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Abstract. Two possible approaches for generalizing the kinematic wave model for deformable 

channels are being discussed in this paper, including the approximation in which the law of 

conservation of fluid mass includes erosion and sedimentation; and approximation that the 

fluid flow is determined by the kinematic wave equation without taking into account bottom 

deformations. 

Systematic comparison of the results of calculations of self-similar waves for different values 

of the change in water flow was carried out as well. 

1. Introduction 

For solving problems of flow transformation, the kinematic wave equation is often used: one of the 

simplest mathematical models of the channel flow, based on the use of the fluid mass conservation law 

with Chezy or Darcy–Weisbach equation [0, 0]. The use of such a mathematical model is permissible 

in the case when the linear and time scales of the consideration of phenomena are large enough, the 

effects associated with the inertia of the flow are insignificant; in addition, the difference between the 

slope of the water surface and the slope of the watercourse bottom is also insignificant. Such an 

approach is possible at large scales of consideration, but it may absolutely not correspond to reality at 

a smaller examination, since in a more detailed analysis, the force effect and inertness of the flow play 

the main role in the development of the wave process, and in some areas even a reverse slope of the 

bottom is possible. Despite the aforementioned significant limitations, estimates made using this 

mathematical model often give satisfactory results for estimating flow parameters in channels without 

retaining structures. 

The kinematic wave equations are also of interest for understanding the processes occurring in 

rivers. For example, in [0], on the basis of analytical solutions of the kinematic wave equation, a 

theoretical explanation was found for the fact discovered earlier in the works of various authors - the 

level of flooding when the pressure front of the dam breaks at some distance from it ceases to depend 

on the form of the outflow hydrograph and is determined only by the volume of the emptied reservoir. 
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This paper discusses two possible approaches to generalizing the kinematic wave model for 

deformable channels (for wide rectangular channels): 

- an approach that uses the laws of conservation of the mass of fluid and sediment in deformable 

channels, and the flow rate which determined by the Chezi or Darcy–Weisbach formulas, 

- an even rougher approximation, in which it is assumed that the fluid flow is determined by the 

kinematic wave equation without taking into account bottom deformations. 

 

2. Results and Discussion 

The system of differential equations of fluid motion in a wide rectangular channel with a deformable 

bottom, provided that the flow is completely saturated with sediments in a coordinate system with the 

abscissa axis inclined to the horizontal at a slope I, has the following form [0, 0]: 

 

{
 
 

 
 
𝜕𝑍𝑟𝑏+ℎ

𝜕𝑡
+
𝜕𝑞

𝜕𝑥
= 0,                                                      

𝜕ℎ𝑆+𝑍𝑟𝑏𝑆𝑟𝑏

𝜕𝑡
+
𝜕𝑞𝑆

𝜕𝑥
= 0,                                               

𝜕𝑞

𝜕𝑡
+
𝜕𝑞𝑉+𝑔ℎ2 2⁄

𝜕𝑥
+ 𝑔ℎ (

𝜕𝑍𝑟𝑏

𝜕𝑥
− 𝐼) +

𝜆

2
𝑉|𝑉| = 0,

    (1) 

 

here: t - time, x – length along the riverbed, h – depth, q – specific discharge, 𝑍𝑟𝑏 – bed mark (over 

tilted axis Х), 𝑍𝑟𝑏 = 𝑍𝑟𝑏+h – free water surface mark, V – velocity, V=q/h, λ - hydraulic friction 

coefficient, 𝑆, 𝑆𝑟𝑏- volumetric concentrations of sediment in the flow and material of the channel 

bottom, respectively; further assume that 𝑆𝑟𝑏 is const and during sedimentation turns out to be equal to 

the same value that was in the channel before the start of the process of bottom deformations. It is also 

assumed that the volumetric sediment concentration 𝑆 is a function of flow depth and flow rate: 

 

𝑆 = 𝑆(ℎ, 𝑉).         (2) 

In this paper, channels are considered that have on average a constant bottom slope I along the 

length, and the slope of the X axis is taken to be equal to the bottom slope. In this case, it is assumed 

that both the liquid and the sediment material are incompressible, so that in the first and third 

equations, a reduction is made by the water density ρ, and in the second - on the sediment density 𝜌𝑠. 
It is assumed that the sediment concentration in the flow is low, which makes it possible to neglect the 

sediment momentum. Usually, for river flows, this hypothesis does not lead to significant errors, but it 

is unacceptable when modelling mudflows. 

Equations (1) have trivial solutions: 

- restrained fluid (for any shape of the longitudinal profile of the channel bottom 𝑍𝑟𝑏 =
𝑍𝑟𝑏(𝑥) and hydraulic roughness): 

{
𝑍𝑟𝑏 + ℎ − 𝐼𝑥 = 𝑐𝑜𝑛𝑠𝑡,

𝑉 = 0,
𝑆 = 0,

         (3) 

- uniform flow (in channels with a constant bottom slope and its roughness): 

{

𝑞 = 𝑐𝑜𝑛𝑠𝑡,

𝑉 = √
2𝑔ℎ𝐼

𝜆

𝑆 = 𝑆(ℎ, 𝑉).

           (4) 

It is difficult to obtain other analytical solutions of system (1.1), and the main method of integrating 

system (1.1) is the numerical methods [0-11].   
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In [0], a simplified mathematical model of flow in channels was considered, in which the third 

equation of system (1.1), which expresses the law of conservation of the momentum of a river flow, is 

replaced by the following relation following from the Darcy formula: 

 

{
 
 

 
 

𝜕𝑍𝑟𝑏+ℎ

𝜕𝑡
+
𝜕𝑞

𝜕𝑥
= 0

𝜕ℎ𝑆+𝑍𝑟𝑏𝑆𝑟𝑏

𝜕𝑡
+
𝜕𝑞𝑆

𝜕𝑥
= 0

𝑞 = √
2𝑔ℎ3𝐼

𝜆

         (5) 

The same mathematical flow model is discussed below. In addition, an even rougher model was 

considered: 

{
 
 

 
 

𝜕ℎ

𝜕𝑡
+
𝜕𝑞

𝜕𝑥
= 0

𝜕ℎ𝑆+𝑍𝑟𝑏𝑆𝑟𝑏

𝜕𝑡
+
𝜕𝑞𝑆

𝜕𝑥
= 0

𝑞 = √
2𝑔ℎ3𝐼

𝜆

         (6) 

 

Systems of equations (1.5) and (1.6) cannot describe the structure of the transient process in the 

channel, but they allow one to assess some features of the flow without focusing on the details 

determined by the inertness of the flow and being sub-scale in this consideration. As noted above, such 

a mathematical model of the current is often used in hydrology in relation to unerodable channels. [0, 

0, 9, 12]. 

In this paper, the well-known solutions of system (6) are generalized for the class of formulas for 

the coefficient of hydraulic friction λ with its power-law dependence on the depth I: 

 

λ =
𝛬

ℎ𝛼
, α>0.          (7) 

 

With  𝛼=1/3 и 𝛬 = 2𝑔𝑛2, here 𝑛 – roughnessroughness, (7) is Manning's formula [0], and with 

𝛼=2/5 и 𝛬 = 2𝑔𝑛2 – Forchheimer [0] formula, with 𝛼 = 0 a simplified technique is used, in which the 

depth in the computational domain changes slightly, so that the change in the coefficient of hydraulic 

friction λ can be neglected.   

The main flow parameters, expressed through the specific water flow rate would have the form: 

ℎ = (
𝛬𝑞2

2𝑔𝐼
)
1/(3+𝛼)

, 𝑉 =(
2𝑔𝐼

𝛬
)
1/(3+𝛼)

𝑞(1+𝛼)/(3+𝛼),       (8) 

expressed through the depth 

𝑞 = √
2𝑔𝐼ℎ3+𝛼

𝛬
 , 𝑉 = √

2𝑔𝐼ℎ1+𝛼

𝛬
,         (9)  

and expressed through the velocity: 

ℎ = (
𝛬𝑉2

2𝑔𝐼
)
1/(1+𝛼)

, 𝑞 = (
𝛬

2𝑔𝐼
)
1/(1+𝛼)

𝑉(3+𝛼)/(1+𝛼).       (10) 
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2.1. Formulas for the weight-bearing capacity of the channel flow.     

There are a large number of formulas of type (11) for the sediment concentration in the flow; some 

of them are given in [14], the analysis of their applicability in the conditions of some real rivers was 

carried out there. Here are some of these formulas that have found wide application in calculations for 

rivers and canals of Central Asia. 

R.A. Bagnold's formula: In [0, 0], the Bagnold’s formula is given in the following form: 

 

𝑄𝑠 = 𝑄
𝜌×𝜌𝑆

𝜌𝑆−𝜌

𝐶𝑓𝑉
2

𝑔ℎ
(
0,13

𝑓−𝐼
+
0.01
𝑊

𝑉
−𝐼
),        (11) 

 

here: 𝑄𝑠 – mass flow capacity, Q – water discharge, 𝜌 and 𝜌𝑆 - density of water and soil mineral, 

respectively, 𝐶𝑓- channel’s roughness coefficient, 

 𝐶𝑓 =
𝜆

2
 , 𝐶𝑓𝑉

2 = 𝑉∗
2, 𝑉∗ = √

𝜆

2
𝑉 – dynamic velocity, 𝑓 = 𝑡𝑔(𝜑) - internal sediment friction 

coefficient, 𝜑 – internal friction angle, 𝑊 – settling velocity. Volume concentration of sediments 

corresponding to the formula (2.1) 

𝑆 =
𝜌𝑆

𝜌𝑆−𝜌

𝜆𝑉2

2𝑔ℎ
(
0,13

𝑓−𝐼
+

0.01
𝑊

𝑉
−𝐼
),         (12) 

For a uniform flow, the Bagnold formula is greatly simplified and, after substituting into it the second 

equation of the system (1.4) 𝑉 = √
2𝑔ℎ𝐼

𝜆
 takes the following form: 

𝑆 =
𝜌𝑆

𝜌𝑆−𝜌

𝜆𝑉2

2𝑔ℎ
(
0,13

𝑓−𝐼
+

0.01
𝑊

𝑉
−𝐼
) =

𝜌𝑆𝐼

𝜌𝑆−𝜌
(
0,13

𝑓−𝐼
+

0.01
𝑊

𝑉
−𝐼
)       (12a) 

The first term in parentheses in the formula (2.2) -  
0,13

𝑓−𝐼
 reflects an important physical fact: a decrease 

in the stability of particles with an increase in the bottom slope I. With a large scale of consideration, it 

is natural to assume that the slope I much less than the coefficient of internal friction of the sediment 

material f, and as a first approximation it can be neglected. In this case, and this term can be viewed in 

a simplified form: 
0,13

𝑓
. Second term:  

0.01
𝑊

𝑉
−𝐼

  , apparently, should reflect the effect of a decrease in the 

probability of particle settling with an increase in the bottom slope. This effect is significant at local 

bottom depressions, at which the phenomenon of flow around the bottom dune appears and, possibly, 

a separated flow appears, but this effect is unlikely to be significant at currents close to uniform, even 

at relatively large slopes. As it seems to us, Probably, in practical engineering calculations, it is 

advisable to use the Bagnold formula in the following form: 

 

𝑆 =
𝜌𝑆

𝜌𝑆−𝜌

𝑉∗
2

𝑔ℎ
(
0,13

𝑡𝑔𝜑
+ 0,01

𝑉

𝑊
).         (13) 

 

Below, Begnold's formula is used in the form: 

 

𝑆 = 𝐴1
𝜆𝑉2

𝑔ℎ
(𝐴2 +

𝑉

𝑊
),  𝐴1 =

0.5𝜌𝑆

𝜌𝑆−𝜌
× 10−3 , 𝐴2 =

13

𝑡𝑔𝜑
    (13a) 

 

And with uniform water flow: 

 

𝑆 = 2𝐴1𝐼 (𝐴2 +
𝑉

𝑊
),           (13b) 

 

Kh. A. Ismagilov’s formula  
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According to [19 – 24], the formula is: 

 

𝑆 = 𝐴0
𝑉3

𝑔ℎ𝑊
,            (14) 

here: 𝐴0 – coefficient, which depends on the watercourse; for Amu Darya River near the Cape 

Pulizindan: 𝐴0 =0.22, for canals in Central Asia 𝐴0 =0.18For a simplified model of bottom 

deformations at 𝜆 = 𝑐𝑜𝑛𝑠𝑡 Ismagilov's formula is a special case of Begnold's formula for 𝐴1 = 𝐴0/ 𝜆, 

𝐴2 = 0.  

 

V.N. Goncharov’s formula 

 

According to [0] the formula is: 

𝑆 = {
0 𝑎𝑡 𝑉 ≤ 𝑉𝑛,

1+𝜉

500

𝑑

ℎ
(
|𝑉|3

𝑉𝑛
2 − 1) (1 −

𝑉𝑛

|𝑉|
) 𝑎𝑡 𝑉 > 𝑉𝑛,

    

𝜉 =
𝑊𝑐

𝑊
,

𝑊𝑐 = √
2𝑔

1,75
(
𝜌𝑠

𝜌
− 1)𝑑

   (15) 

here: 𝑉𝑛 – noneroding velocity, d – diameter of soil particles of 50% size, that is, such a size that 

50% of the volume of soil particles has a diameter greater than d, and 50% has a smaller diameter. The 

same applies to the settling velocity used in formulas (13) and (14). In this work, we will not focus on 

how soil heterogeneity affects the process of bottom deformations, and, for simplicity, we will assume 

that the soil is homogeneous and all particles have the same diameter d. 

From our point of view, a significant defect of the Goncharov formula in comparison with the 

Begnold formula is the absence in it of an explicit dependence on the dynamic velocity associated with 

the turbulence energy of the flow, which is the primary cause of the suspension of soil particles and 

their transfer by the flow. 

There are also a number of empirical formulas for non-blurring speeds. Here are the simplest ones: 

G/I/ Shamov’s formula 

 

𝑉𝑛 = 3,83√𝑑√ℎ
3

 ,          (16) 

 

V.N. Goncharov’s formula (2) 

 

𝑉𝑛 = 0,06√𝑔𝑑
0,4(𝑑 + 0,014)0,6 √

ℎ

𝑑

5
,       (17)  

Recommendations for determining the noneroding velocity are given in [0].  

Begnold's formula is considered one of the most reliable and is often used in hydraulic calculations, 

while Goncharov's formula, according to [0], shows an unsatisfactory coincidence of the sediment 

concentration estimates obtained from it with field observations. 

At the same time, apparently, Goncharov's formula reflects an important physical fact: at a flow 

velocity lower than the non-eroding velocity, the carrying capacity of the flow is equal to 0, and 

Begnold's formula does not have this property. Multiplier 𝑉∗
2 =

𝜆

2
𝑉2 shows that with an increase in the 

energy of turbulence of the flow, its suspension capacity increases. It is natural to assume that the 

suspension capacity is not proportional to the square of the dynamic speed 𝑉∗
2 =

𝜆

2
𝑉2, but the 

difference between the squares of the dynamic speed and the dynamic noneroding velocity 

 

 𝑉∗𝑛
2 =

𝜆

2
𝑉𝑛
2: 
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𝑆 = 𝐴1
𝑉∗
2−𝑉∗𝑛

2

𝑔ℎ
(𝐴2 +

𝑉

𝑊
)           (18) 

 

Formulas for estimating the suspension capacity of a flow, including the Begnold formula (13) and 

the modified Begnold formula (17), are suitable for low sediment concentrations. Formulas operating 

in an arbitrary range of concentrations, which can be used in mathematical modeling of mudflows, 

should not exceed the concentration S=1 at any flow parameters (in fact, the concentration 𝑆𝑚𝑎𝑥 < 1, 

corresponding dense packing of the soil material because pores between particles have a certain 

volume). Let us perform the following modification of the Begnold formula which does not allow 

exceeding the limiting concentration 𝑆𝑚𝑎𝑥: 

 

𝑆 =
2𝑆𝑚𝑎𝑥

𝜋
𝑎𝑟𝑐𝑡𝑔 [𝐴̂1

𝑉∗
2−𝑉∗𝑛

2

𝑔ℎ
(𝐴2 +

𝑉

𝑊
)],  𝐴̂1 =

𝜋𝐴1

2𝑆𝑚𝑎𝑥
     (19) 

Figure 1 and 2 show graphs of functions ∆𝑍̃𝑟𝑏 = 𝐹(𝑞̃) for various combinations of parameters for 

the system of equations (5) and (6)). Calculations were performed for 1 < 𝑞̃ ≤ 10 и 2𝐼𝐴1 = 4 ×
10−7.  

 
Figure 1. Graphs of the relationship between the depth of erosion and the coefficient of increase in 

water discharge during the passage of the bursting wave of increase at various values of the parameter 

𝐴2 =
13

𝑡𝑔(𝜑)
, here 𝜑  – internal friction angle of sediment material (𝐴2=750 with 𝜑 ≈ 1𝑜). 
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Figure 2. Graphs of the relationship between the depth of erosion and the coefficient of increase in 

water consumption during the passage of the bursting wave of the increase at various values of the 

exponent in the formula (3): Legend: α=1/3 – Manning’s formula, α=2/5 – Forchheimer’s formula. 

 

In figure 1-4 presents the results of calculating the parameters of a simple depression wave obtained 

using the numerical finite-difference method for equations (5) and analytical formulas for equations 

(6). Specific discharge decreased in the calculations from 10 m
2
/sec to 1 m

2
/sec. The calculations were 

carried out for three values of the exponent α in the formula (3): α=0,  α=1/3 (Manning’s formula), 

α=2/5 (Forchheimer’s formula). parametric variable Λ=2gn
2
=2×10

-3
, 2×I×A1=4×10

-7
,
 
A2=0 (soil with 

zero angle of internal friction). 

 
Figure 3. Graphs of changes in water flow along the channel during the passage of a simple 

depression wave with different formulas specifying hydraulic friction. 

Legend: 1 - α=0, 2; α=1/3 (Mannig’s formula), 3 - α=2/5 (Forchheimer’s formula). 



IPICSE 2020
IOP Conf. Series: Materials Science and Engineering 1030  (2021) 012147

IOP Publishing
doi:10.1088/1757-899X/1030/1/012147

8

 
Figure 4. Graphs of the change in the velocity of the current along the channel during the passage of a 

simple sinking wave with various formulas specifying hydraulic friction (Legend see at Fig. 3). 

 
Figure 5. Graphs of the change in the depth of the current along the channel during the passage of a 

simple sinking wave with various formulas specifying hydraulic friction (Legend see at Fig. 3). 
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Figure 6. Graphs of the change in the volumetric sediment concentration of the current along the 

channel during the passage of a simple sinking wave with various formulas specifying hydraulic 

friction (Legend see at Fig. 3). 

 
Figure 7. Graphs of the change in the sediment layer of the current along the channel during the 

passage of a simple sinking wave with various formulas specifying hydraulic friction(Legend see at 

Fig. 3). 
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The relationship between the limiting values of the self-similar argument 𝜉 =
𝑥

𝑡
 and the initial water 

flow rate in the watercourse during the passage of a simple depression wave with various formulas 

specifying hydraulic friction is at Fig. 8.  

 
Figure 8. Relationship plots of values of a self-similar argument 𝜉 =

𝑥

𝑡
  и the initial flow rate of water 

in a watercourse during the passage of a simple depression wave with various formulas specifying 

hydraulic friction. Legend: 𝜉0 – self-similar variable value 𝜉 =
𝑥

𝑡
 at the boundary between the 

undisturbed flow and a simple depression wave, 𝜉1 – value of the self-similar variable at the boundary 

between a simple depression wave and the flow established after its passage. 
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Figure 9. Graphs of the relationship between the sediment layer and the initial specific water flow rate 

𝑞0 uring the passage of a simple downward wave (the minimum value of the specific water flow rate 

after establishing 𝑞1 = 1 m/sec
2
 with various formulas specifying hydraulic friction (Legend see at 

Fig. 3). 

3. Conclusion 

The paper considers two versions of kinematic wave equations in a broad rectangular bed assuming 

total saturation flux sediments: 

 Version 1: equations in which the law of conservation of fluid mass includes erosion and 

sedimentation, 

 Version 2: equations in which the motion of the liquid phase is considered to be described by 

the usual equation of a kinematic wave, bottom deformations are assumed to be small and do not 

affect the hydrodynamic picture. 

For Version 1, the simulation of the equations of a kinematic wave taking into account bottom 

deformations there was an algorithm for the numerical solution and a program in Pascal language in 

the Delphi programming environment have been developed.  

For Version 2, the well-known analytical solutions of hydraulic parameters were generalized for 

the case of a power-law dependence of the hydraulic friction coefficient on the flow depth, including 

the Manning and Forchheimer formulas. 

Systematic comparison of the results of calculations of self-similar waves for different values of the 

change in water flow was carried out.  

The possibility of generalizing the Begnold formula for high sediment concentrations is discussed. 
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