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Abstract
In this investigation, a very fast and effective protocols for the synthesis polyhydroquinoline and polyhydroacridine derivatives 
have been developed using nano-[Silica-R-NMe2-R'-NMe2][Cl] as a mesoporous basic catalyst via the Hantzsch synthesis 
under solvent free conditions. In comparison to other catalysts employed for the synthesis of these derivatives, this catalyst 
benefits from a series of advantages such as being prepared using affordable and readily available raw materials, durability 
and high-performance, recoverability and reusability (7 times without considerable loss of activity), environmental friendli-
ness and non-metallic nature. Other notable features of these protocols include: excellent yields, high atom economy, easy 
workup and moderate conditions.

Keywords Nano-[Silica-R-NMe2-R'-NMe2][Cl] · Mesoporous basic catalyst · Polyhydroquinolines · Polyhydroacridines · 
Solvent-free MCRs

1 Introduction

In the new era, an applied field that has generated much 
attention of many chemists and pharmacists is the 

chemistry of nanoscale materials [1–3]. One of the sig-
nificant branches of nanomaterials is nanocatalysts, that 
increasing of their use is due to their superior physical and 
chemical characteristics in comparison to bulk materials 
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[1–3]. Nanocatalysts are the bridge connecting the attrac-
tive advantages of homogeneous and heterogeneous 
catalysts because, like homogeneous catalysts, they have 
a high reaction speed (by reason of the high surface-to-
volume ratio), and also, like heterogeneous catalysts, they 
can be easily separated from the reaction mixture (due to 
insolubility in the reaction medium) [3–7]. These benefits, 
beside characteristics such as low density and toxicity, 
high permeability and mechanical stability, easy function-
alization and biocompatibility, have created it additional 
motivation to employ these materials as catalysts [3–7].

In terms of combinatorial chemistry, the use of multi-
component reactions (MCRs) is very important in order 
to produce industrial, pharmaceutical and chemical com-
pounds [8, 9]. In MCRs, three or more starting materials 
react together in one pot to form a product in which all 
or most of the raw materials are involved [9, 10]. This 
feature is extremely important in terms of atom economy 
[10]. Ecologically-friendly approach through reduction 
on energy intake, the number of synthetic steps, genera-
tion of waste, reaction time and removing of separation of 
unstable intermediates are including the benefits of MCRs 
[9–11]. In recent decades, with expanding environmental 
challenges, the redesign of MCRs with green and envi-
ronmentally friendly approaches have become convenient 
tools, particularly in the scopes of organic synthesis, drug 
discovery and materials science [12, 13]. In these areas, 
an effective step in achieving the goals of green chemis-
try is to perform MCRs in solvent-free conditions [12, 
13]. Solvent-free environment, in addition to the reduc-
tion in reactor size and the elimination of environmen-
tal hazards of organic solvents, makes MCRs more effi-
cient (especially in terms of reaction time and efficiency) 
[12–15]. Therefore, it is natural that solvent-free MCRs 
have covered large areas of chemical companies today, 
and the demand for them as cleaner chemical techniques 
is increasing [12–15].

Heterocyclic compounds with a nitrogen nucleus have 
been identified across a broad range of pharmacological 
and bio-active compounds [16, 17]. Among this category 
of heterocycles, derivatives of polyhydroquinoline and 
polyhydroacridine are valuable compounds due to their 

diverse biological activities [17]. Current research shows 
that these compounds can act as neuroprotectors and 
chemo sensitizer platelet in cancer control [17, 18]. In 
addition, these derivatives have the general characteris-
tics of miscellaneous bioactive compounds such as anti-
tumour, antiathero-sclerotic, geroprotective, vasodilator, 
hep-atoprotective activity and bronchodilator [17]. With 
regards to broad application of polyhydroquinoline and 
polyhydroacridine derivatives, various protocols had been 
informed for the production of these derivatives such as 
usual heating [19], ultrasound and microwave irradia-
tion [20–23] and visible-light irradiation procedure [24]. 
Furthermore, various catalysts, e.g. Gallium oxide nano-
material [25], urease [26],  Fe3O4@Schiff-base-Cu [27], 
 Fe3O4@SiO2@PTS-THEIC-(CH2)3OB(OH)2 [28], [βCD/
Im](OTs)2 [29], Zn-MOF microspheres [30],  Fe3O4@
SiO2–PEG/NH2 [31], SBA-15@AMPD-Co [32], β-CD-
mono-SO3H [33], Cell–Pr-NHSO3H [34], MCM-41-SO3H 
[35] were also used for such transformation.

Even though most of the mentioned reports provide obvi-
ous benefits, the employ of large amounts of catalysts [23], 
costly metal precursors [25, 27], high temperatures [31, 35], 
low yields [24, 30, 35], tedious work-up procedures and using 
of toxic organic solvents restrict the use of these protocols 
[22, 30, 33]. Therefore, there is considerable scope for finding 
alternative and potential experimental methods in this field, 
particularly that are in great demand and having benefits such 
as non-toxic, lower cost and environmentally friendly.

According to the mentioned challenges and in order to 
solve them, herein, we describe application of a mesoporous 
basic nanocatalyst (nano-[Silica-R-NMe2-R'-NMe2][Cl]) as 
a highly efficient catalyst for the rapid production of polyhy-
droquinolines and polyhydroacridines through the Hantzsch 
synthesis in the absence of solvent.

2  Results and Discussion

Nano-[Silica-R-NMe2-R'-NMe2][Cl] was synthesized based 
on Scheme 1 [36]. The images of FE-SEM, HR-TEM and 
EDS analyzes of the catalyst are demonstrated in Figs. 1, 2 
and 3, respectively.

Scheme 1  The preparation of 
nano-[Silica-R-NMe2-R'-NMe2]
[Cl]
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2.1  The Synthesis of Polyhydroquinolines 
by nano‑[Silica‑R‑NMe2‑R'‑NMe2][Cl]

To determine the most ideal conditions for the syn-
thesis of polyhydroquinoline derivatives using nano-
[Silica-R-NMe2-R'-NMe2][Cl], initially, the reaction 
of 4-chlorobenzaldehyde (1  mmol) with dimedone 

(1 mmol),  NH4OAc (1.4 mmol) and EtOAc (1 mmol) 
were considered as a model reaction (Scheme 2), then 
the effect of temperature and catalyst amount on the 
model reaction in solvent-free conditions was investi-
gated; the corresponding results are briefed in Table 1. 
As the data in this Table demonstrate, the best results 
were acquired once 10 mg of nano-[Silica-R-NMe2-R'-
NMe2][Cl] was employed at 60 °C (Table 1,entry 4). In 
another study, the progress of the model reaction was 
checked in the presence of the starting materials for 
the prepare of nano-[Silica-R-NMe2-R'-NMe2][Cl] as 
well as bases such as DBU and  K2CO3 (Table 5, entries 
7–10). The results of Table 5 clearly show that these 
catalysts were not effectual for the synthesis of poly-
hydroquinoline, and our idea for the synthesis of these 
derivatives with nano-[Silica-R-NMe2-R'-NMe2][Cl] 
catalyst is reasonable.

In continue, the production of various derivatives of 
polyhydroquinolines was carried out using various ary-
laldehydes, dimedone,  NH4OAc and EtOAc under the 
optimized conditions, for the purpose of recognize gen-
erality and efficiency of nano-[Silica-R-NMe2-R'-NMe2]
[Cl]; the relevant results are demonstrated in Table 2. 
The data from this Table showed that all substituents 
on the arylaldehydes comprising bromo, chloro, methyl, 
methoxy, and nitro on para, meta and ortho positions, 
provided the corresponding products with excellent 
yields in short times.

Based on previous repor ts [25],  a reasonable 
mechanism for the synthesis of polyhydroquinolines 
using nano[si l ica-R-NMe2-R'-NMe2][Cl]  is  pro-
posed in Scheme 3. Initially, the α-proton of dime-
done is abstracts with the help of the basic group 

Fig. 1  The FE-SEM image of nano-[Silica-R-NMe2-R'-NMe2][Cl]

Fig. 2  The HR-TEM image of nano-[Silica-R-NMe2-R'-NMe2][Cl]

Fig. 3  The EDS spectrum of nano-[Silica-R-NMe2-R'-NMe2][Cl]
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of the catalyst  (NMe2) and produces carbanion (I); 
then, knoevenagel condensation between aldehyde 
and carbanion (I) occurs, which leads to the forma-
tion of intermediate II. In the other hand, the reaction 
of ammonia (generated from  NH4OAc) with EtOAc 

gives intermediate III after removal of  H2O molecule. 
Michael-type addition of II with III affords interme-
diate IV. Eventually, the nanocatalyst assists cycliza-
tion of IV, and then elimination of water molecule to 
provide the product.

Scheme 2  The model reaction
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Table 1  Optimization of 
temperature and amount of 
catalyst in the synthesis of 
polyhydroquinolines

a Yield of isolated product

Entry Catalyst Temp (°C) Catalyst 
amount (mg)

Time (min) Yielda (%)

1 Nano-[Silica-R-NMe2-R'-NMe2][Cl] 70 5 10 82
2 Nano-[Silica-R-NMe2-R'-NMe2][Cl] 70 10 10 98
3 Nano-[Silica-R-NMe2-R'-NMe2][Cl] 70 20 10 98
4 Nano-[Silica-R-NMe2-R'-NMe2][Cl] 60 10 10 98
5 Nano-[Silica-R-NMe2-R'-NMe2][Cl] 50 10 10 70
6 Nano-[Silica-R-NMe2-R'-NMe2][Cl] 120 - 80 42
7 1,2-diamine 60 10 60 50
8 Nano-silica 60 10 60 45
9 K2CO3 (as a base) 60 10 60 trace
10 DBU (as a base) 60 10 60 45

Table 2  The synthesis of polyhydroquinolines using nano-[Silica-R-NMe2-R'-NMe2][Cl]

a Isolated yield

+

O

O ArCHO

O

O

N
H

ArO O

NH4OAc

10 mg Nano-[Silica-R-NMe2-R'-NMe2][Cl]

50 °C, solvent-free

Compd. no Ar Time (min) Yielda (%) M.p. (ºC)

Found Reported

1a C6H5 9 98 222-224 223–225 [25]
2a 4‐BrC6H4 14 98 248-250 248-250 [25]
3a 2‐ClC6H4 10 94 178-180 179-181 [25]
4a 4‐ClC6H4 10 98 238-240 239-241 [25]
5a 4‐MeC6H4 13 93 259-261 260-262 [25]
6a 4‐MeOC6H4 15 91 248–250 247-250 [30]
7a 2‐O2NC6H4 6 98 201-203 200-202 [25]
8a 3‐O2NC6H4 7 96 179-181 180-182 [25]
9a 4‐O2NC6H4 5 95 235-237 236-238 [25]
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2.2  The Production of Polyhydroacridines 
with nano‑[Silica‑R‑NMe2‑R'‑NMe2][Cl]

Afterwards the success in use of nano[silica-R-NMe2-
R'-NMe2][Cl] as catalyst for the production of polyhy-
droquinolines, we determined to evaluate its catalytic 
performance to achieve polyhydroacridine derivatives 
in solvent-free conditions. In order to find the best 
conditions to achieve this goal, we chose the reaction 
shown in Scheme 4 as a model reaction and then we 
explored the effect of temperature and catalyst amount 
on this reaction (Table 3, entries 1–10). The optimum 
state were achieved utilizing 10 mg of nano-[Silica-R-
NMe2-R'-NMe2][Cl] at 50 ºC in the absence of solvent 
(Table 3, entry 4).

Afterwards optimisation, we investigated differ-
ent electron-acceptor and electron-donor benzal-
dehydes in Hantzsch synthesis catalyzed by nano-
[Si l ica-R-NMe2-R'-NMe2][Cl]  for  product ion of 
polyhydroacridines for designation the performance 
and generality of the catalytic system (Table 4). It 
is obvious from Table 4, both electron-acceptoring 
and electron-donating benzaldehydes produced the 
polyhydroacr idine der ivatives with high yields in 
shor t times.

2.3  Recyclability and Durability of the Catalyst

Industrially, the recoverability and reusability hetero-
geneous catalysts is an important feature. Therefore, 

Scheme 3  The suggested 
mechanism for the synthesis of 
polyhydroquinolines
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recovery capability and reproducibility of nano-[Silica-
R-NMe2-R'-NMe2][Cl] were explored for the producing 
of compound 1a and 1b from the derivative series poly-
hydroquinolines and polyhydroacridines, respectively. 
The results showed that in both synthesis protocols, the 
recycling process was repeated for seven times without 
significant change in activity of the catalyst (Figs. 4 and 
5). The catalyst recycling procedure is explained in the 
experimental section.

In another study, in order to check the durability and effi-
ciency of nano-[Silica-R-NMe2-R'-NMe2][Cl], we synthe-
sized all the derivatives in Tables 2 and 4 under optimal 
conditions with a sample of our catalyst that was stored for 

two years in a closed container at room temperature. Obtain-
ing results identical to the data in these tables indicate the 
durability and high efficiency of the catalyst despite long-
term storage under simple conditions.

2.4  Comparison

For the purpose of illustrate the superiority of nano-
[Silica-R-NMe2-R'-NMe2][Cl] to other reported cata-
lysts available in previous literature for the synthesis 
of polyhydroquinolines (A) and polyhydroacridines (B), 
we have presented the reaction outcomes for the pro-
duction of compound 1a and 1b in Table 5. This Table 

Table 3  Optimisation of 
temperature and amount of 
catalyst in the synthesis of 
polyhydroacridines

a Yield of isolated product

Entry Catalyst Temp (°C) Catalyst 
amount (mg)

Time (min) Yielda (%)

1 Nano-[Silica-R-NMe2-R'-NMe2][Cl] 60 5 8 84
2 Nano-[Silica-R-NMe2-R'-NMe2][Cl] 60 10 8 98
3 Nano-[Silica-R-NMe2-R'-NMe2][Cl] 60 20 8 98
4 Nano-[Silica-R-NMe2-R'-NMe2][Cl] 50 10 8 98
5 Nano-[Silica-R-NMe2-R'-NMe2][Cl] 40 10 8 74
6 Nano-[Silica-R-NMe2-R'-NMe2][Cl] 120 - 100 48
7 1,2-diamine 50 10 60 45
8 Nano-silica 50 10 60 50
9 K2CO3 (as a base) 50 10 60 trace
10 DBU (as a base) 50 10 60 40

Table 4  The synthesis of polyhydroacridines by nano-[Silica-R-NMe2-R'-NMe2][Cl]

a Isolated yield

+

O

O ArCHO

O

O

N
H

ArO O

NH4OAc

10 mg Nano-[Silica-R-NMe2-R'-NMe2][Cl]

50 °C, solvent-free

Compd. no Ar Time (min) Yielda (%) M.p. (ºC)

Found Reported

1b C6H5 8 98 243-245 244-246 [28]
2b 4‐BrC6H4 10 98 330-332 330-332 [35]
3b 2‐ClC6H4 9 93 308-310 309-310 [35]
4b 4‐ClC6H4 8 98 310-312 311-313 [28]
5b 4‐MeC6H4 8 94 215-217 216-218 [31]
6b 4‐MeOC6H4 10 93 245-247 246-248 [31]
7b 2‐O2NC6H4 5 98 281-283 280-282 [28]
8b 3‐O2NC6H4 5 98 267–269 268-270 [28]
9b 4‐O2NC6H4 5 98 197-200 197-200 [28]
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shows that nano-[Silica-R-NMe2-R'-NMe2][Cl] was 
better than the other catalysts in terms of the reaction 
temperature, yield, time and no solvent use; further-
more, in our procedures, visible-light, microwave and 
ultrasound irradiations (which require special devices) 
have not used.

3  Experimental Section

3.1  Materials and Methods

High-purity starting materials and solvents were bought 
from Fluka or Merck Chemical Companies. The known 
products were detected by comparison their melting points/
spectral data with those recorded in the earlier articles. The 

melting points were recorded on a Büchi B-545 apparatus in 
open capillary tubes. Monitoring progress of the reactions 
was accomplished by TLC using silica gel SIL G/UV 254 
plates. 1H NMR (500 MHz) and 13CNMR (125 MHz) were 
recorded on Bruker Avance DPX, FT-NMR spectrometers 
(δ in ppm). The particle morphology was examined by FE-
SEM (MIRA3TESCAN-XMU) and HR-TEM (FEI Titan 
80–300 kV). Energy dispersive X-ray spectroscopy (EDS) 
was taken on a SAMX-EDS apparatus.

3.2  General Protocol for the Synthesis 
of Polyhydroquinolines using 
nano‑[Silica‑R‑NMe2‑R'‑NMe2][Cl]

A mix ture  o f  nano- [S i l i ca -R-NMe 2-R ' -NMe 2]
[Cl] (0.01  g), dimedone (0.140  g, 1  mmol), ethyl 

Fig. 4  Recyclability of nano-
[Silica-R-NMe2-R'-NMe2][Cl] 
in the synthesis of compound 
(1a)
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Fig. 5  Recyclability of nano-
[Silica-R-NMe2-R'-NMe2][Cl] 
in the synthesis of compound 
(1b)
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acetoacetate (0.130  g, 1  mmol), ammonium acetate 
(0.108 g, 1.4 mmol) and aromatic aldehydes (1 mmol) 
was stirred by a glass agitator at 60 ºC. After that the 
reaction was completed (as observed by TLC), the 
reaction mixture was diluted with 10 mL of hot EtOH. 
Then, with the help of centrifugation and decantation, 
the catalyst insoluble in this solvent was separated 
from the reaction mixture soluble in it. The sepa-
rated catalyst was washed by EtOH (3 × 3 mL), dried 
(under vacuum at 80 ºC), and used for the next run. 
Finally, the solvent acquired from the centrifugation 
and decanting was evaporated, and the resulting pre-
cipitate was recrystallized from EtOH (95%) to give the 
pure polyhydroquinoline.

3.3  General Process for the Synthesis 
of Polyhydroacridines using 
nano‑[Silica‑R‑NMe2‑R'‑NMe2][Cl]

Dimedone (0.280  g, 2  mmol), ammonium acetate 
(0.108  g, 1.4  mmol), aromatic aldehydes (1  mmol) 
and nano-[Silica-R-NMe2-R'-NMe2][Cl] (0.01 g) were 
mixed, and stirred strongly with a glass rod at 50 ºC. 
After ensuring the completion of the reaction (confirmed 
by TLC) and separating the catalyst from the reaction 

mixture (like the above method for the preparation pol-
yhydroquinolines), the pure product was obtained by 
recrystallization of the resulting precipitate from etha-
nol (95%).

4  Conclusions

Concisely, we have employed the efficient, recoverable 
and mesoporous basic catalyst (nano-[Silica-R-NMe2-R'-
NMe2][Cl]) for the rapid synthesis of Hantzsch deriva-
tives (polyhydroquinolines and polyhydroacridines) under 
solvent-free conditions. The recovery and reusability of 
the catalyst for seven runs did not show a significant 
decrease in product yields, in addition, the catalyst had 
a very high durability while maintaining the catalytic 
performance. The utilization of nano-[Silica-R-NMe2-
R'-NMe2][Cl] permitted for the reactions to have excel-
lent yields of the biologically efficient products in short 
times by easy purification process in mild, solvent-free 
and green conditions.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s12633- 022- 02275-5.
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Table 5  Comparison of the reaction results of nano-[Silica-R-NMe2-R'-NMe2][Cl] with other catalysts available for the production of polyhydro-
quinolines and polyhydroacridines

*  In these articles, the desired product (1a or 1b) was not synthesized, therefore, we have reported times and yields as ranges

Catalyst Conditions Type of reac-
tion

Time (min) Yield (%) Ref

Nano-[Silica-R-NMe2-R'-NMe2][Cl] (0.01 g) Solvent-free, 60 °C A 9 98 This work
Nano-[Silica-R-NMe2-R'-NMe2][Cl] (0.01 g) Solvent-free, 50 °C B 8 98 This work
catalyst-free Ultrasonic irradiation B 20 90 [21]
Ni-Nanoparticles (10 mol%) Microwave irradiation A 1 95 [22]
Silica (2 g) Microwave irradiation B 5 90 [23]
catalyst-free * visible-light irradiation A 155–160 80–91 [24]
Nano-Ga2O3 (0.06 g) EtOH, Reflux A 60 90 [25]
urease (0.01 g) H2O, 65 °C B 210 87 [26]
Fe3O4@Schiff-base-Cu (0.25 mol%) H2O, Reflux A 20 99 [27]
Fe3O4@SiO2@-R-OB(OH)2 (0.01 g) EtOH, Reflux B 100 85 [28]
Fe3O4@SiO2@-R-OB(OH)2 (0.01 g) EtOH, Reflux A 45 96 [28]
[βCD/Im](OTs)2 (1 mmol) Solvent-free, 90 °C B 10 95 [29]
Zn-MOF microspheres (0.008 g) PEG-400, 80 °C A 150 83 [30]
Fe3O4@SiO2–PEG/NH2 (0.005 g) Solvent-free, 120 °C B 10 91 [31]
SBA-15@AMPD-Co (0.008 g) Solvent-free, 100 °C A 65 96 [32]
β-CD-mono-SO3H (0.03 g) H2O, 50 °C B 120 91 [33]
Cell–Pr-NHSO3H (0.05 g) EtOH, reflux A 50 90 [34]
MCM-41-SO3H * (0.005 g) Solvent-free, 110 °C B 10–110 60–98 [35]

https://doi.org/10.1007/s12633-022-02275-5
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