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Abstract This work is devoted to the study of motion of spinning test particles in the spacetime of the Kerr–Newman–NUT black
hole with quintessence, in the Rastall gravity theory. We use the so-called Mathisson–Papapetrous–Dixon equation to investigate
the dynamics of spinning test particles. We discuss the effect of the particle’s spin, s, and the spacetime parameters on the effective
potential. Then, we focus on the innermost stable circular orbits (ISCOs) and show the dependence of the ISCO radius on the
particle’s spin for different values of the metric parameters graphically. Then, we investigate the specific energy and the orbital
angular momentum of the particle at the ISCO. Our results show that the black hole’s spin parameter a has an evident influence on
the ISCO radius, followed by the quintessential parameter, α, the quintessence state parameter, ω, and the Rastall gravity parameter,
κλ. We also discuss the constraint on the particle’s spin due to the superluminal bound for co-rotating and counter-rotating orbits,
which changes depending on the values of the black hole’s parameters. Finally, we compare our results with the results for the
Kerr black hole. We found that spacetime parameters increase the ISCO radius for co-rotating and counter-rotating circular orbits.
Nevertheless, the energy at the ISCO is not affected strongly by the spacetime parameters for higher values of |s|.

1 Introduction

Black holes could be considered laboratories for testing the theories of gravity by analyzing particle motion in their vicinity. The
dynamics of massive particles around a black hole horizon could enhance our understanding of the strong gravitational field. The
particle motion in the black holes’ close vicinity is still considered a successful description of the extreme-mass-ratio-inspiral
system. The recent observation of the gravitational waves from the merger of black holes, by LIGO-VIRGO collaboration [1] is
based primarily on the theoretical models related to the dynamics of particles in the strong-field regime. Moreover, the images of
the supermassive black holes, such as M87∗ and Sgr A∗ [2, 3], are the outcomes of the studies of the massless particles motion in
the surrounding of black holes. Therefore, it is interesting to explore particle motion in different black hole spacetimes to probe the
fundamental Physics in their proximity.
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It is assumed that the existence of a cosmic fluid around black holes could make the dynamics of particles chaotic in nature.
Thus, a better approximation for the motion of stellar compact objects around a supermassive black hole is the dynamics of spinning
particles, which is also of astrophysical interest. In the literature, several studies have been conducted to explore the spinning
particle motion under the influence of the strong gravitational field of black holes. Test particles with negligible mass and size
compared to the central compact object follow geodesics. To consider a more realistic situation, one can incorporate spin in the
motion of particles that do not follow geodesic completely and therefore need different types of equations of motion. Mathisson
and Papapetrou were the first to present the equations of motion for spinning test particles in gravitational fields [4, 5]. To solve
the Mathisson and Papapetrou equations, one needs a spin supplementary condition to overcome the issue of the fewer number of
equations than the variables involved there [6]. Dixon then modified the equations of Mathisson and Papapetrou. These equations
are known as the Mathisson-Papapetrou-Dixon (MPD) equations of motion in the literature [7]. In the presence of a gravitational
field, the dynamics of spinning test particles have been analyzed in the pole-dipole approximation, i.e., by neglecting the effects
of the gravitational field and the particle’s higher-order multipoles where the particle is assumed to be completely specified by its
spin dipole and mass monopole [8]. Using the MPD equations, it has been shown that the orbits are sensitive to the spin-to-mass
ratio of the particles in the plan gravitational wave spacetime in the weak field limit [9]. The scattering of spinning test particles in
the background of plane gravitational waves and electromagnetic waves have been investigated utilizing the MPD equations [10].
Besides, the dynamics of spinning test particles have been studied in various black hole and wormholes spacetimes, including the
Schwarzschild spacetime [11], the Reissner-Nordström spacetime [12], Kerr and Kerr–Newman spacetimes [13, 14], rotating and
traversable wormholes [15, 16]. The spinning particles have also been analyzed in theories of gravity other than Einstein’s General
Relativity (GR), e.g., four-dimensional Einstein-Gauss-Bonnet gravity, where the Gauss-Bonnet parameter has been restricted to
a special interval of values depending on the mass of the black hole [17]. In the present work, we are interested in the motion
of spinning particles in the spacetime geometry of the Kerr–Newman–NUT–Kiselev (KNNK) black hole in the Rastall theory of
gravity (discussed below) [18] to look at the effect of the spacetime parameters on the motion of the spinning particles.

The current accelerated expansion of our observable Universe could be explained with the notion of dark energy [19]. There
are several candidates for dark energy, including chaplygin gas, k-essence, the cosmological constant, and quintessence [20]. The
range of the equation of state parameter ω for quintessence is defined as (−1, −1/3) and is widely discussed in the cosmological
context [21], and also in the context of black hole spacetimes [22]. Kiselev has found a black hole solution of the field equations of
GR in the presence of quintessence [22]. Afterward, the Kiselev black hole solution was generalized in the presence of charge and
rotating parameters [23]. The Kiselev black hole solution with charge and spin was then derived with the NUT parameter, which
has been studied in the literature for particle motion and thermodynamics [24, 25]. The charged-rotating Kiselev black hole solution
with the NUT parameter, which is referred as KNNK black hole in the above paragraph here, has also been derived in the Rastall
theory of gravity [18]. The motion of massive and measles particles has been analyzed in the vicinity of the KNNK black hole in the
Rastall theory of gravity [26–28]. The Joule-Thomson expansion and the optical behaviour of a non-asymptotically flat and charged
static black hole spacetime with quintessence, in the Rastall theory of gravity, has also been discussed in the literature [29].

The Brazilian physicist Paulo Rastall [18], proposed a modification of Einstein’s theory of GR in the 1970s and introduced the
new Rastall gravity parameter. The Rastall modification to GR suggests that the energy-momentum conservation law is not strictly
obeyed and that the coupling between the geometry of spacetime and the distribution of matter and energy is modified by the
Rastall parameter. The Rastall parameter modifies the Einstein field equations by introducing a non-minimal coupling between the
matter and the curvature of spacetime which appears as a new coefficient in the energy-momentum tensor in the gravitational field
equations. There are some arguments about the validity of the Rastall theory of gravity. In this regard, Visser has argued that at the
large scale, the Rastall theory of gravity is a re-arrangement of the matter sector of the standard GR [30]. Particularly it is argued
that on comparison of the GR and Rastall theory of gravity, one may have that the gravity parts of the two theories of gravity are
equivalent to each other. A counter-argument has been made where it is shown that the two theories of gravity i.e. the GR and the
Rastall theory of gravity are not equivalent and the latter is a modified theory of gravity [31]. The Rastall theory of gravity has then
been generalized by taking a modification of the law of conservation of the stress-energy-momentum tensor [32, 33]. Exact solutions
in the Rastall theory of gravity have been obtained for static and cylindrically symmetric configurations [34, 35]. Rapidly spinning
compact objects have also been studied in the Rastall theory of gravity [36, 37]. In the literature for a suitable choice of the coupling
parameter of the Rastall theory of gravity, it has shown that in the presence of the quintessence dark energy parameter, the results in
the GR can be recovered [38]. A twisted, charged, and rotating black hole solution with the quintessence dark energy has also been
derived in the Rastall theory of gravity [39]. Some other axially symmetric black hole solutions in the Rastall theory of gravity have
also been derived in the literature [40, 41]. Investigation of spacetime properties of several black hole solutions through the motion
of test particles and photons have been extensively studied in our previous works [28, 42–53].

This paper is organized as follows: In the next section we present the KNNK black hole solution in the Rastall gravity where the
horizon structure of the said black hole is also briefly discussed. In Sect. 3, we give the equations of motion for spinning test particles
in black hole spacetimes. In the same section, we also give the equations for the effective potential of a test particle in a black hole
geometry. In Sect. 4, we analyze the motion of spinning test particles in the vicinity of the KNNK black hole in the Rastall theory
of gravity where we also investigate the innermost stable circular orbits (ISCO) of the particles and demonstrate them graphically.
In the last section, we give the conclusion of our work.
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2 Kerr–Newman–NUT–Kiselev spacetime in the Rastall gravity

GR is a promising theory of gravity, as it has successfully passed observational tests such as the deflection of light by gravitational
sources and the generation of gravitational waves from binary black hole systems [1]. Despite our understanding of GR, certain
phenomena such as the quantization of gravity on curved backgrounds and the accelerated expansion of the Universe remain
unexplained within its framework. As a result, alternative theories of gravity have been proposed [54]. An alternative to GR is the
Rastall theory of gravity, in which rotating and non-rotating black hole solutions have been analysed.

The Rastall theory of gravity predicts a specific form for the spacetime metric of the KNNK black hole, found in [39]:

ds2 � −�

�
{dt − [a sin2 θ + 2l(1 − cos θ )]dφ}2

+
�

�
dr2 + �dθ2 +

sin2 θ

�
{adt − [r2 + (a + l)2]dφ}2, (1)

here

� � r2 − 2Mr + a2 + e2 + g2 − l2 − αrv , (2)

v � 1 − 3ω

1 − 3κλ(1 + ω)
, (3)

� � r2 + (l + a cos θ )2. (4)

The KNNK black hole solution in Rastall gravity contains seven parameters. The total mass and the specific angular momentum
of the black hole are represented by M and a, respectively. Other parameters include: l, the NUT parameter, α, the quintessential
intensity, κλ, the Rastall gravity parameter, the physical meaning of which has been explored at the large scale [55]. The parameter
of the equation of state of the quintessence is denoted by ω, the parameters e and g correspond to the electric and magnetic charges of
the black hole, respectively [39]. It is also possible to introduce a new parameter q2 � e2 +g2 that takes into account the contribution
of both the electric and the magnetic charges of the black hole to the spacetime.

The KNNK black hole solution in Rastall gravity is a unique and interesting solution, as it contains several horizons which depend
on the values of the parameters ω and κλ. The event horizon is a crucial concept in black hole Physics and is determined as the
coordinate singularity of the spacetime, which is a null hypersurface of constant r. This means that the event horizon is the surface
beyond which the gravitational pull is so strong that nothing, including light, can escape. The horizons in the KNNK black hole
solution are determined as the roots of a specific algebraic equation

r2 − 2Mr + a2 + q2 − l2 − αrv � 0. (5)

These equations are used to identify the location of the horizons and study their properties. The presence of multiple horizons in the
KNNK black hole solution in Rastall gravity provides a rich and complex structure that is worthy of further investigation.

The number and location of horizons in the KNNK black hole solution in Rastall gravity depend on the values of the parameters
ω and κλ. For certain values of these parameters, the horizon may have only inner and outer parts or may not have a cosmological
horizon. These specific cases are of interest as the thermodynamic properties of the black hole are relatively easier to study. This is
why in a recent study [56], only two roots of the horizon equation were explored.

However, when the horizon equation has more than two roots, it becomes much more challenging to perform calculations, such
as studying the entropy product. A table (given as Table 1, below) of selected values of parameters ω and κλ that allow for two
analytic roots for the horizon equation can be found in [39].

Table 1 The last column of the
table presents the selected values
of black hole parameters ω and κλ

that allow for exact analytical
solutions for both the inner and
outer horizons

ω, κλ Horizon (r±)

0, 0
(
M + α

2
) ±

√(
M + α

2
)2 + l2 − a2 − q2

−1/3, 0 M
1−α

±
√
M2−(a2+q2−l2)(1−α)

1−α

0, 1/6 M
1−α

±
√
M2−(a2+q2−l2)(1−α)

1−α

−1/3, −1/2 (
M + α

2
) ±

√(
M + α

2
)2 + l2 − a2 − q2

1/3, 0 M ±
√
M2 + l2 + α − a2 − q2
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3 Equation of motion for spinning test particle: basic concepts

In the last section, we discuss the spacetime of a KNNK black hole in the Rastall theory of gravity. Now, to address the motion of
spinning test particles in that spacetime, we review the theoretical background necessary to investigate this problem. According to
the literature, Mathisson was the first to consider spinning test particle motion while working on extended bodies in GR [4]. Back
in 1937, when his work was published, Mathisson showed that spinning test particles do not follow the usual geodesic equation of
GR. Instead, spinning test particles follow a differential equation where a coupling between the Riemann curvature tensor and the
particle’s spin is present. Papapetrou considered a similar approach in Refs. [5, 57] during the 1950s. Then, Tulczyjew and others
improved Mathisson’s method in Refs. [58–64]. Recently, the MPD equations were modified (see, for example, Refs. [65, 66] and
references there in). Nevertheless, in this paper, we stick to the usual MPD equations.

The MPD equations are given by

Dpμ

dτ
� −1

2
Rμ

νδσ u
νSδσ ,

DSμν

dτ
� pμuν − pνuμ.

(6)

Here, we define the projection of the covariant derivative along the particle’s trajectory as D/dτ ≡ uμ∇μ, where uμ � dxμ/dτ

is the 4-velocity of the test particle, pμ is the canonical 4-momentum, Rμ
νδσ is the Riemann curvature tensor, and τ is an affine

parameter. It is important to remark that the second rank tensor Sμν in the Eq. (6) is antisymmetric. Therefore, Sμν � −Sνμ.
On the other hand, as mentioned above, the motion of spinning test particles is described by differential equations coupled with

the Riemann curvature tensor; see the first relation in Eq. (6). When the components of Sμν vanish, the differential equation reduces
to

Dpμ

dτ
� 0, (7)

corresponding to the well-known geodesic equation of GR when one expresses it in terms of the 4-momentum and the projection of
the covariant derivative along the particle’s trajectory.

To solve the set of equations (6), one needs to fix the center of mass. In this sense, it is necessary to consider the Tulczyjew Spin
Supplementary Condition (SSC) [67], given by the relation [58, 67]

Sμν pμ � 0, (8)

from which, the canonical momentum and the spin of the particle provide two independent conserved quantities, given by the
relations:

SμνSμν � 2S2,

pμ pμ � −m2.
(9)

In addition to the spin and the canonical momentum shown in Eq. (9), one also has the usual conserved quantities associated with the
spacetime symmetries. In the case of an axially symmetric spacetime, there are two Killing vectors field. One is related to invariant
time translations, ξμ, and the other generates rotations along the azimuth angle φ, ψμ. We can compute these quantities using the
following equation:

pμκμ − 1

2
Sμν∇νκμ � pμκμ − 1

2
Sμν∂νκμ � constant, (10)

where kμ is one of the two Killing vector fields; i.e., ξμ or ψμ.
Finally, in contrast to the conservation of canonical momentum [see the second relation in Eq. (9)], it is crucial to mention that

for the spinning test particles the four velocity is a timelike unit vector:

uμu
μ �� −1. (11)

The reason for such behavior has to do with the fact that pμ and uμ are not always parallel. From the physical point of view, the
violation of Eq. (11) enables spinning test particles to move faster than the speed of light, something forbidden by physical laws. In
this sense, to avoid this problem, it is necessary to impose an additional condition the superluminal bound as mentioned in [68].

The superluminal bound is an important condition for the dynamics of spinning test particles. This constraint will help us to
find the values of s for which the particle’s trajectory is time-like. As we remarked before, although pμ pμ � −m2 holds, the
normalization uμuμ � −1 is not necessarily satisfied. Therefore, the four-velocity uμ increases, and for specific values of spin s,
some of the uμ components may diverge. Hence, the particle’s trajectory becomes space-like and without physical meaning.

In order to maintain the trajectory of spinning test particles with time-like character, it is necessary to impose the following
constraint (on the equatorial plane) [68–71]

uμuμ

(ut )2 � gtt + grr

(
dr

dt

)2

+ 2gtϕ
dϕ

dt
+ gϕϕ

(
dϕ

dt

)2

≤ 0. (12)
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Hence, by solving the MPD equations (6), one obtains the following general expressions for dr/dt and dφ/dt [68, 69, 72]

dr

dt
� ur

ut
� C pr

Bpt + Dpϕ

,

dϕ

dt
� uϕ

ut
� Dpt + Apϕ

Bpt + Dpϕ

.

(13)

where

A � gϕϕ +

(
Sϕr

pt

)2

Rtrrt ,

B � gtt +

(
Sϕr

pt

)2

Rϕrrϕ ,

C � grr +

(
Sϕr

pt

)2

Rϕt tϕ ,

D � gtϕ +

(
Sϕr

pt

)2

Rtrϕr .

(14)

In this sense, by defining the function F � uμu/(ut )2, one obtains the value of s for which F � 0, the superluminal bound.
Therefore, when F > 0 for a certain value of s, the trajectory of the spinning test particle is space-like, and s is a forbidden value.
If F < 0, the particle’s trajectory is time-like, and the corresponding value of s is allowed.

3.1 The effective potential

The motion of spinning test particles can be analyzed using the effective potential, Veff, a function relating the energy, E, the total
angular momentum J , and the particle’s spin, s. In particular, we can investigate the dynamics of spinning test particles when they
follow stable circular orbits, finding in this way, through the superluminal bound, a constraint on s.

In the case of static and axially symmetric spacetimes,

ds2 � gtt dt
2 + grr dr

2 + 2gtϕdtdφ + gθθdθ2 + gφφdφ2, (15)

the conserved quantities E and J are given by the relations [see Eq. (10)] [69]

−E � pt − 1

2

(
g′
t t pφ − g′

φt pt
) Str

pφ

J � pφ − 1

2

(
g′
tφ pφ − g′

φφ pt
) Str

pφ

,

(16)

where the motion is assumed to be constrained to the equatorial plane, θ � π/2, and ′ denotes the radial derivative. Moreover, since
the particle’s motion is constrained to the equatorial plane, the antisymmetric tensor Sμν only has three independent components,
i. e. [68, 69, 71],

Stφ � pr
pt

Sφr � − pr
pφ

Str ,

Srϕ � − pt
pϕ

Srt � pt
pϕ

Str .
(17)

See Eq. (8). Therefore, the energy, E, and the total angular momentum, J , reduce to Eq. (16). On the other hand, from the spin
conservation and the normalization conditions, Eqs. (9), we have that

Str � pφs√
grr (g2

tφ − gφφgtt )
. (18)

Here, s � S/m represents the specific angular momentum of the particle (spin), which can be positive or negative depending on the
direction of pϕ . After replacing Eq. (18) into Eq. (16) and solving the system for pt and pφ , we obtain [68, 69]

pt � −E + s(AJ + BE)

1 − Ds2

pφ � J + s(BJ + CE)

1 − Ds2 ,
(19)
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Fig. 1 The radial dependence of
the effective potential for different
values of the spin of the particle
while keeping all other parameters
constant

with

A � g′
t t

2
√
grr (g2

tφ − gφφgtt )
,

B � g′
tφ

2
√
grr (g2

tφ − gφϕgtt )
,

C � g′
φφ

2
√
grr (g2

tφ − gφϕgtt )
,

D � (g′
tφ)2 − g′

t t g
′
φφ

4grr (g2
tφ − gφφgtt )

.

(20)

Now, from Eqs. (9) and (19), the radial canonical momentum is given by

p2
r � β

α

(
E2 +

δ J

β
E +

σ J 2

β
− ρ

β

)
. (21)

The last expression can be written in the following way:

p2
r � β

α
(E − V +

eff)(E − V−
eff), (22)

from which

V±
eff � −δ J ± √

(δ J )2 − 4γβ

2β
, (23)

where γ � σ J 2 − ρ. The general expressions for α, β, δ, σ and ρ in the case of a static and axially symmetric spacetime are given
in Eq. (36) of the Ref. [69].

In Sect. 4, we will apply Eq. (23) to the KNNK black hole in the Rastall Gravity. To perform our analysis, we use the dimensionless
variables J , E , s. These variables are defined as

E → E
m , J → J

M � J
mM , s → s

M � S
mM . (24)

Here m the mass of the spinning test particle. Hence, the effective potential reduces to

V±
eff → V±

eff

m
� −δJ ± √

(δJ )2 − 4γβ

2β
. (25)

In the case of the spin of the black hole, a, the dimensionless variable is defined as a → a/M2. And the dimensionless radial
coordinate is given by r → r/M .

From now on, we constrain our attention to the case of test particles with positive energy, in this sense, Veff ≡ V+
eff.

4 Dynamics of spinning test particles around Kerr–Newman–NUT–Kiselev black holes in the Rastall gravity

In this section, we apply the results of Sect. 3 to the particular case of KNNK black holes in the Rastall gravity. First, we investigate
the effects of the spacetime parameters: a, α, ω, and κλ on the effective potential. Then we focus on the discussion about the stable
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Fig. 2 The radial dependence of the effective potential. Here the dot-dashed, solid, and dashes lines represent the case of a spinning test particle with s � −1,
s � 0, and s � 1, respectively. In all plots, the particle’s orbital angular momentum is L � 5

circular orbits. Here, we also discuss the effect of the spacetime parameters on L and E . Finally, we discuss the superluminal bound,
which allows us to constrain the possible values of the particle’s spin, s, in the KNNK spacetime in the Rastall gravity.

4.1 The effective potential

Using the metric (1) and the results of Sect. 3, we obtain the analytical expression for Veff of the spinning test particle in the field of
the KNNK black hoe in the Rastall gravity, see Eq. (25). Nevertheless, the explicit form of the effective potential involving δ, γ , and
β is long enough to be included in the manuscript. Instead, we prefer the use of figures to demonstrate the effects of the spacetime
parameters on Veff.

Figures 1 and 2 shows dependence of the effective potential on the radial coordinate for spinning test particles in the KNNK
black hole spacetime in the Rastall gravity. Since we consider several parameters, we keep constant the NUT parameter, l � 0.5,
and the parameter q � 0.5, focusing only on the quintessential intensity, α, the Rastall gravity parameter, κλ, and the quintessence
state parameter, ω. In the Fig. 2, we use dot-dashed, solid, and dashed lines to depict Veff of test particles with spin, s � −1, s � 0,
and s � 1, respectively. Note that the first column of Fig. 2 compares the potential of a spinning test particle with s < 0 and that
of a test particle without spin, while the second column compares Veff for s > 0 and s � 0. In the third column, we contrast the
potential for test particles with negative and positive spins.
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Fig. 3 Dependence of the ISCO
radius on the spin of the particle
for the different values of the
spacetime parameters (Left side
plots for co-rotating case, right
side for counter-rotating)

In all the figures, the effective potential behaves as usual: it tends to Veff � 1 when r/M → ∞ and diverges when the radial
coordinate tends to the horizon. Furthermore, Veff has a maximum value, which is more evident for particles with s � 0 and s � 1.
We obtain a similar conclusion in the case of the minimum value of the effective potential.

Our objective is to examine the impact of the spin of the particle while maintaining constant values for all other parameters.
Figure 1 demonstrates that the effective potential rises with an increase in particle’s spin. Moreover, note that values of Veff are bigger
when the test particle’s spin is positive, and smaller when the particle’s spin is negative. On the other hand, according to Fig. 2, as
the kλ parameter increases, it results in a decrease in the effective potential. While we see opposite behavior, if we consider different
values of the black hole’s angular momentum, a, see the fourth row in Fig. 2. In the second row of Fig. 2, we plot the behavior of Veff

as a function of r/M for different values of the quintessence state parameter, ω. In all the three cases (s � −1, s � 0, and s � 1),
the figure shows that Veff decreases as ω changes from −1/10 to −1/2.

Finally, in the third row of Fig. 2, we show the behavior of Veff for different values of the quintessential intensity, α. From the
figure, it is possible to see that the potential reduces as α increases independently of the sign of the particle’s spin.

4.2 Innermost stable circular orbit

Now we study the circular orbits of spinning test particles in the spacetime of KNNK black hole in the Rastall gravity, governed by
the metric Eq. (1). It is well-known that particles travel in circular orbits when the following conditions are hold simultaneously:
(a) zero radial velocity (dr/dτ � 0) and (b) zero radial acceleration (d2r/dτ 2 � 0), or equivalently, E � Veff and dVeff/dr � 0.
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Fig. 4 Dependence of the angular
momentum at the ISCO radius on
the spin of the particle for the
different values of the spacetime
parameters (Left side plots for
co-rotating case, right side for
counter-rotating)

Nevertheless, these conditions do not guarantee the stability of the circular orbit. Therefore, it is necessary to impose an additional
constraint on Veff, that is:

d2Veff

dr2 ≥ 0. (26)

In the last equation, the innermost region of the stable circular orbits is obtained when the equality condition in Eq. (26) holds. This
region is known as the ISCO. To obtain the radius of the ISCO, the total angular momentum, JISCO, and the energy per unit mass,
EISCO, we solve numerically and simultaneously the non-linear system dVeff/dr � 0 and d2Veff/dr2 � 0 for rISCO and JISCO.
Then, with the help of Eq. (25) we compute the value of EISCO.

In Figs. 3, 4, 5, 6 and 7, we plot the behavior of rISCO, LISCO, EISCO as a function of s for different values of the metric parameters
a, α, ω, and κλ. It is important to mention that in all the figures, the left and right columns correspond to co-rotating (LISCO > 0) and
counter-rotating (LISCO < 0) orbits, respectively. Note that we are considering only the particle’s orbital angular moment, LISCO,
instead of its total angular momentum, JISCO, related to the former by the relation JISCO � LISCO + s. This is done to define the
co-rotating and counter-rotating orbits in the usual way.

In Fig. 3, we show the dependence of the rI SCO on the spin of the particle, s, for the different values of the spacetime parameters,
ω, κλ, α, and a. Note that the left and right panels correspond to co-rotating and counter-rotating orbits, respectively. In the same
figure, when one consider different values of the quintessence state parameter, ω, it is possible to see that rI SCO decreases as ω

increases for a constant value of the particle’s spin. This behavior is the same for the co-rotating and counter-rotating orbits; see the
first row in Fig. 3. Furthermore, for constant values of ω, the figure shows the ISCO radius for cor-rotating orbits decreases when
the particle’s spin increases in contrast to counter-rotating orbits, where rISCO increases as s increases.
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Fig. 5 Dependence of the specific
energy at the ISCO radius on the
spin of the particle for the
different values of the spacetime
parameters (Left side plots for
co-rotating case, right side for
counter-rotating)

In the second row of Fig. 3, we show the behavior of rISCO as a function of s for different values of the Rastall gravity parameter, κλ.
Similar to the previous case, the ISCO radius (when κλ is constant) decreases/increases as the spin s increases for co-rotating/counter-
rotating orbits. Note this trait is common in all situations where their corresponding metric parameters are constant, i.e., when ω, kλ,
α, a are constants. On the other hand, for both co-rotating and counter-rotating orbits, when κλ decreases from −0.4 to −1 (while
keeping constant the particle’s spin), rISCO reduces its value.

In the third row of Fig. 3, we plot rISCO versus s for different values of α, the quintessential intensity. From the figure, it is possible
to see how the ISCO radius decreases as the α parameter changes from 0.1 to 0.3 when co-rotating and counter-rotating orbits have
a constant value of s. Note how the changes in rISCO are more evident when α varies than the cases in which ω and κλ change, see
the first and second rows in the figure. Nevertheless, this variation is less evident when compared with that in which the black hole’s
spin, a, increases from 0.2 to 0.9. See the last row in Fig. 3.

The behavior of rISCO versus s for different values of the black hole’s spin, a, is shown in the fourth row of Fig. 3. For constant
values of the particle’s spin, the figure shows how the ISCO radius of co-rotating orbits increases as the black hole’s spin decreases
from 0.9 to 0.2. Nevertheless, the opposite behavior occurs when the spinning test particle follows a counter-rotating circular orbit:
the ISCO radius decreases as a increases. Furthermore, note that the difference in the values of ISCO is more evident than the other
spacetime parameters when the black hole’s spin varies.

In the figure Fig. 3, we also show the behavior of rISCO in the Kerr spacetime; see the continuous green line in the first, second,
and third rows, and the panels in the fifth rows of Fig. 3. The effect of ω, κλ, and α is evident: rISCO increase its value in the presence
of the metric parameters, which means that spinning test particles move farther from the KNNK black hole’s center in contrast to
the Kerr black hole. We see that the effect of a on rISCO is quite similar in both cases. We plot them in different figures to compare;
see the panels in the fourth and fifth rows in Fig. 3.
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Fig. 6 Dependence of the specific
energy on the ISCO radius of the
particle for the different values of
the spacetime parameters (Left
side plots for co-rotating case,
right side for counter-rotating)

On the other hand, as discussed in Sect. 3, to keep the trajectory of spinning test particles time-like, it is necessary to impose
the superluminal bound, defined by the function F through Eq. (12). From the physical point of view, the superluminal bound
corresponds to the value of s for which the function F � 0. In this sense, circular orbits with s ≤ sluminal are time-like, and therefore,
physically allowed (F ≤ 0). In the Fig. 3, vertical lines depict the superluminal bond (s � sluminal). According to the figure Fig. 3,
when we consider different values of ω, the superluminal bound for co-rotating circular orbits increases as ω changes from −1/10
to −1/2; nevertheless, in the case of counter-rotating spinning test particles, sluminal reduces its value. Therefore, particles following
co-rotating circular orbits have a larger range of allowed orbits than counter-rotating particles. A similar behavior occurs when the
parameter α changes from 0.1 to 0.3. However, the variation in sluminal is more symmetric than the previous case (first row); see the
third row in Fig. 3.

When we consider different values of κλ, the second row of Fig. 3 shows that sluminal increases/decreases as |κλ| reduces its
value from 1 to 0.4 for co-/counter-rotating circular orbits. Moreover, note that sluminal does not change considerably in this case
when contrasted with the other parameters. We obtain the same behavior for different values of a; see the fourth row of Fig. 3. Note
that the changes in sluminal are the most notorious and symmetric of all cases. In the same figure, we also show the ISCO for the Kerr
black hole for different values of a. See the last row of the same figure. Although sluminal also increases/decreases as a decreases
for co-/counter-rotating orbits in the Kerr black hole, it is possible to see that the change is not symmetric when compared to the
KNNK black hole.

Figure 4 illustrates the behavior of LISCO versus s for different values of the metric parameters. According to the first row in the
Fig. 4, it is clear that an increment of s decreases the spinning test particle’s angular momentum in both co- and counter-rotating
cases. Moreover, for a constant value of s, note that reducing the value of the parameter ω increases the value of LISCO for co-rotating
orbits; in contrast to the counter-rotating case, where the particle’s angular momentum reduces its value.
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Fig. 7 Dependence of the specific
energy on the angular momentum
at the ISCO radius of the particle
for the different values of the
spacetime parameters (Left side
plots for co-rotating case, right
side for counter-rotating)

The second row of Fig. 4 describes the effect of the Rastall gravity parameter, κλ, in the LISCO. In the case of co-rotating circular
orbits, the same figure shows that decreasing the values of the Rastall parameter decreases the spinning test particle’s angular
momentum slightly, while its value increases when the spinning test particle follows a counter-rotating orbit.

In the third row of Fig. 4, we plot the angular momentum as a function of s for different values of α. It can be seen how LI SCO

increases for larger values of the quintessential intensity in the case of co-rotating but decreases for the counter-rotating case.
The fourth row of Fig. 4, on the other hand, illustrates the effect of the black hole’s spin, a, on LI SCO against the spin of the test

particle. This figure shows clearly that co- and counter-rotating cases are asymmetric, in contrast to previous considerations; see the
left and right panels. Moreover, similar to rISCO, the dependence of LI SCO on a is much stronger when compared with the other
parameters.

The behavior of LISCO is depicted in the last row of the figure for the Kerr black hole. Once again, note that the values of LISCO

in the Kerr black hole are smaller than those in the KNNK black hole for both co-rotating and counter-rotating orbits. Moreover,
when we consider the superluminal bound, sluminal, we can see that it decreases/increases its value for co-rotating/counter-rotating
orbits when compared with the KNNK black hole.

Figure 5 gives us the comportment of the specific energy, EISCO, as a function of s for different values of ω, κλ, α, and a.
Note the general tendency of co-rotating/counter-rotating orbits is to decrease/increase the specific energy when the particle’s spin
increases. The first row shows that the bigger the values of ω, the bigger the specific energy in both co-and counter-rotating cases.
This behavior continues until some specific value of the test particle’s spin. These values correspond to the joining point of the lines
around s ≈ +1.5/ − 1.6 for co-/counter-rotating cases. The second row of the same figure shows the behavior for different values
of the Rastall parameter, κλ. From the Fig. 5, one can see again the weak effect of this parameter, which negligibly increases the
specific energy for smaller negative values of κλ in both co- and counter-rotating cases.
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On the other hand, the effect of quintessential intensity, α, shown in the third row of Fig. 5, is noticeable only in the neighborhood
of the superluminal bound; i.e., 1 < s < 2/ − 2 < s < −1 for co-/counter-rotating cases. Note that all panels of Fig. 5 beside
the ones in the fourth and fifth rows are symmetric when the spin transforms as s → −s. Moreover, according to the fourth row
of the same figure, the left panel reveals that increasing the value of a shifts the particle’s specific energy downward considerably
for co-rotating orbits while shifting the lines upward slightly in the counter-rotating case. The Kerr black hole experiences the same
behavior with similar values. Nevertheless, note that the superluminal bound changes considerably (especially for co-rotating orbits)
when ω, κλ, and α vanish. See the fifth row in the figure Fig. 5.

In Fig. 6, we present the dependence of the specific energy on the corresponding ISCO radius of the spinning test particle for
different values of the spacetime parameters. The Fig. 6 shows that co- and counter-rotating cases have the same behavior, except
for the panels in the fourth row, where we depict the behavior of EISCO for different values of a. Moreover, note that EISCO in the case
of Kerr black hole (the continuous green line) is bigger in all the cases, especially in the neighborhood of the superluminal bound.

In the first row, when ω changes from −1/2 to −1/10, the panels in Fig. 6 show that the lines are shifted upward, increasing
the energy of the test particle at the ISCO. Nevertheless, when we consider the Rastall parameter, it can be produce a negligible
effect on EISCO since the variations of κλ slightly increase its value. Moreover, the panels in the third row of Fig. 6 show that the
quintessential intensity parameter has a weak influence on EISCO for higher values of the rISCO; i.e., far from the central black hole
and its influence near the black hole becomes considerable. It clearly shows that higher values of α force the particle to orbit a
smaller ISCO, decreasing its specific energy.

Finally, we illustrate the effect of KNNK the black hole’s spin, a, on the spinning test particle’s energy in the last row of Fig. 6.
Note that far from the black hole’s center, the effect of a is negligible. However, at closer distances, the increment of this parameter
increases the specific energy. The same behavior occurs for the Kerr black hole, see the last row in the figure Fig. 6.

Figure 7 demonstrates the relation between the specific energy of the spinning test particle and its orbital angular momentum for
different values of the spacetime parameters of the KNNK black hole in the Rastall gravity. This time, there is no trait of symmetrical
behavior between co- and counter-rotating cases, i.e., when s → −s. Moreover, note that EISCO in the Kerr black hole (continuous
green line) tends to have higher/smaller values for co- and counter-rotating orbits.

In the first row of Fig. 7, we can see that higher values of ω require the spinning test particle to move in a circular orbit with
higher energy for both co- and counter-rotating cases (when we fix the orbital angular momentum). On the other hand, the effect of
the Rastall parameter on EISCO is small for co-rotating orbits, in contrast to the counter-rotating case, where the effect is a bit more
evident. In both cases, greater values of the Rastall parameter, κλ, decrease the energy for a constant LISCO. See the second row of
Fig. 7.

The third row of Fig. 7 provides the behavior of EISCO versus LISCO for different values of the quintessential intensity. In both
cases (co- and counter-rotating orbits), while keeping constant the orbital angular momentum, the value of the specific energy
increases when α goes from 0.3 to 0.1.

Lastly, in the fourth row of Fig. 7, we show the effect of the rotation parameter on EISCO. According to these panels, the impact of
a on the energy is evident for smaller values of |LISCO| and becomes negligible when it increases. One can also note that the faster a
black hole spins, the smaller the specific energy of the spinning test particle for a fixed value of its orbital angular momentum. The
Kerr black hole experiences similar behavior with different values, especially when 0 < LISCO < 1.5 and −3 < LISCO < −1, for
co-rotating and counter-rotating orbits respectively.

5 Conclusion

In this manuscript, we have studied the dynamics of spinning test particles around Kerr–Newman–NUT black hole with quintessence
in the Rastall gravity. We have based our analysis on the well-known MPD equations, from which we have obtained the effective
potential in terms of the particle’s spin, s, and the metric parameters, i.e., the quintessence state parameter, ω, the Rastall gravity
parameter, κλ, the quintessential intensity, α, and the black hole’s spin, a, keeping constant the value of the NUT parameter, l, and
the parameter q, related to the electric and magnetic charges.

Our results show that the spinning test particle’s effective potential increases when its spin increases. Moreover,Veff also increases
its value when the equation-of-state parameter and the black hole’s spin increase. However, when the Rastall parameter and the
quintessential intensity increase, the results show the opposite behavior i.e. the particle’s effective potential reduces its value. It is
worth mentioning that at large distances all the parameters except the black hole’s spin, a, influence the particle’s effective potential.
Nevertheless, closer to the black hole, the parameter a dominates.

The presence of the metric parameters ω, κλ, α, and a have an evident effect on ISCO radius when compared with the Kerr black
hole. The result shows that ISCO radius increases its value for both the co-rotating and counter-rotating orbits, which means that
spinning test particles move farther from the black hole center in the KNNK black hole in the Rastall gravity than in the Kerr black
hole spacetime of GR. Moreover, when contrasting the effect between the metric parameters, we have found that the Rastall gravity
parameter, κλ, has the lowest impact on ISCO radius, followed by the quintessence state parameter, ω, the quintessential intensity,
α, and the black hole’s spin, a. The latter having the highest repercussion of all the cases considered in this work, especially for
co-rotating circular orbits.
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We have noticed that the superluminal bound is also affected by the presence of the metric parameters. In the case of co-rotating
circular orbits, for example, the value of sluminal is always higher than that of the Kerr black hole, in the case of counter-rotating
orbits. Our analysis show that κλ has the lowest impact on sluminal, while the black hole’s spin parameter, a, has the most evident
repercussion on the values of sluminal. Hence, co-rotating orbits have an ampler range of stable circular orbits than the counter-rotating
ones.

It is worth noticing that co-rotating particles move closer to the black hole’s center with |LISCO| higher than particles in counter-
rotating orbits. Particles moving at the ISCO and following a co-rotating circular orbit need less energy and can spin faster. Particles
in a counter-rotating orbit, on the other hand, require more energy if they spin faster.
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