., c_n -

стоимость одной единицы продуктов. Общая стоимость продуктов имеет вид: $w=a_1+a_2u_2+...+a_mu_m$, которую необходимо минимизировать: $w=a_1u_1+a_2u_2+...+a_mu_m\to min$. Общая стоимость сырья для изготовления одной единицы продукта первого вида имеет вид: $a_{11}u_1+a_{21}u_2+...+a_{m1}u_m$, и она не должна быть меньше, чем стоимость продукта первого вида: $a_{11}u_1+a_{21}u_2+...+a_{m1}u_m \geq c_1$. Аналогичные соотношения получаем для остальных продукций:

$$a_{12}u_1 + a_{22}u_2 + \dots + a_{m2}u_m \ge c_2$$

$$a_{1n}u_1 + a_{2n}u_2 + \dots + a_{mn}u_m \ge c_n$$

Стоимость сырья не должна принимать отрицательных значений:

$$u_1 \ge 0$$
, $u_2 \ge 0$, ..., $u_m \ge 0$

Объединяя вышеуказанные соотношения, получаем математическую модель рассматриваемой задачи:

$$w = a_{1}u_{1} + a_{2}u_{2} + \dots + a_{m}u_{m} \rightarrow min$$

$$a_{11}u_{1} + a_{21}u_{2} + \dots + a_{m1}u_{m} \ge c_{1}$$

$$a_{12}u_{1} + a_{22}u_{2} + \dots + a_{m2}u_{m} \ge c_{2}$$

$$\dots$$

$$a_{1n}u_{1} + a_{2n}u_{2} + \dots + a_{mn}u_{m} \ge c_{n}$$

$$u_{1} \ge 0, \quad u_{2} \ge 0, \dots, u_{m} \ge 0$$

$$(2)$$

Одна из задач (1) и (2) называется прямой, а вторая - двойственной относительно первой.

Если дана прямая задача, то двойственная задача строится следующим образом:

- 1) В качестве коэффициентов целевой функции двойственной задачи берём свободные члены прямой задачи;
- 2) Если целевая функция прямой задачи стремится к максимуму, то целевая функция двойственной задачи стремится к минимуму;
- Число неравенств двойственной задачи равно числу неизвестных прямой задачи, и наоборот число неравенств прямой задачи равно числу неизвестных двойственнной задачи;
- 4) Матрица коэффициентов двойственной задачи получается транспонированием матрицы коэффициентов прямой задачи;
- 5) Если неравенства прямой задачи имеют вид \geq , то неравенства двойственной задачи имеют вид \leq ;
- 6) В качестве свободных членов двойственной задачи берём коэффициенты целевой функции прямой задачи;

Прямую и двойственную задачу можно решать с помощью одной симплексной таблицы. Для этого неравенства обеих задач приводится к виду ≥ 0 .

Прямая задача:

$$z = c_1 x_1 + c_2 x_2 + \dots + c_n x_n \rightarrow max$$

$$y_1 = -a_{11} x_1 - a_{12} x_2 - \dots - a_{1n} x_n + a_1 \ge 0$$

$$y_2 = -a_{21} x_1 - a_{22} x_2 - \dots - a_{2n} x_n + a_2 \ge 0$$

$$y_{m} = -a_{m1}x_{1} - a_{m2}x_{2} - \dots - a_{mn}x_{n} + a_{m} \ge 0$$

$$x_{1} \ge 0, \quad x_{2} \ge 0, \quad \dots, \quad x_{n} \ge 0$$

Двойственная задача:

$$w = a_1 u_1 + a_2 u_2 + \dots + a_m u_m \rightarrow min$$

$$v_1 = a_{11} u_1 + a_{21} u_2 + \dots + a_{m1} u_m - c_1 \ge 0$$

$$v_2 = a_{12} u_1 + a_{22} u_2 + \dots + a_{m2} u_m - c_2 \ge 0$$

$$\dots$$

$$v_n = a_{1n} u_1 + a_{2n} u_2 + \dots + a_{mn} u_m - c_n \ge 0$$

$$u_1 \ge 0 , u_2 \ge 0 , \dots, u_m \ge 0$$

Для полученных соотношений составляем следующую симплексную таблицу:

Двойственная		$v_1 =$	$v_2 =$		$v_n =$	w =
задача	Прямая задача	$-x_{_{1}}$	$-x_2$		$-x_n$	1
$u_{_1}$	$y_1 =$	a_{11}	$a_{_{12}}$	•••	$a_{_{1n}}$	$a_{_1}$
u_2	$y_2 =$	a_{21}	a_{22}	•••	a_{2n}	$a_{\scriptscriptstyle 2}$
•••	•••	•••	•••	•••	•••	•••
$u_{_m}$	$y_m =$	$a_{_{m1}}$	a_{m2}		$a_{_{mn}}$	$a_{_m}$
1	z =	$c_{_1}$	$c_{_2}$	•••	C_n	0

Выполняя симплексные преобразования в этой таблице, получаем оптимальное решение обеих задач. В прямой задаче значение переменной $^{\chi}$ 2-столбца и значение целевой функции $^{\zeta}$ приравнивается соответствующим свободным членам, значений переменной $^{\chi}$, находящево 2- строке, приравнивается нулю. В двойственной задаче значение переменной u 1-строки и значение целевой функции w приравниваются соответствующим свободным членам, значение переменной u , находящееся 1- столбце, приравнивается нулю.

Для рассматриваемой задачи составляем двойственную задачу и находим оптимальные решения для этих задач.

$$z = 12x_1 + 6x_2 - 7x_3 \rightarrow max$$

$$\begin{cases} x_1 + x_2 - x_3 \le 5 \\ 2x_1 + 4x_2 - 5x_3 \le 12 \\ x_1 - 3x_2 + x_3 \le 8 \\ 2x_1 + 8x_2 - x_3 \le 11 \end{cases}$$

$$x_1 \ge 0, \ x_2 \ge 0, \ x_3 \ge 0$$

Составляем двойственную задачу для рассматриваемой прямой задачи:

$$w = 5u_1 + 12u_2 + 8u_3 + 11u_4 \rightarrow min$$

$$\begin{cases} u_1 + 2u_2 + u_3 + 2u_4 \ge 12 \\ u_1 + 4u_2 - 3u_3 + 8u_4 \ge 6 \\ -u_1 - 5u_2 + u_3 - u_4 \ge -7 \end{cases}$$

$$u_1 \ge 0, \ u_2 \ge 0, \ u_3 \ge 0, \ u_4 \ge 0$$

Обе задачи приводятся к виду ≥0:

$$z = 12x_{1} + 6x_{2} - 7x_{3} \rightarrow max$$

$$\begin{cases} y_{1} = -x_{1} - x_{2} + x_{3} + 5 \ge 0 \\ y_{2} = -2x_{1} - 4x_{2} + 5x_{3} + 12 \ge 0 \\ y_{3} = -x_{1} + 3x_{2} - x_{3} + 8 \ge 0 \\ y_{4} = -2x_{1} - 8x_{2} + x_{3} + 11 \ge 0 \end{cases}$$

$$w = 5u_{1} + 12u_{2} + 8u_{3} + 11u_{4} \rightarrow min$$

$$\begin{cases} v_{1} = u_{1} + 2u_{2} + u_{3} + 2u_{4} - 12 \ge 0 \\ v_{2} = u_{1} + 4u_{2} - 3u_{3} + 8u_{4} - 6 \ge 0 \\ v_{3} = -u_{1} - 5u_{2} + u_{3} - u_{4} + 7 \ge 0 \end{cases}$$

$$x_{1} \ge 0, \ x_{2} \ge 0, \ x_{3} \ge 0$$

$$u_{1} \ge 0, \ u_{2} \ge 0, \ u_{3} \ge 0, \ u_{4} \ge 0$$

Составляем симплексную таблицу для вышеуказанных соотношений:

Двойственная		$v_1 =$	$v_2 =$	$v_3 =$	w =
задача	Прямая задача	$-x_1$	$-x_2$	$-x_3$	1
u_1	$y_1 =$	1	1	-1	5
u_2	$y_2 =$	2	4	-5	12
u_3	$y_3 =$	1	-3	1	8
$u_{\scriptscriptstyle 4}$	$y_4 =$	2	8	-1	11
1	z =	-12	-6	7	0

Все свободные члены прямой задачи неотрицательны, поэтому считается, что опорное решение существует. Чтобы найти оптимальное решение, выбираем наименьшее число в строке z: -12. Столбец , где находится число -12, является разрешающим столбцом. На положительные числа разрешающего столбца делим соответствующие свободные члены, и составляем симплексные соотношения. Среди этих соотношений находим наименьшее: $min\left\{\frac{5}{1},\frac{12}{2},\frac{8}{1},\frac{11}{2}\right\}=5$. Коэффициент 1, который соответствует

минимальному соотношению, выбираем в качестве разрешающего элемента. 1- строка будет разрешающей. Таблица принимает следующий вид:

			\downarrow			1-таблица
	Двойственная		$v_1 =$	$v_2 =$	$v_3 =$	w =
	задача	Прямая задача	$-x_1$	$-x_2$	$-x_3$	1
→	$u_{_1}$	$y_1 =$	1	1	-1	5
	u_2	$y_2 =$	2	4	-5	12
	u_3	$y_3 =$	1	-3	1	8
	u_4	$y_4 =$	2	8	-1	11
	1	z =	-12	-6	7	0

Выполняя симплексные преобразования, переходим к следующей таблице:

2-таблица

					_ 1000011112
Двойственная		$u_1 =$	$v_2 =$	$v_3 =$	w =
задача	Прямая задача	- y ₁	$-x_2$	$-x_3$	1
$v_{_1}$	$x_1 =$	1	1	-1	5
u_2	$y_2 =$	-2	2	-3	2
u_3	$y_3 =$	-1	-4	2	3
u_4	$y_4 =$	-2	6	1	1
1	z =	12	6	-5	60

В 2-таблице в строке z столбец содержащий -5, является разрешающим, а разрешающий элемент будет 1, соответствующий минимальному соотношению $min\left\{\frac{3}{2},\frac{1}{1}\right\}=1$.

					\downarrow	
	Двойствення		$u_1 =$	$v_{2} =$	$v_3 =$	w =
	задача	Прямая задача	$-y_1$	$-x_2$	$-x_3$	1
	$v_{_1}$	$x_1 =$	1	1	-1	5
	u_2	$y_2 =$	-2	2	-3	2
	u_3	$y_3 =$	-1	-4	2	3
→	$u_{\scriptscriptstyle 4}$	$y_4 =$	-2	6		1
	1	z =	12	6	-5	60

Выполняя симплексные преобразования, переходим к следующей таблице:

Двойственная		$u_{\scriptscriptstyle 1} =$	$v_2 =$	$u_4 =$	w =
задача	Прямая задача	$-y_{_1}$	$-x_2$	- y ₄	1
v_1	$x_1 =$	-1	7	1	6
u_2	$y_2 =$	-8	20	3	5
u_3	$y_3 =$	3	-16	-2	1
v_3	$x_3 =$	-2	6	1	1
1	z =	2	36	5	65

В прямой задаче переменные x находящиеся в 2- строке, приравниваем нулю, переменные x находящиеся во 2- столбце, и целевую функцию z приравниваем соответствующим свободным членам: $x_1 = 6$, $x_2 = 0$, $x_3 = 1$, $z_{max} = 65$. В двойственной задаче переменные u первого столбца приравниваются нулю, а переменные u первой строки и целевую функцию w приравниваем соответствующим свободным членам:

$$u_1 = 2$$
, $u_2 = 0$, $u_3 = 0$, $u_4 = 5$, $w_{min} = 65$