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Abstract
It has been proven that mechanical elements display size-dependent behavior in structural
and thermal fields at microscales. It has also been found that thermoelastic damping (TED)
is one of the dominant reasons in confining the quality factor (Q-factor) of such elements.
This paper aims to develop a novel formulation for evaluating TED in microbeams by ac-
counting for the size effect on the mechanical and thermal areas via the nonclassical theory
of modified strain gradient (MSG) and the non-Fourier heat conduction model of Moore-
Gibson-Thompson (MGT). In the first step, the heat equation for beams is derived within
the framework of MGT model. Through this equation, the function of temperature fluctua-
tion can be obtained. Then, the constitutive relations of the beam according to MSG theory
(MSGT) are extracted. By using the temperature distribution and nonclassical constitutive
relations obtained, the maximum amounts of potential and wasted thermal energies during
one cycle of beam vibration are calculated. Finally, by placing the value of these energies
in the existing relationship for computing the value of TED, an explicit expression for TED
is presented. With the aim of clarifying the sensitivity of TED value to the characteristic
parameters of MSGT and MGT model, a variety of numerical data are provided. According
to the obtained outcomes, the inclusion of size effect in the structural and thermal equations
can cause a remarkable difference compared to the classical model. The dependency of TED
on some factors like beam thickness and aspect ratio, vibration mode number and material
of the beam is also investigated numerically.

Keywords Microbeams · Thermoelastic damping · Small-scale effect · Modified strain
gradient theory · Moore-Gibson-Thompson thermoelasticity theory

Nomenclature
x, y and z Principal directions of Cartesian coordinate system
L, h and b Length, thickness and width of the microbeam, respectively
I , A and V Moment of inertia of cross sections, cross-sectional area and

total volume of the microbeam, respectively
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ux , uy and uz Displacements along the directions x, y and z, respectively
w Transverse displacement
εij and σij (i, j = x, y, z) Components of strain tensor ε and stress tensor σ ,

respectively
γi and pi (i = x, y, z) Components of dilatation gradient vector γ and their stress

conjugates, respectively
η

(1)
ijk and τ

(1)
ijk (i, j, k = x, y, z) Components of deviatoric stretch gradient tensor η(1) and

their stress conjugates, respectively
χs

ij and ms
ij (i, j = x, y, z) Components of symmetric rotation gradient tensor χ s and

their stress conjugates, respectively
ui and φi (i = x, y, z) Components of the displacement vector u and infinitesimal

rotation vector φ, respectively
δij (i, j = x, y, z) Components of the Kronecker delta
εmm Volumetric strain
σmm Trace of stress tensor σ

E, ν and ρ Elasticity modulus, the Poisson ratio and mass density,
respectively

λ and μ Bulk modulus and shear modulus, respectively
l0, l1 and l2 Material length scale parameters of MSGT
α, k and cv Thermal expansion coefficient, thermal conductivity and

specific heat per unit mass, respectively
T , T0 and θ Current temperature, ambient temperature and temperature

change, respectively
ϑ Thermal displacement
t Time
q Heat flux vector
τ and k∗ Phase lag of heat flux and thermal conductivity rate,

respectively
χ and �E Thermal diffusivity and relaxation strength, respectively
ωn The nth isothermal frequency of vibration
U and K Stored strain energy and kinetic energy, respectively
εth
ij (i, j = x, y, z) Thermal strain components

MT Thermal moment
�U and Umax Wasted thermoelastic energy and peak value of strain energy

per cycle of vibration, respectively
Q−1 Inverse of quality factor

1 Introduction

Because of some unrivaled properties, including low cost, great sensitivity and ease of in-
tegration, the use of micro-electro-mechanical-systems (MEMS) in advanced engineering
equipment has met with wide and increasing acceptance. The mechanical part of these sys-
tems is made of fundamental structures such as beams. Microbeam resonators have sev-
eral applications in various fields and can be used as highly sensitive sensors (Zeng et al.
2022; Zhao et al. 2020), force sensors (Luo et al. 2022), scanning probe in atomic force
microscopy (AFM) systems (Shi et al. 2020), mass sensors (Zhang 2023), energy converter
in energy harvesting systems (Hassena et al. 2021; Sun et al. 2023), actuators (Zhang et al.
2023; Sun et al. 2023), switches (Peng et al. 2019), temperature and vibration sensors (Yang
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et al. 2022), etc. Therefore, the correct modeling of such structures plays an important role
in accurately predicting the behavior of these systems. Based on the outcomes of several ex-
periments and numerical simulations, structures with micro/nano scale show size-dependent
mechanical behaviors. Given the absence of characteristic lengths in the constitutive rela-
tions of the classical theory (CT) of elasticity, this theory cannot justify such behavior in
micro/nanostructures. Thus, to lift this restriction of CT, several size-dependent elasticity
theories containing length scale parameters were proposed. Mindlin and Tiersten (1962)
propounded one of the first nonclassical elasticity theories called the couple stress theory
(CST). Yang et al. (2002) made some changes to CST and presented a theory called the
modified couple stress theory (MCST) with only one characteristic length. Recently, Ma-
likan and Eremeyev (2023) have propounded a new version of MCST based on the fact that
in a micro medium, sub-particles can also rotate in addition to rotating the entire domain. Ac-
cording to their model, for precise modeling of the behavior of microstructures, especially in
dynamic problems, it is essential to account for the mass inertia caused by micro-rotations,
which is overlooked in CST and MCST. To incorporate the influence of mass inertia into
governing equations, by exploiting a dynamic length scale (DLS) parameter in conjunction
with the static length scale (SLS) parameter of MCST, they defined a kinetic energy relation
comprising micro velocities by integrating the velocity of micro-rotations. Their findings
revealed that capturing the effect of mass inertia and employing the DLS parameter is quite
necessary in some dynamic conditions. By considering the gradient of the strain in addition
to the strain, Mindlin and Eshel (1968) established a theory called strain gradient theory
(SGT), which includes five additional higher-order constants in addition to two conventional
Lame constants of CT. By applying some modifications to SGT, Lam et al. (2003) developed
a theory called the modified strain gradient theory (MSGT), in which the potential energy
function is defined in terms of second order deformation gradients (that is dilatation gra-
dient vector, deviatoric stretch and symmetric rotation gradient tensors) in addition to first
order deformation gradient (strain tensor). Consequently, in MSGT, the number of nonclas-
sical material constants is reduced from five to three, which is an important step in enabling
experimental delineation of strain gradient behavior. In addition to the aforementioned size-
dependent theories, other higher-order theories like nonlocal theory (NT) (Eringen 1983)
and nonlocal strain gradient theory (NSGT) (Lim et al. 2015) have been proposed to ac-
commodate size effect into the constitutive relations of CT. In the last two decades, many
investigations have been conducted to survey size-dependent static and dynamic behavior
of miniaturized structures on the basis of MCST (Akbarzadeh Khorshidi 2021; Borjalilou
and Asghari 2018; Malikan 2017; Zhang and Li 2020; Mirfatah et al. 2022; Tadi Beni et al.
2020), SGT (Malikan and Eremeyev 2023; Delfani et al. 2020; Mousavi and Paavola 2014),
MSGT (Shi et al. 2022; Ghayesh et al. 2013; Akgöz and Civalek 2014; Zeighampour and
Beni 2014; Uzun et al. 2023; Ansari et al. 2013), NT (Dastjerdi and Abbasi 2020; Ebrahimi-
Mamaghani et al. 2020; Abouelregal et al. 2021; Fang et al. 2020; Potapov 2015) and NSGT
(Malikan et al. 2020; Panahi et al. 2023; Malikan et al. 2020a,b; Liu et al. 2021; Malikan
et al. 2018; Sarparast et al. 2022; Malikan and Nguyen 2018; Yu et al. 2022; Jalil et al. 2023;
Esfahani et al. 2019).

The most famous model suggested for heat conduction in solids is the Fourier model.
On account of the experimental observations in some special conditions like micro/nano
scale and rapid heating, the Fourier model does not have the ability to properly predict heat
conduction in the mentioned conditions. To take into account small-scale effect in space
or time, researchers paid attention to the introduction of non-Fourier heat conduction mod-
els. By adding a phase lag parameter called relaxation time to the Fourier model, Lord
and Shulman (1967) put forward a nonclassical model known as the LS model or single-
phase-lag (SPL) model. By accommodating a parameter called thermal displacement into
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the Fourier model, Green and Naghdi (1993) presented another non-Fourier model known
as GN-III model. In order to benefit from the advantages of both SPL and GN-III models, by
merging these two models, a powerful model containing two nonclassical constants called
Moore-Gibson-Thompson (MGT) model (Quintanilla 2019) was introduced. In addition to
the reviewed non-Fourier models, other nonclassical heat conduction models such as dual-
phase-lag (DPL) (Tzou 1995), nonlocal single-phase-lag (NSPL) (Guyer and Krumhansl
1966) and nonlocal dual-phase-lag (NDPL) (Tzou and Guo 2010) models have also been
provided to account for the effect of size in space and time.

One of the key factors in the design of resonators consisting of mechanical elements is
to minimize the amount of energy loss in order to achieve optimal performance. Based on
several empirical findings, thermoelastic damping (TED) is one of the inevitable causes of
energy dissipation in structures with micro dimensions. In this type of energy dissipation
mechanism, when a mechanical element is subjected to bending, because of the coupling
between strain and temperature fields, a temperature distribution is generated across the ele-
ment. This temperature difference between different points of the structure causes heat flow
across it. Since this process is thermodynamically irreversible, the entropy of the system in-
creases and its energy is lost thermally, which is the phenomenon of thermoelastic damping.
Two complex frequency (CF) and energy dissipation (ED) approaches are used to calculate
the amount of TED in structures by theoretical methods. Zener (1937) applied ED approach
for the first time to provide an analytical relation for approximating TED value in Euler-
Bernoulli beams. His formulation has been derived in the framework of CT and the Fourier
model. Lifshitz and Roukes (2000) conducted a similar study to the investigation of Zener,
but within the framework of CF approach.

During the last two decades, various theoretical studies have been done to model TED in
basic mechanical elements. Some of the most important investigations on TED in beams are
introduced in the following. In the framework of CT and Fourier model, Prabhakar and Ven-
gallatore (2008) utilized Green’s function technique to assess TED in microresonators with
two-dimensional (2D) heat conduction. Tunvir et al. (2012) studied TED in geometrically
nonlinear microbeams by employing CT and Fourier law. According to classical versions of
elasticity theory and heat equation, Emami and Alibeigloo (2016) presented an analytical
solution for TED in functionally graded (FG) Timoshenko beams. Rezazadeh et al. (2012)
conducted a size-dependent analysis on TED in thin beams via MCST and Fourier heat
equation. Yu et al. (2017) developed a formulation on the basis of NT and NSPL model to
determine the effect of size on TED. Abedi et al. (2023) examined thermal and hydraulic
properties of air and water under different operating conditions to evaluate the technology’s
thermal efficiency and water treatment capacity. With the help of CT and SPL model, Zhou
et al. (2018) provided an analytical solution for TED in beams with circular cross section.
Gu et al. (2021) carried out an analytical study to examine size effect on TED by means
of NSGT and DPL model. In the context of CT and Fourier model, Zuo et al. (2022) es-
tablished a relation for computing TED value in anisotropic piezoelectric microbeams. Bor-
jalilou et al. (2020) employed NT together with DPL model to survey size-dependent TED
in nanobeam resonators. Singh et al. (2021) developed a size-dependent solution for TED in
small-sized beams on the basis of MCST and MGT model. In addition to the reviewed stud-
ies, other theoretical researches have been performed on TED in various elements such as
beams (Tiwari et al. 2022; Borjalilou and Asghari 2019; Kumar et al. 2022, 2018; Borjalilou
et al. 2019; Kumar and Mukhopadhyay 2020; Abbas 2016; Kumar 2020, 2021; Kumar and
Kumar 2021), plates (Peng et al. 2022; Grover and Seth 2019; Singh et al. 2022; Fredi
et al. 2020; Xiao et al. 2021; Yang et al. 2021; Li and Esmaeili 2021), shells (Loghman and
Moradi 2013; Li et al. 2022; Atta et al. 2023; Li et al. 2022) and rings (Jalil et al. 2023; Ge
and Sarkar 2022; Zhong et al. 2022; Jalil et al. 2023; Kim and Kim 2023).
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Given the literature survey performed above, the use of scale-dependent continuum me-
chanics theories and non-Fourier heat equations is inevitable to precisely anticipate ther-
momechanical behaviors of microstructures, including thermoelastic damping (TED) phe-
nomenon in microbeam resonators. According to the current available literature, up till now,
no theoretical investigation has been published on TED in microbeams via the combination
of MSGT and MGT model in the framework of energy dissipation (ED) approach. The pa-
per at hand tries to remove this deficiency from the literature. To attain this purpose, the heat
equation of the microbeam is initially derived in the context of MGT model. By solving this
partial differential equation (PDE), the function of temperature field is extracted. Then, the
scale-dependent constitutive relations of the microbeam are obtained according to MSGT.
By making use of the obtained temperature field and strain gradient-based constitutive rela-
tions, the highest values of elastic strain and wasted thermal energies per cycle of oscillation
can be determined. By putting the relation of these energies in the relationship for TED
in ED approach, a closed-form TED expression is presented. To survey the dependency of
TED on the specific parameters of MSGT and MGT model, a variety of numerical results
are provided.

2 Moore-Gibson-Thompson heat equation

Heat conduction equation within the framework of Moore-Gibson-Thompson (MGT) model
is described by the following relation (Quintanilla 2019):

(
1 + τ

∂

∂t

)
q = − (

k∇θ + k∗∇ϑ
)

(1)

where the vector symbol ∇ refers to the gradient operator. Variable q denotes heat flux
vector. In addition, variable θ = T − T0 stands for temperature change in which T and T0

are the current and ambient temperatures, respectively. Variable ϑ is also called thermal
displacement, which is related to temperature change θ through the relation θ = ∂ϑ/∂t .
Parameter τ is known as the phase lag of heat flux. Moreover, material constants k and
k∗ represent the thermal conductivity and thermal conductivity rate, respectively. Note that
when the term containing k∗ vanishes, Eq. (1) reduces to the heat equation of LS model.
Also, by dropping the term including τ , the formulation of MGT model corresponds to that
of GN-III model. In addition, when both k∗ and τ are set to zero, Eq. (1) turns into the
relation of Fourier law.

Conservation of energy in solids can be expressed via the relation below (Tzou 1995):

∇.q = −
(

ρcv

∂θ

∂t
+ EαT0

1 − 2ν

∂εmm

∂t

)
(2)

Here, the variable εmm represents volumetric strain, which is calculated by the trace of
strain tensor ε. Furthermore, ρ and cv are symbols for mass density and specific heat per unit
mass, respectively. Parameter α is also thermal expansion coefficient. Additionally, parame-
ters E and ν refer to the elasticity modulus and the Poisson ratio of the material, respectively.
If the heat flux q is removed from Eqs. (1) and (2), the MGT-based heat conduction equation
in terms of temperature change and strains is obtained as follows:

k
∂

∂t

(∇2θ
) + k∗∇2θ =

(
1 + τ

∂

∂t

)(
ρcv

∂2θ

∂t2
+ EαT0

1 − 2ν

∂2εmm

∂t2

)
(3)

where ∇2 = ∇.∇ defines the Laplace operator.
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3 Modified strain gradient theory

On the basis of modified strain gradient theory (MSGT) introduced by Lam et al. (2003),
the variation of stored strain energy U in a continuum occupying volume V is given by:

δU =
˚

V

(
σij δεij + piδγi + τ

(1)
ijk δη

(1)
ijk + ms

ij δχ
s
ij

)
dV (4)

in which variables εij , γi , η
(1)
ijk and χs

ij represent the components of the strain tensor ε,
dilatation gradient vector γ , deviatoric stretch gradient tensor η(1) and symmetric rotation
gradient tensor χ s , respectively. These kinematic variables are computed via the following
relations:

εij = 1

2

(
∂ui

∂xj

+ ∂uj

∂xi

)
(5a)

γi = ∂εmm

∂xi

(5b)

η
(1)
ijk = 1

3

(
∂εjk

∂xi

+ ∂εki

∂xj

+ ∂εij

∂xk

)
− 1

15
δij

(
∂εmm

∂xk

+ 2
∂εmk

∂xm

)

− 1

15
δjk

(
∂εmm

∂xi

+ 2
∂εmi

∂xm

)
− 1

15
δki

(
∂εmm

∂xj

+ 2
∂εmj

∂xm

) (5c)

χs
ij = 1

2

(
∂φi

∂xj

+ ∂φj

∂xi

)
with φi = 1

2
(curl (u))i (5d)

Here, ui and φi denote the components of the displacement vector u and infinitesimal
rotation vector φ, respectively. Moreover, δij , δjk and δki represent the components of the
Kronecker delta. Also, parameters σij , pi , τ

(1)
ijk and ms

ij appeared in Eq. (4) stand for the

stress conjugates of εij , γi , η
(1)
ijk and χs

ij , respectively. The classical constitutive relation is
expressed as follows:

σij = λεmmδij + 2μεij − (3λ + 2μ)αθδij (6a)

Moreover, higher-order constitutive relations based on MSGT are given by (Lam et al.
2003):

pi = 2μl2
0γi (6b)

τ
(1)
ijk = 2μl2

1η
(1)
ijk (6c)

ms
ij = 2μl2

2χ
s
ij (6d)

In the above equations, the coefficients λ and μ address the bulk and shear moduli, re-
spectively, which are defined by:

λ = Eν

(1 + ν)(1 − 2ν)
(7a)

μ = E

2(1 + ν)
(7b)
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Fig. 1 Beam configuration and
coordinate system

Moreover, l0, l1 and l2 are additional material length scale parameters relevant to dilatation,
deviatoric stretch and rotation gradients, respectively. The point to be noted here is that in the
case of l0 = l1 = 0, the equations of MSGT are converted to those of MCST. Furthermore,
in the absence of all three characteristic lengths l0, l1 and l2, the relations obtained based on
MSGT are reduced to those derived in the framework of CT.

4 Problem formulation

4.1 Coupled thermoelastic constitutive relations of Euler-Bernoulli beams based on
MSGT

Geometry and coordinate system of a beam with length L, thickness h and width b are
displayed in Fig. 1. The area of cross section and volume of the beam are shown by A and
V , respectively.

According to Euler-Bernoulli beam theory, the displacement field of different points of
beam is expressed via the following relations:

ux = −z
∂w(x, t)

∂x
, uy = 0, uz = w(x, t) (8)

Here, ux , uy and uz represent displacements along the directions x, y and z, respectively.
Function w(x, t) is also transverse or lateral deflection of the beam. By placing Eq. (8) into
Eqs. (5a)-(5d), one can attain the components of kinematic parameters ε, γ , η(1) and χ s as
follows:

εxx = −z
∂2w

∂x2
(9a)

γx = −z
∂3w

∂x3
, γz = −∂2w

∂x2
(9b)

η(1)
xxx = −2

5
z
∂3w

∂x3
, η(1)

xyy = η(1)
yxy = η(1)

yyx = 1

5
z
∂3w

∂x3

η(1)
xxz = η(1)

xzx = η(1)
zxx = − 4

15

∂2w

∂x2
, η(1)

xzz = η(1)
zxz = η(1)

zzx = 1

5
z
∂3w

∂x3

η(1)
yyz = η(1)

yzy = η(1)
zyy = 1

15

∂2w

∂x2
, η(1)

zzz = 1

5

∂2w

∂x2

(9c)

χs
xy = χs

yx = −1

2

∂2w

∂x2
(9d)
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By performing mathematical operations in Eq. (6a) and employing Eqs. (7a) and (7b),
the strain components can be expressed in terms of stress components as follows:

εij = 1

E

[
(1 + ν)σij − νσmmδij

] + αθδij (10)

in which σmm denotes the trace of Cauchy tensor σ . By assuming the uniaxial state of stress,
that is σyy = σzz = 0, Eq. (10) yields the following relation:

σxx = Eεxx − Eαθ (11)

By substituting Eqs. (9a)-(9d) into Eqs. (6b)-(6d) and (11), one can get:

σxx = −Ez
∂2w

∂x2
− Eαθ (12a)

px = −2μl2
0z

∂3w

∂x3
, pz = −2μl2

0

∂2w

∂x2
(12b)

τ (1)
xxx = −4

5
μl2

1z
∂3w

∂x3
, τ (1)

xyy = τ (1)
yxy = τ (1)

yyx = 2

5
μl2

1z
∂3w

∂x3

τ (1)
xxz = τ (1)

xzx = τ (1)
zxx = − 8

15
μl2

1

∂2w

∂x2
, τ (1)

xzz = τ (1)
zxz = τ (1)

zzx = 2

5
μl2

1z
∂3w

∂x3

τ (1)
yyz = τ (1)

yzy = τ (1)
zyy = 2

15
μl2

1

∂2w

∂x2
, τ (1)

zzz = 2

5
μl2

1

∂2w

∂x2

(12c)

ms
xy = ms

yx = −μl2
2

∂2w

∂x2
(12d)

By employing Eq. (8) and overlooking the rotary inertia of cross sections of the beam, the
variation of the kinetic energy K can be expressed by:

δK =
˚

V

[
∂ux

∂t
δ

(
∂ux

∂t

)
+ ∂uy

∂t
δ

(
∂uy

∂t

)
+ ∂uz

∂t
δ

(
∂uz

∂t

)]
ρdV

≈
˚

V

[
∂w

∂t
δ

(
∂w

∂t

)]
ρdV (13)

To derive the governing motion equation and boundary conditions of the beam, Hamil-
ton’s principle is exploited as follows:

tˆ

0

(δU − δK)dt = 0 (14)

By utilizing Eqs. (9a)-(9d) and (12a)-(12d) in Eq. (4), inserting the result together with
Eq. (13) into Eq. (14) and implementing the integration by parts, one can arrive at the equa-
tion of motion and boundary conditions of the beam as follows:

D1
∂6w

∂x6
− D2

∂4w

∂x4
− ∂2MT

∂x2
− ρA

∂2w

∂t2
= 0 (15)
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(
D1

∂5w

∂x5
− D2

∂3w

∂x3
− ∂MT

∂x

)
.δw = 0 (16a)

(
D1

∂4w

∂x4
− D2

∂2w

∂x2
− MT

)
.δ

(
∂w

∂x

)
= 0 (16b)

(
D1

∂3w

∂x3

)
.δ

(
∂2w

∂x2

)
= 0 (16c)

where MT represents the thermal moment which can be calculated from the following rela-
tion:

MT = Eα

¨

A

θzdA = Eαb

+h/2ˆ

−h/2

θzdz (17)

Moreover, the nonclassical coefficients D1 and D2 are defined by:

D1 = μI

(
2l2

0 + 4

5
l2
1

)
(18a)

D2 = EI + μA

(
2l2

0 + 8

15
l2
1 + l2

2

)
(18b)

Here, I refers to the area moment of inertia of sections about y-axis which is expressed
by:

I =
¨

A

z2dA = b

+h/2ˆ

−h/2

z2dz (19)

4.2 MGT-based heat equation for Euler-Bernoulli beams

By considering the uniaxial state of stress (σyy = σzz = 0) and inserting Eq. (11) into
Eq. (10), one can get:

εyy = εzz = νz
∂2w

∂x2
+ (1 + ν)αθ (20)

By use of Eqs. (9a) and (20), the following relation for volumetric strain εmm is obtained:

εmm = εxx + εyy + εzz = (2ν − 1) z
∂2w

∂x2
+ 2(1 + ν)αθ (21)

By substituting above equation into Eq. (3) and simplifying the result, the heat equation
takes the following form:

k
∂

∂t

(∇2θ
) + k∗∇2θ =

(
1 + τ

∂

∂t

){
ρcv

[
1 + �E

2 (1 + ν)

1 − 2ν

]
∂2θ

∂t2
− EαT0z

∂4w

∂x2∂t2

}
(22)

in which

�E = Eα2T0

ρcv

(23)
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For most materials, �E takes a very small value, so that �E � 1. Consequently, Eq. (22)
can be replaced by the simpler equation below:

k
∂

∂t

(∇2θ
) + k∗∇2θ =

(
1 + τ

∂

∂t

)(
ρcv

∂2θ

∂t2
− EαT0z

∂4w

∂x2∂t2

)
(24)

To extract the function of temperature change θ from above equation, the following har-
monic forms are considered for functions θ and w:

θ (x, z, t) = Tn(x, z)eiωnt (25a)

w (x, t) = Wn (x) eiωnt (25b)

in which ωn represents the nth isothermal frequency of the beam according to MSGT. Sub-
stitution of Eqs. (25a) and (25b) into Eq. (24) leads to:

χ

(
iωn + 1

τk

)
∇2Tn = −ω2

n (1 + iωnτ)

(
Tn − �E

α
z
d2Wn

dx2

)
(26)

in which

χ = k

ρcv

(27a)

τk = k

k∗ (27b)

Finally, by arranging the terms of Eq. (26), the following partial differential equation
(PDE) for temperature distribution in the beam is obtained:

∇2Tn + β2
nTn = β2

n

�E

α
z
d2Wn

dx2
(28)

with

β2
n = ωn

χ

τkωn (1 + iωnτ)

1 + iωnτk

(29)

By performing mathematical calculations, the real and imaginary parts of complex pa-
rameter βn can be separated as follows:

βn =
√

ωn

χ

√
ϕ − iψ = ξλ

h
− i

ξψ

hλ
(30)

where

ξ = h

√
ωn

2χ
(31a)

ϕ = τkωn

(
1 + ττkω

2
n

)
1 + τ 2

k ω2
n

(31b)

ψ = (τk − τ) τkω
2
n

1 + τ 2
k ω2

n

(31c)
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λ =
√

ϕ +
√

ϕ2 + ψ2 (31d)

The general solution of partial differential equation (28) is as follows:

Tn (x, z) = An sin(βnz) + Bn cos (βnz) + �E

α
z
d2Wn

dx2
(32)

in which An and Bn are unknown coefficients that can be derived by imposing thermal
boundary conditions. For a beam with thermally insulated upper and lower sides (i.e.
∂Tn/∂z = 0 at z = ±h/2), the temperature profile at different points of the beam is obtained
as follows:

Tn (x, z) = �E

α

[
z − sin(βnz)

βn cos(βnh/2)

]
d2Wn

dx2
(33)

5 Analytical solution for TED

To compute TED value in different mechanical systems, the inverse of quality factor (Q-
factor) is utilized. On the basis of energy dissipation (ED) approach, the magnitude of TED
is estimated by (Zener 1937):

Q−1 = 1

2π

�U

Umax

(34)

in which �U and Umax denote the wasted thermoelastic energy and the peak value of strain
energy per cycle of vibration, respectively. In a structure with volume V , the value of �U

can be calculated via the following relation (Nowick 2012):

�U = −π

˚

V

σ̂ij Im
(
ε̂th
ij

)
dV with εth

ij = αθδij (35)

In the above equation, εth
ij refers to the strain caused by temperature change. The symbol

Im denote the imaginary part of complex variables. In addition, the hat symbol on each
variable indicates the peak value of that variable in one period of vibration. With these
explanations, according to Eqs. (12a), (25a) and (25b), the following relations are obtained
for an Euler-Bernoulli beam:

σ̂xx = −Ez
d2Wn

dx2
(36a)

ε̂th
xx = αTn (36b)

To derive Eq. (36a), the part related to thermal stress has been neglected owing to its small
value compared to mechanical stress (Borjalilou and Asghari 2019). By placing Eqs. (36a)
and (36b) into Eq. (35) and exploiting Eq. (33), one can arrive at the following relation:

�U = πE�E

+h/2ˆ

−h/2

bˆ

0

Lˆ

0

z

(
d2Wn

dx2

)2

Im

[
z − sin(βnz)

βn cos(βnh/2)

]
dxdydz (37)
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By performing mathematical calculations, the result of above integral is obtained as fol-
lows:

�U = πEI�EIm {[1 + F (ωn)]}
Lˆ

0

(
d2Wn

dx2

)2

dx (38)

where F (ωn) is a complex function with the following definition:

F (ωn) = 24

β3
nh

3

[
βnh

2
− tan

(
βnh

2

)]
(39)

Equation (38) can be written in a more concise form as follows:

�U = πEI�EFi

L̂

0

(
d2Wn

dx2

)2

dx (40)

Here, Fi represents the imaginary part of complex function F (ωn). By substituting
Eq. (30) into Eq. (39), one can calculate the imaginary part of F (ωn) as follows:

Fi = 24

⎡
⎢⎣ ψ

ξ 2
(
λ2 + ψ2

λ2

)2 −
(

3λψ − ψ3

λ3

)
sin (ξλ) −

(
λ3 − 3 ψ2

λ

)
sinh

(
ξψ

λ

)

ξ 3
(
λ2 + ψ2

λ2

)3 (
cos (ξλ) + cosh

(
ξψ

λ

))
⎤
⎥⎦ (41)

The amount of Umax is also computed by the following relation:

Umax = 1

2

˚

V

(σ̂ij ε̂ij + p̂i γ̂i + τ̂
(1)
ijk η̂

(1)
ijk + m̂s

ij χ̂
s
ij )dV (42)

By inserting Eq. (25b) into Eqs. (9a)-(9d), one can get:

ε̂xx = −z
d2Wn

dx2
(43a)

γ̂x = −z
d3Wn

dx3
, γ̂z = −d2Wn

dx2
(43b)

η̂(1)
xxx = −2

5
z
d3Wn

dx3
, η̂(1)

xyy = η̂(1)
yxy = η̂(1)

yyx = 1

5
z
d3Wn

dx3

η̂(1)
xxz = η̂(1)

xzx = η̂(1)
zxx = − 4

15

d2Wn

dx2
, η̂(1)

xzz = η̂(1)
zxz = η̂(1)

zzx = 1

5
z
d3Wn

dx3

η̂(1)
yyz = η̂(1)

yzy = η̂(1)
zyy = 1

15

d2Wn

dx2
, η̂(1)

zzz = 1

5

d2Wn

dx2

(43c)

χ̂ s
xy = χ̂ s

yx = −1

2

d2Wn

dx2
(43d)

Moreover, according to Eqs. (12b)-(12d), the following relations are derived for the max-
imum values of higher-order stresses:

p̂x = −2μl2
0z

d3Wn

dx3
, p̂z = −2μl2

0

d2Wn

dx2
(44a)
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τ̂ (1)
xxx = −4

5
μl2

1z
d3Wn

dx3
, τ̂ (1)

xyy = τ̂ (1)
yxy = τ̂ (1)

yyx = 2

5
μl2

1z
d3Wn

dx3

τ̂ (1)
xyy = τ̂ (1)

yxy = τ̂ (1)
yyx = − 8

15
μl2

1

d2Wn

dx2
, τ̂ (1)

xyy = τ̂ (1)
yxy = τ̂ (1)

yyx = 2

5
μl2

1z
d3Wn

dx3

τ̂ (1)
xyy = τ̂ (1)

yxy = τ̂ (1)
yyx = 2

15
μl2

1

d2Wn

dx2
, τ̂ (1)

xyy = τ̂ (1)
yxy = τ̂ (1)

yyx = 2

5
μl2

1

d2Wn

dx2

(44b)

m̂s
xy = m̂s

yx = −μl2
2

d2Wn

dx2
(44c)

By putting Eqs. (36a), (43a)-(43d) and (44a)-(44c) into Eq. (42) and conducting mathe-
matical calculations, one can achieve the relation below for Umax :

Umax = 1

2

⎡
⎣D1

L̂

0

(
d3Wn

dx3

)2

dx + D2

Lˆ

0

(
d2Wn

dx2

)2

dx

⎤
⎦ (45)

Substitution of Eqs. (40) and (45) into Eq. (34) leads to the following relation for TED
in beams with arbitrary boundary conditions according to MSGT and MGT heat conduction
model:

Q−1
MSGT =

24EI�E

´ L

0

(
d2Wn

dx2

)2
dx

D1

´ L

0

(
d3Wn

dx3

)2
dx + D2

´ L

0

(
d2Wn

dx2

)2
dx

×
⎡
⎢⎣ ψ

ξ 2
(
λ2 + ψ2

λ2

)2 −
(

3λψ − ψ3

λ3

)
sin (ξλ) −

(
λ3 − 3 ψ2

λ

)
sinh

(
ξψ

λ

)

ξ 3
(
λ2 + ψ2

λ2

)3 (
cos (ξλ) + cosh

(
ξψ

λ

))
⎤
⎥⎦ (46)

Since in MCST, l0 = l1 = 0, one can get D1 = 0 and D2 = EI + μAl2
2 . Considering

that in rectangular cross-sectional beams A = bh and I = bh3/12, substitution of these
parameters in above equation yields the relation below for TED in the context of MCST and
MGT model:

Q−1
MCST = 24�E

1 + 12 μ

E

(
l2
h

)2

×
⎡
⎢⎣ ψ

ξ 2
(
λ2 + ψ2

λ2

)2 −
(

3λψ − ψ3

λ3

)
sin (ξλ) −

(
λ3 − 3 ψ2

λ

)
sinh

(
ξψ

λ

)

ξ 3
(
λ2 + ψ2

λ2

)3 (
cos (ξλ) + cosh

(
ξψ

λ

))
⎤
⎥⎦ (47)

The above relationship is exactly the same as the one derived by Singh et al. (2022) on
the basis of CF approach. For a beam with simply-supported (SS) boundary conditions, one
can write:

Wn (x) = sin (�nx) with �n = nπ

L
(48)

It can be clearly seen that the above shape function exactly satisfies both the isothermal
form of the motion equation (15) and the isothermal form of the boundary conditions pre-
sented in Eqs. (16a)-(16c). By inserting Eq. (48) into Eq. (46) and computing the integrals
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in it, one can attain the following relation for TED in SS beams:

Q−1 = 24EI�E

�2
nD1 + D2

×
⎡
⎢⎣ ψ

ξ 2
(
λ2 + ψ2

λ2

)2 −
(

3λψ − ψ3

λ3

)
sin (ξλ) −

(
λ3 − 3 ψ2

λ

)
sinh

(
ξψ

λ

)

ξ 3
(
λ2 + ψ2

λ2

)3 (
cos (ξλ) + cosh

(
ξψ

λ

))
⎤
⎥⎦ (49)

Note that in this type of boundary conditions, to calculate size-dependent ωn, it is enough
to insert Eqs. (25b) and (48) into Eq. (15) to reach the following relationship:

ωn = �2
n

√
�2

nD1 + D2

ρA
(50)

6 Results and discussion

To evaluate the correctness of the developed model, a comparison study is firstly carried out.
For this aim, the results extracted by the presented formulation are compared with those re-
ported by Zhang and Li (2020) in a certain case. By employing the complex frequency (CF)
approach, Zhang and Li (2020) established an analytical framework for calculating TED
value in functionally graded (FG) microbeams according to MCST and the Fourier model.
Hence, to compare the results of this research with those of Zhang and Li (2020), length
scale parameters l0 and l1 as well as material constants τ and k∗ must be ignored in the
obtained TED relation. Also, the microbeam material should be considered homogeneous
and full ceramic. In this case, the material of microbeam will be alumina (Al2O3), whose
characteristics at the reference temperature T0 = 300 K are: E = 380 GPa, ρ = 3800 kg/m3,
cv = 750 J/kgK, α = 7.4 ∗ 10−6 1/ K, k = 10 W/mK and ν = 0.23. Based on the formula-
tion proposed in this work and that derived by Zhang and Li (2020), the variations of TED
with the thickness of a SS beam with the length L = 500 µm at the first vibration mode are
depicted in Fig. 2. In this figure, the length scale parameter is assumed to be l2 = 15 µm. It
can be readily seen that the curve extracted based on the presented model is consistent with
the one presented by Zhang and Li (2020).

In the following, with the aid of the solution established in the current research, sev-
eral numerical examples are provided to perform an embracing parametric analysis on the
influence of some determining factors like characteristic lengths of MSGT, nonclassical pa-
rameters of MGT model, beam thickness, aspect ratio of the beam, vibration mode number
and material on the amount and pattern of TED. With the exception of the cases that will
be explained, in other cases, numerical results are given for a SS beam made of silicon with
an aspect ratio of L/h = 20. The mechanical and thermal properties of silicon (Si) as well
as gold (Au) and copper (Cu) at T0 = 300 K can be seen in Table 1 (Singh et al. 2022;
Fredi et al. 2020). The point to be noted here is that to extract the results in the framework of
MCST, l0 = l1 = 0 and l2 = l are placed in the presented relations. Moreover, it is customary
that to derive the results corresponding to MSGT, all three material length scale parameters
are considered equal to l0 = l1 = l2 = l (Lam et al. 2003).

The changes of TED with beam thickness within the framework of CT, MCST and MSGT
are displayed in Fig. 3 by assuming l = 0.5 µm. Figures 3a and 3b are drawn for the cases
n = 1 and n = 10, respectively. As it is clear, among the three investigated theories, CT and
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Fig. 2 Validation analysis by
comparing the variations of TED
with those reported in the
literature

Table 1 Properties of silicon
(Si), gold (Au) and copper (Cu)
at T0 = 300 K

Property Si Au Cu

E (GPa) 169 79 110

ρ (kg/m3) 2330 19300 8940

cv (J/kgK) 713 129.1 385.9

α (10−6/K) 2.6 14.2 16.5

k (W/mK) 70 315 386

k∗ (W/mKs) 157 150 70

τ (ps) 3.95 93.5 27.3

MSGT predict the highest and lowest amounts for TED, respectively. The thickness at which
the peak value of TED comes about is called critical thickness. According to the curves of
Fig. 3, the critical thickness estimated by MSGT is higher than that computed by MCST and
CT. Another important matter that can be pointed out in Figs. 3a and 3b is that as the beam
thickness gets larger, the estimations of MCST and MSGT approach those of CT. This well
authenticates the diminution of small-scale effect in larger dimensions. The comparison of
Figs. 3a and 3b reveals that although in the case of n = 10, the predicted value for TED by
CT, MCST and MSGT is lower than in the case of n = 1, but the difference between the
results of these three theories is greater.

Figure 4 illustrates TED versus beam thickness for four different values of the length
scale parameter in the framework of MSGT. Figures 4a and 4b are plotted for the cases
n = 1 and n = 10, respectively. By looking at the graphs in this figure, it can be easily found
that by increasing the amount of l, TED value tapers off and the amount of critical thickness
ascends. It is also evident in this figure that with the increase of beam thickness, the effect of
size gradually lessens and the obtained results converge to the prediction of CT. It can also
be observed that in the case of n = 10, both TED value and critical thickness are calculated
lower than in the case of n = 1.

In Fig. 5, TED diagrams as a function of beam thickness are drawn according to the
Fourier and MGT models. Based on the relations of MSGT, l = 2 µm is assumed to derive
these graphs. Also, in Figs. 5a and 5b, the vibration mode number n is assumed equal to 1
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Fig. 3 TED versus beam
thickness according to CT,
MCST and MSGT for the case
l = 0.5 µm (a) n = 1 (b) n = 10

and 10, respectively. As it is obvious, in the case of n = 1, the difference between the estima-
tions of Fourier and MGT models is trifling, and only in very small thicknesses, compared to
the Fourier model, MGT model anticipates a higher amount for TED with a small difference.
According to Fig. 5b, with the increase of the vibration mode from 1 to 10, the difference
between the results of Fourier and MGT models intensifies. Besides, in this vibration mode,
TED value obtained by the Fourier model is higher than that computed by MGT model. In
this way, it can be concluded that the impact of utilizing MGT model is more specific in
higher vibration modes. It should be noted that despite the difference between the results of
Fourier and MGT models in the vibration mode number n = 10, in this case as the beam
thickness enlarges, this difference becomes smaller and smaller, which is a sign of reduction
of size effect on thermal domain.

TED variations versus vibration mode number n according to CT, MCST and MSGT
are depicted in Fig. 6. To draw these graphs, h = 1 µm and l = 0.5 µm are considered. As
can be observed, for all examined vibration modes, CT estimates the highest and MSGT
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Fig. 4 Effect of length scale
parameter on TED variations
with beam thickness in the
framework of MSGT (a) n = 1
(b) n = 10

the lowest values for TED. It is also clear that the maximum TED value for CT occurs
in the third vibration mode and for MCST and MSGT in the second vibration mode, and
then with the increase in the vibration mode number, TED diagram follows a downward
trend. This result can be explained by the fact that the temperature field in the beam arrives
at equilibrium in a certain time indicated by τ ∗. At low vibration modes that correspond
to low frequencies, one can write τ ∗ � ω−1

n . Hence, because the vibration period is long,
the microbeam is in isothermal situation and remains in equilibrium condition. In this way,
the magnitude of wasted energy is small. At high vibration modes that correspond to high
frequencies (that is τ ∗ � ω−1

n ), the microbeam hasn’t sufficient time to relax. So, similar
to that explained for the situation τ ∗ � ω−1

n , a slight amount of energy dissipation occurs.
Accordingly, the maximum amount of TED happens at τ ∗ ≈ ω−1

n , which corresponds to
intermediate vibration modes.

According to the relation obtained by MSGT, for four different values of length scale pa-
rameter (i.e. l = 0.5, 1, 1.5 and 2 µm), Fig. 7 displays the alterations of TED with vibration
mode number. The curves of this figure are plotted for a beam with thickness h = 1 µm. By
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Fig. 5 TED versus beam
thickness on the basis of Fourier
and MGT models for the case
l = 2 µm (a) n = 1 (b) n = 10

observing these curves, it can be inferred that when the length scale parameter enlarges, the
amount of TED diminishes for all vibration modes. In addition, except for case l = 0.5 µm,
where the peak value of TED takes place at n = 2, in the rest of the cases, the peak value
of TED happens at n = 1, and the graph of TED in terms of vibration mode number n is
completely descending.

On the basis of MSGT, the influence of the Fourier and MGT models on TED variations
with vibration mode number is assessed in Fig. 8. To extract these results, l = 2 µm and
h = 1 µm are adopted. According to these diagrams, it can be said that the Fourier and MGT
models have almost the same prediction for the value of TED in low vibration modes (that
is n < 10), but with the increase of vibration mode number, the difference between the out-
comes of these two models is augmented. As it is apparent, in higher vibration modes, MGT
model estimates a lower value for TED than the Fourier model. The physical justification of
this outcome can be that the propagation velocity of heat based on the Fourier law is infinite,
whereas the velocity predicted by MGT model is finite. Therefore, the heat induced in the
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Fig. 6 TED versus vibration
mode number according to CT,
MCST and MSGT for the case
h = 1 µm and l = 0.5 µm

Fig. 7 Effect of length scale
parameter on TED variations
with vibration mode number in
the framework of MSGT for the
case h = 1 µm

framework of MGT model has less time to propagate during a cycle of oscillation, which
yields smaller amount of thermal energy dissipation. Consequently, the amount of TED cor-
responding to MGT model is less than that estimated by the Fourier model. It is also easy to
see that according to the predictions of both Fourier and MGT models, when the vibration
mode takes larger values, the amount of TED abates.

In the framework of CT, MCST and MSGT, the alterations of TED versus aspect ratio
L/h are demonstrated in Fig. 9. To plot these curves, h = 1 µm and l = 0.5 µm are assumed.
In addition, the diagrams are drawn for vibration mode number n = 10. In this figure, it is
clear that among the three evaluated theories, TED value approximated by MSGT has the
lowest amount compared to the other two theories. This result originates from the fact that
by accounting for nonclassical kinematic parameters and their conjugate stresses in MCST
and MSGT, the value of elastic energy of the beam gets greater and accordingly, the ratio
of dissipated thermal energy to stored energy in the resonator diminishes. In addition, the
elastic energy calculated in the framework of MSGT is higher than that obtained based on
MCST. Therefore, in general, it is quite expected that MSGT predicts the highest and CT
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Fig. 8 TED versus vibration
mode number based on Fourier
and MGT models for the case
h = 1 µm

Fig. 9 TED versus aspect ratio
according to CT, MCST and
MSGT for the case h = 1 µm,
l = 0.5 µm and n = 10

the lowest value for TED. It can also be seen that according to the prediction of all three
used theories, with the increase of the aspect ratio of beam, TED is generally strengthened.

Within the framework of MSGT, for four different amounts of material length scale pa-
rameter l, Fig. 10 indicates TED diagram as a function of aspect ratio. These curves are
drawn for a beam with thickness h = 1 µm at vibration mode number n = 10. According to
the curves of this figure, in the entire range considered for aspect ratio L/h, for larger values
of l, a smaller amount for TED is estimated. In addition, with the increase of the value of
L/h, TED value heightens for all four values considered for l.

By employing the relation of TED provided by MSGT, the effect of the Fourier and MGT
models on TED alterations with aspect ratio is analyzed in Fig. 11. To draw this figure,
l = 2 µm and h = 1 µm are assumed. In addition, the vibration mode number is considered
to be n = 10. This figure reveals that for small aspect ratios, the MGT model predicts lower
values for TED compared to the Fourier model, as the aspect ratio and the beam size ascend,
the small-scale effect on thermal field dwindles and the estimations of MGT model approach
those of the Fourier model.
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Fig. 10 Effect of length scale
parameter on TED variations
with aspect ratio in the
framework of MSGT for the case
h = 1 µm and n = 10

Fig. 11 TED versus aspect ratio
based on Fourier and MGT
models for the case h = 1 µm and
n = 10

To appraise the influence of the type of material on TED value, the graphs of changes
of TED with the dimensionless parameter h/l for three materials silicon (Si), gold (Au)
and copper (Cu) are depicted in Fig. 12. These curves are drawn for a beam with thickness
h = 1 µm at vibration mode number n = 1. As can be seen, for all three studied materials, the
estimation of MSGT for TED is lower than that of MCST. Another point is that by increasing
the value of h/l, which is equivalent to reducing the size effect, the difference between the
outputs of MCST and MSGT shrinks and the predictions of both theories converge to the
value calculated by CT. Also, according to these curves, the highest amount of TED occurs
in the beam made of copper and the lowest in the gold beam. The results of this figure can
be momentous because by choosing the suitable material, TED value can be reduced.

7 Conclusions

In the current investigation, by accommodating the impact of size into both constitutive
relations and heat equation through the modified strain gradient theory (MSGT) and Moore-
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Fig. 12 Influence of material on
TED in the framework of MCST
and MSGT for the case h = 1 µm
and n = 1

Gibson-Thompson (MGT) heat conduction model, a new nonclassical framework has been
provided to estimate scale-dependent value of thermoelastic damping (TED) in microbeam
resonators. Initially, the constitutive relations and heat equation have been established on the
basis of MSGT and MGT model. After solving the MGT-based heat equation and arriving
at the temperature field, the maximum amounts of elastic and wasted thermal energies in
one period of beam oscillation have been calculated. Then, by applying the TED relation
in the context of energy dissipation (ED) approach, a closed-form solution involving the
specific parameters of MSGT and MGT model has been presented for TED. By comparing
the results extracted via the developed model with those available in the literature, a com-
parison between different described models and obtained results has been carried out. To
address the relation between TED value and some factors like characteristic parameters of
MSGT and MGT model, geometrical parameters including the thickness and aspect ratio of
the beam, vibration mode number and material, various numerical data have been prepared.
Based on the obtained results, the significant outcomes of the paper at hand can be expressed
concisely as follows:

• The incorporation of the length scale parameter into the governing equations leads to a
diminution in the amount of TED compared to the classical theory (CT).

• TED value computed by the modified strain gradient theory (MSGT) is lower than that
determined by the modified couple stress theory (MCST).

• The greater amounts of the length scale parameters of MSGT, the smaller TED value
predicted by this theory.

• At bigger scales and lower vibration modes, the difference between the estimations of
the Fourier and MGT models is meager, but at smaller dimensions and higher vibration
modes, TED value specified by MGT model is less than that extracted by the Fourier
model.

• By and large, without regard to the kind of continuum mechanics theory or heat conduc-
tion model, by getting larger the vibration mode number in the range of 1 ≤ n ≤ 20, TED
value lessens.

• Based on the prediction of MSGT and MGT model, among the examined materials (i.e.
silicon, gold and copper), the highest TED value belongs to the copper beam and the
lowest one occurs in the gold beam.
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• As the value of dimensionless ratio h/l heightens, irrespective of the material of the
beam, the difference between TED values obtained by MCST and MSGT declines and
the predictions of these two theories approach the amount computed by CT.
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