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Abstract. The problem associated with the development of gas fields with confined contour water is 

considered in the paper to increase gas recovery and determine the main indices of the reservoir, as 

well as the position of the moving boundaries for further development. To conduct a comprehensive 

study of the process under consideration, a computer model was developed described by a differential 

equation with the corresponding initial and boundary conditions. An algorithm was developed to solve 

the problem using the methods of longitudinal-transverse scheme and the flow version of the sweep 

method. The results are validated with a test example, and an example of a certain real object. The 

results are shown in the form of tables and isolines. Numerical experiments have shown that using this 

statement it is possible to apply the developed algorithms and software systems to solve the problem 

during field development. 

Keywords: filtration, well, model, gas, oil, computational algorithm, numerical experiment, result, software 

package. 

 

1. Introduction. The first steps in the development of the methods of filtration theory consisted in creating 

an algorithm and programs for solving prognostic problems, i.e. solving the corresponding hydrodynamic 

problems, mathematical study of which is reduced to the consideration of boundary-value problems described by 

the corresponding equations of the filtration theory in multiply coupled domains with inhomogeneous boundary 

conditions. These problems were successfully solved by analytical, approximate-analytical, variational and 

numerical methods. 

The situation has changed dramatically with the beginning of the computer era simplifying the problems 

caused by large variety of oil and gas fields, and especially by the complexity of their geological structure. The 

methods of finite differences used to conduct large-scale mathematical experiments performed on modern 

computers, are widely used nowadays. 

Groundwater monitoring is considered an important task of hydrodynamic study. It makes possible to 

judge the paths and filtration rates at water rise in the well location sites and possible drowning, the degree of 

development stability in the sites under consideration, etc. 

Therefore, research on the effectiveness of the development of water-gas zones and gas deposits with 

contour water is relevant. To date, a considerable number of studies have been published in which the patterns of 

the drowning of wells and fields with contour and bottom waters have been revealed. 

Nevertheless, there are currently objective reasons to conduct research in order to find the ways to 

increase the developing efficiency of water-gas zones and gas deposits with bottom water. This is due, firstly, to 

the fact that the well-known theory and practice of developing this type of deposits is based on the use of vertical 

production and injection well systems and, secondly, due to significant progress in creation and use of numerical 

algorithms and programs and modern powerful computers. 

As a result, it became possible to set up large-scale mathematical experiments on development elements, 

taking into account the main determining parameters and factors. The results of many years of research to 

substantiate new principles and technologies for the development of oil and gas fields are summarized. To a large 

extent, their occurrence is associated with the current state in oil and gas industry and the achievements of 

scientific and technological progress [1,2]. 

With widespread occurrence of horizontal wells in oil and gas production systems, research on the 

problem of steady and unsteady inflow to this type of wells has significantly increased. A methodological basis for 

the interpretation of the research results of horizontal wells under unsteady conditions and for the  issues of cone 

formation in the development of oil and gas or water-floating oil and gas deposits by a system of horizontal wells 

is given  in [3]. 
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The studies in [4] provide the materials of mathematical foundations for the theoretical gas dynamics. The 

principles of constructing a variety of gas-dynamic models are stated - from integrated conservation laws to specific 

formulas that describe a particular gas flow. Group-theoretical foundations of the derivation of differential equations 

that describe the classes of particular solutions are given. The methods of qualitative analysis are widely used when 

solving specific problems. To facilitate the material perception, the text includes graphic illustrations. 

In [5-10], the problems of modeling the process of gas filtration in porous media are considered. A 

mathematical model of the object under study is developed, described by a nonlinear partial differential equation 

with constant coefficients; an ordinary sweep algorithm is used to solve the problem. The results for the model 

problem are obtained for reservoir parameters of constant values. 

In [11], gas filtration problems with constant coefficients in a standard site with randomly located wells are 

presented. The algorithm for solving the problem is based on the flow version of the sweep method. Solution results 

for the model gas filtration problem are presented. 

1.1. Statement of the problem. Let there be a productive formation (initially water-(gas-) saturated) confined 

to boundary water. The reservoir is developed using randomly located wells, with coordinates ),( ii yx  in the mode 

of specified volume flow rates over time iq . It is necessary to determine the time change of reservoir pressure and 

the position of the moving boundaries. For this, integrate the nonlinear partial differential equation of the parabolic 

type in the gas zone 
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At moving boundary surfaces, the conditions of pressure continuity and flow continuity are fulfilled. 
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The law of the movement of a flow is: 
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here   ),,( tyxp  is the pressure; ,g w  are the coefficients of dynamic viscosity of gas and fluid, respectively; k  is 

the permeability coefficient. ),( yxm  is the porosity coefficient; *

w  is the coefficient of elastic capacity of 

formation fluid; t  is time; 0p is the initial reservoir pressure. 
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atmospheric pressure, 
2,S G - the contours of the wells and site, respectively; 

1 2,n n  - the normals to the contours

2 ,Г S , respectively; 
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0( , )R x y   - the initially set 

curve, showing the initial position of the moving boundary surface; ( , , )R x y t  - the position of the moving 

boundary surface; n  - the normal to the line of the moving boundary surface. 

For the convenience, equation (1) and (2), can be written in the following form 
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2. Methods. To construct a numerical algorithm for problem solution using finite-difference methods [11-14], 

first turn to dimensionless variables. For this, we introduce some characteristic quantities 
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where   , , , , ,L L k p tx y x x x x  - are some given constants. Omitting the dashes over the letters and 

making some calculations, we obtain a dimensionless problem, which has the form similar to the problem given in 

(6) - (9). 

Cover the given domain  0 1; 0 1x y      with a uniform grid 

 , 1/ , 0, , , 1/ , 1, ,
xy i x x x x j y y y yx ih h N i N y jh h N j N        . 

For the time step we take the grid 

 , 1/ , 0,kt k k        . 

By entering the notation 
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and approximating the dimensionless problem using the Samarsky longitudinal-transverse scheme [12], without 

intermediate calculations, we obtain a chain of one-dimensional difference problems of the form 
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The resulting chain of one-dimensional difference problems (4) - (5) is solved by the flow sweep method 

[11]. 

 

3. Results and Discussion.  

To validate the reliability of the results obtained using the above computational algorithms, we take a 

circular region confined to the boundary water as a test example (Fig. 1 a). In the center of the region, there is one 

pumping well with a constant flow rate, its value is daysmq /10 34

0  , and with a thickness of 10 m. The example 

is solved to compare the results with a one-dimensional flat-radial filtration under the same initial data (Fig. 1 b). 

 

 

 

 

 

 

 

 

           

 

 

                                                    

 

 

  Fig. 1. Results of Testing Example. 

 

Table 1 shows the results of calculations obtained for both statements, for a time of 180 days. The 

number of iterations with the refined nonlinear term does not exceed two steps for the total time of solution. Based 

on comparative analysis of results, it should be noted that the results obtained with developed algorithms in 

numerical determination of the pressure field and the position of the moving two-phase boundaries in a two-

dimensional statement correctly reflect the physical pattern of the process. 

 

                                                                      Table 1 

 

One-dimensional statement 

 0.930 0.931 0.933 0.935 0.936 0.937 0.937 

Two-dimensional statement 

у   \  х 0.50 0.55 0.65 0.75 0.85 0.95 1.0 

0.50 0.931 0.933 0.933 0.934 0.935 0.936 0.936 

0.55 0.933 0.933 0.933 0.934 0.935 0.936  

0.65 0.933 0.933 0.934 0.935 0.936 0.936  

Gas 

Water 

 

R

c
c

c 

Rx Gas 

Water  

а) b) 

х 

у 



0.75 0.934 0.934 0.935 0.936 0.936   

0.85 0.935 0.934 0.936 0.936    

0.95 0.936 0.936 0.936     

1.0 0.936       

 

 

Now consider the solution of the problem in the region of complex shape confined to the boundary water 

(Fig. 2) with real data for a certain field under water pressure conditions. In the region there are 14 wells, their 

numbers, coordinates and flow rates are given in Table 2. Figure 3 shows the changes in the pressure field 

obtained in 360 days.                                            

 

     Table 2 

  

     

1 201 11 6 63722.0 

2 202 9 18 45885.0 

3 203 20 20 9958.0 

4 204 22 14 699710.0 

5 205 17 14 669510.0 

6 206 29 19 237486.0 

7 207 6 10 644090.0 

8 208 32 17 224950.0 

9 209 6 15 183475.0 

10 210 29 15 724713.0 

11 211 18 8 6800.0 

12 212 11 14 714963.0 

13 213 22 10 59100.0 

14 216 27 16 436381.0 

 

 

 
 

Fig. 2. Isoline of the field of pressure. 

 

Conclusions 

From the above results, we can conclude that the developed algorithm is applicable for solving the 

problem of gas filtration during frontal drive in a porous medium. The symmetry of the obtained results was 

validated using a test example both in two-dimensional and one-dimensional plane radial statement under the same 

initial data. An example of randomly spaced several wells was also considered. From the results obtained, it can be 



said that the developed algorithm and software product can be applied to determine the performance of real 

deposits. 
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