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A way to test electromagnetic field and spacetime properties around black holes is by considering the
dynamics of test particles. In fact, in real astrophysical scenarios, it is hard to determine spacetime
geometry which is dominating due to degeneracy gravitational effects in parameters of gravity theories. In
this work, we study for the first time the dynamics of spinning particles that have magnetic dipole moments
around Schwarzschild black holes immersed in an external asymptotically uniform magnetic field using the
Mathisson-Papapetrou-Dixon (MPD) equation. There are two combined interactions: gravitational
interaction between the spin of the particle and (electro)magnetic interaction between the external
magnetic field and the magnetic dipole moment of the particle to be taken into account. First, we derive the
effective potential of the test spinning magnetized particles in motion around the black hole. We also study
the combined effects of spin and magnetic interactions on innermost stable circular orbits (ISCOs), the
energy, and angular momentum of the particles at ISCO together with superluminal bounds. We
investigated the collision of the particles and evaluated the center-of-mass energy in the collisions.
Finally, we consider various cases in which neutron stars and rotating stellar mass black holes can be treated
as spinning magnetized particles, evaluating the effects of the spin and magnetic moment of objects around
supermassive and intermediate-mass black holes. It is also found that magnetic interaction effects are much
larger than spin ones in the case of a neutron star orbiting a supermassive mass black hole, while for the
case of a neutron star and intermediate-mass black hole system, the effects are comparable where the
magnetic field value is larger than 20 G for typical neutron stars and this value for the system with rotating
stellar mass black holes is about 280 G.

DOI: 10.1103/PhysRevD.108.044030

I. INTRODUCTION

Astrophysical point of view, considering the dynamics of
nonzero spin (s ≠ 0) particles around black holesmayhelp to
deeply understand astrophysical scenarios of rotating neu-
tron stars, in particular, millisecond pulsars around the
supermassive black hole Sagittarius A� (Sgr A�). Current
observations of GRAVITY collaboration on searching pul-
sars around the Sgr A�, unluckily, show that no pulsar in the
close environment of the object. One can explain it by the

scattering of radiowaves in the dense plasmamedium around
Sgr A� or the magnetic interaction between the dipole
moment of neutron stars and the external magnetic field.
Since neutron stars and white dwarfs are highly mag-

netized objects with high magnetic dipole moment
μ ∼ BsR3. In this sense, in studies of the objects as a test
particle dynamics, it is important to consider the interaction
between the magnetic field in the black hole environment
and the magnetic dipole moment of the magnetized objects.
The first consideration of magnetized particles’ dynamics
around a Schwarzschild black hole in the presence of an
external test asymptotically uniform magnetic field is
studied in Ref. [1].
Later, studies of magnetized particles’ motion around

rotating Kerr spacetime, magnetized and magnetically
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charged black holes in gravity theories have been devel-
oped in Refs. [2–18] and it’s been found that there is a limit
for magnetic interaction parameters in which the ISCO
goes to infinity or disappears.
Studies of the spinning particles need to consider a

different kind of symmetry in the behavior of interaction
between the gravitational field and spin parameter depend-
ing on the sign of the spin s, like the particle’s angular
momentum, L, with two different configurations which can
be defined by the two symmetries where the effective
potential take the same behavior at the same configuration.
It means that the particle’s spin is parallel to the symmetry
axis (positive spin) the effective potential is the same as the
potential of the counterclockwise (L > 0) moving particle
with antiparallel spin (negative spin) Refs. [19,20].
However, the presence of electromagnetic interaction

destroys the symmetry in the effective potential and the
conditions for stable circular orbits. In this sense, through-
out this work, we plan to study the dynamics of a spinning
particle with a magnetic dipole moment around a
Schwarzschild black hole immersed in an external asymp-
totically uniform magnetic field assuming the particle’s
spin, dipole moment and the external magnetic field lines
are parallel and all of them are perpendicular to the
equatorial plane.
This paper is organized as follows: in Sec. II we present a

study of the motion of test-spinning magnetized particles
around magnetized Schwarzschild BH. In Sec. III we
investigate collisions of spinning magnetized particles in
the spacetime of magnetized Schwarzschild black holes.
We discuss neutron stars orbiting massive black holes as
spinning magnetized particles in Sec. IV. In the last Sec. V,
we summarize all the obtained main results.
We use the signature ð−;þ;þ;þÞ for the spacetime

metric and geometrized unit system G ¼ c ¼ 1. Latin
indices run from 1 to, 3, while Greek ones take values
from 0 to 3.

II. TEST SPINNING MAGNETIZED PARTICLE
MOTION

The spacetime around a Schwarzschild black hole is
described in spherical coordinates, (xα ¼ ft; r; θ;ϕg) as:

ds2 ¼ −fðrÞdt2 þ 1

fðrÞ dr
2 þ r2ðdθ2 þ sin2 θdϕ2Þ; ð1Þ

with the radial function fðrÞ ¼ 1 − 2M=r, where M is the
total mass of the black hole.

A. Magnetized Schwarzschild black holes

The classical Wald solution [21] for the electromagnetic
four-potential of the external asymptotically uniform
electromagnetic field around the Schwarzschild black hole
has the form,

Aφ ¼ 1

2
B0r2 sin2 θ; ð2Þ

the asymptotic value of the magnetic field is B0.
The nonzero components of the electromagnetic tensor
(Fμν ¼ Aν;μ − Aμ;ν) are

Frφ ¼ B0rsin2θ; ð3Þ

Fθφ ¼ B0r2 sin θ cos θ; ð4Þ

and nonzero components of the magnetic fields around the
Schwarzschild BH calculates as,

Bα ¼ 1

2
ηαβσμFβσwμ; ð5Þ

where, wμ is the four-velocity of the proper observer, ηαβσγ ,
is the pseudotensorial form of the Levi-Civita symbol, and
it has the following relations:

ηαβσγ ¼
ffiffiffiffiffiffi
−g

p
ϵαβσγ ηαβσγ ¼ −

1ffiffiffiffiffiffi−gp ϵαβσγ: ð6Þ

Here g is the determinant of the spacetime metric, and it
is for the Schwarzschild case g ¼ −r4 sin2 θ, and the Levi-
Civita symbol ϵ0123 ¼ 1 for the even permutations, and for
odd ones −1.
The orthonormal components of the magnetic fields can

be expressed using the electromagnetic field tensor in the
following form:

Bî ¼ 1

2
ϵijk

ffiffiffiffiffiffiffiffiffiffiffiffi
gjjgkk

p
Fjk ¼ 1

2
ϵijk

ffiffiffiffiffiffiffiffiffiffiffiffi
gjjgkk

q
Fjk ð7Þ

Consequently, the radial and vertical components of the
magnetic field measured by zero angular momentum
observer (ZAMO) with the velocities uμZAMO ¼ ð1= ffiffiffiffiffiffiffiffiffi

fðrÞp
;

0; 0; 0Þ take the form,

Br̂ ¼ B0 cos θ; Bθ̂ ¼
ffiffiffiffiffiffiffiffiffi
fðrÞ

p
B0 sin θ: ð8Þ

B. Effective potential for a spinning magnetized
particle’s motion

In fact, the effects of external magnetic fields in test-
charged particles’ dynamics play an important role. The
motion and radiation of the charged particles around a
magnetized black hole, taking into account radiation reaction
forces, were extensively studied in Refs. [22,23]. Also,
studies of the motion of magnetized particles around black
holes in the presence of external magnetic fields together
with the spin effects have an interesting future in their
dynamics.
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In this study, we investigate for the first time, the
dynamics of the spinning test particle with a magnetic
dipole moment orbiting a magnetized Schwarzschild black
hole. In fact, the equations of motion of spinning particles
cannot be described by the geodesic equation in general
relativity due to the presence of gravitational interaction
between the Riemann curvature tensor and the spin of the
orbiting particle in the black hole spacetime [24–26].
Similarly, the Tulczyjew’s method is an analogue method

of Mathisson [27,28] while Moller and others have also
improved the studies defining the center of mass [29–34].
Generally, the equations for the motion of particles that

have spin and mass are called the MPD equations.
Recently, some authors modified the MPD equations;
see Refs. [35,36] in the form,

Dpμ

dτ
þ 1

2
Rμ
ναβu

νSαβ ¼ 0; ð9Þ

DSμν

dτ
− pμuν þ pνuμ ¼ 0; ð10Þ

where the covariant derivative reads as D=dτ≡ uμ∇μ

and Rμ
ναβ is the Riemann tensor. Sαβ is the second rank

antisymmetric tensor Sαβ ¼ −Sβα describing the spin of
particles as follows

SμνSμν ¼ 2S2 ¼ 2m2s2; ð11Þ

where the term Rμ
ναβu

νSαβ describes the gravitational
interaction between the spacetime and spin of particles
with the mass m.
We also assume that a test spinning particle has a proper

magnetic dipole moment together with the spin parameter,
being parallel to each other, and there is an additional
interaction between the dipole moment and the external
magnetic field. The four-momentum taking into account
the magnetic interaction has the following form [1,12,13],

pμpμ ¼ −m2

�
1 −

1

2m
DμνFμν

�
2

; ð12Þ

whereDμν is the polarization tensor and the productDμνFμν

corresponds to magnetic interaction, and it is scalar. It is
seen from the right-hand side of Eq. (12) that the effective
mass of the test particles in the presence of the electro-
magnetic field is meff ¼ m − ð1=2ÞDαβFαβ. The tensors
Dμν and Sμν are for particles with the magnetic dipole
moment and spin can be expressed as,

Dαβ ¼ ηαβσνuσμν; Sαβ ¼ ηαβσνuσsν: ð13Þ

One can easily see from Eq. (13) that in the case when
the particle’s magnetic moment and spin axes of the
particles are orthonormal to the four-velocity of the particle

[that means the magnetic dipole moment and spin have
only θ component: μi ¼ ð0; μθ; 0Þ and si ¼ ð0; sθ; 0Þ] the
condition must be satisfied for both spin and polarization
tensors,

Sαβpβ ¼ 0; Dαβpβ ¼ 0: ð14Þ

Furthermore, adding to the Tulczyjew spin supplemen-
tary condition (SSC) Eq. (14), we have conserved quan-
tities related to the space-time symmetries. Space-time
metric Eq. (1) has two Killing vector fields. One generates
invariant time translation ξα, and the other invariant rotation
ψα. For this reason, we have two conserved quantities
which could be found in the equation below,

pακα −
1

2
Sαβ∇βκα ¼ pακα −

1

2
Sαβ∂βκα ¼ const; ð15Þ

where κα is a vector related to the two Killing vector fields;
i.e., ξα or ψα.
The productDαβFαβ can be found taking into account the

conditions given in Eqs. (13) and (8) as,

DμνFμν ¼ 2μα̂Bα̂ ¼ 2μB0

ffiffiffiffiffiffiffiffiffi
fðrÞ

p
; ð16Þ

where μ2 ¼ μαμ
α is the norm of the dipole magnetic

moment of magnetized particles. Here we have assumed
that the direction of the magnetic dipole moment is
perpendicular to the equatorial plane, it is parallel to the
external magnetic field as well. We also consider the
equatorial motion of the test spinning magnetized particles
which makes simpler our further calculations.
In fact, the magnetized particle’s magnetic dipole

moment has interaction with only the external magnetic
field that does not break the conservative quantities pt and
pϕ of spinning particles, and they can be obtained from
Eq. (15) as:

−E ¼ pt −
1

2
gtα;βSαβ ¼ pt −

1

2
gtt;rStr;

J ¼ pφ −
1

2
gφα;βSαβ ¼ pφ −

1

2
gφφ;rSφr; ð17Þ

where J is the total angular momentum of the spinning
particle, and it can be described as J ¼ Lþ S
(S ¼ sm, L ¼ Lm).
In fact, in a plane near the equatorial one, magnetic field

lines are not perpendicular to that plane. According to our
assumption, the magnetic dipole moment of the particle is
perpendicular to the plane where its motion occurs. Thus,
the external magnetic field and magnetic dipole moment
are not parallel to each other. In other words, there is a
nonzero angle between the particle’s magnetic moment and
the external magnetic field. It is known that the potential
energy of the magnetic interaction reaches its minimum in
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an equilibrium state when the angle is zero. Consequently, a
“nonlinear” force appears that brings the magnetized
particle back to its equilibrium state which causes starting
nonlinear oscillations of the magnetic dipole around the
vertical axis. Then, the particle radiates electromagnetic
waves which causes the particle either fall into or escape
from the central object losing its energy and angular
momentum. Thus, the motion of magnetized particles at
a nonequatorial plane is not stable. Therefore, we restrict
our attention to the equatorial plane, where θ ¼ π=2.
Using the Eqs. (11) and (14) conditions one may get the

equation below.

Str ¼ −
pφsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi−gttgrrgφφ

p ; Sφr ¼ ptsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi−gttgrrgφφ
p ; ð18Þ

The Eq. (17) can be described as:

−E ¼ pt þ
spφgtt;r

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi−gttgrrgφφ

p ¼ pt −
s
2r

pφf0;

J ¼ pφ −
sptgφφ;r

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi−gttgrrgφφ

p ¼ pφ − spt; ð19Þ

and by solving Eq. (19) we get:

pt ¼ −
2Er − sJf0

2r − s2f0
; pφ ¼ 2ðJr − sErÞ

2r − s2f0
: ð20Þ

Now, we use Eqs. (12) and (16) to get the equation for the
effective potential of the spinning magnetized particle.

ðprÞ2 ¼ −grr½gttp2
t þ gφφp2

φ þm2ð1 − β
ffiffiffiffiffiffiffiffiffi
fðrÞ

p
Þ2�; ð21Þ

where β ¼ μB0=m is the magnetic interaction (coupling)
parameter that describes the interaction between the dipole
moment and the magnetic field.

ρðurÞ2 ¼ αE2 þ δE þ γ; ð22Þ

where E is the specific angular momentum, and new
notations are

ρ ¼ ð2r − s2f0Þ2; α ¼ 4ðr2 − s2fÞ;
δ ¼ 4sJð2f − rf0Þ;
γ ¼ −fð2r − s2f0Þ2ð1 − β

ffiffiffi
f

p
Þ2 − J 2½4f − ðsf0Þ2�; ð23Þ

with the specific angular momentum J ¼ J=m.
We can rewrite Eq. (22) as,

ðurÞ2 ¼ α

ρ
ðE − VþÞðE − V−Þ: ð24Þ

Hence, it is possible to define the effective potential for
the circular motion of the spinning magnetized particles

pr ¼ 0 as a solution of Eq. (24) in the following form
[19,37,38],

V� ¼ −δ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 − 4αγ

p
2α

: ð25Þ

We can define new variables as

J →
J
M

¼ J
mM

; s →
s
M

¼ S
mM

: ð26Þ

One can see from Eq. (24) that in order to have
ðurÞ2 ≥ 0, the specific energy of the test particles has to
satisfy the conditions: (i) E < V− or (ii) E > Vþ.
Hereafter, we focus on the case of spinning test particles

with positive energy which coincides with the effective
potential to be Veff ¼ Vþ. Here we redefine the effective
potential as,

Veff ¼
−δþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 − 4αγ

p
2α

ð27Þ

Now, we analyze the effects of spin and magnetic
interactions, as well as combined effects on the effective
potential for the radial motion of test spinning and
magnetized particles graphically due to the complicated
form of the expression for the potential.
Figure 1 displays the radial dependence of the effective

potential for the radial motion of the magnetized spinning
particle for various values of the magnetic parameter β and
spin of the particle s, while the specific angular momentum
of the particle is held constant at L ¼ 4.3.
On the other hand, Fig. 1 demonstrates that the magnetic

parameter β has a considerable impact on the effective
potential; when β increases, the effective potential decreases,
as evidenced by the left-top panel, which portrays the
spinless particle to exist even at larger distances.
Additionally, the other three panels portray the various
values of the magnetic parameter β with the varying s spin
of the particle. In this case, s is chosen to be −0.2, 0, 0.2 to
observe the impact of spin on the effective potential under
different values of the magnetic parameter β.
In the right-top panel of Fig. 1, the effective potential of

the neutral spinning particle is plotted as a function of radial
distance. From the figure, one can observe that as the spin
of the particle increases, the maximum of the effective
potential increases correspondingly. The same behavior can
be observed in the other two panels (Fig. 1 second row).
Now, we analyze radial profiles of E and L of the

spinning magnetized particles corresponding to circular
orbits graphically, using the condition dVeff=dr ¼ 0, due to
the complicated form of the effective potential (27).
Figure 2 shows radial profiles of the energy and angular

momentum corresponding to circular orbits of test-spinning
magnetized particles orbiting magnetized Schwarzschild
black holes for different values of spin and magnetic
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interaction parameters. The presence of magnetic interac-
tion sufficiently decreases both the energy and angular
momentum, while the spin effects change slightly.

C. Superluminal bound

In this subsection, we discuss superluminal bound. As
mentioned above particle’s four-velocity uα and four-
momentum pα are not parallel in the case of the spinning
particles. And a square of the four-velocity:

uαuα ≠ −1

Here one can see that as the particles come close to the BH
their velocities start to increase, and they may become
spacelike, nonphysical, or in other words superluminal.
Superluminal condition is important for the motion of the
spinning particles where this condition helps us to distin-
guish timelike particles from spacelike ones, in other words,
it limits the spin of the particles. Useful discussions about
Superluminal bound can be found in the work of [20,39,40].
The condition for the spinning magnetized particle to be

timelike is

uαuα < 0 ð28Þ
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FIG. 1. Radial dependence of effective potential for the different values of the magnetic parameter β and spin of the particle. In all
cases L ¼ 4.3M.

FIG. 2. Radial dependence of energy (left panel) and angular momentum (right panel) at circular orbits of the spinning particle for
different values of the spin and magnetic parameter. Here, we have taken M ¼ 1.
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or one can write this function as:

uαuα
ðutÞ2 ¼ gtt þ grr

�
dr
dt

�
2

þ gφφ

�
dφ
dt

�
2

< 0: ð29Þ

With the superluminal bound holding, the components of
the symmetric spin tensor Sαβ can be computed by utilizing
the method developed in Ref. [41]. This method is based
on the application of the MPD equations (9) and the
Tulczyjew-SSC. Specifically, the second MPD equation is
used to calculateDStr=dλ,DStφ=dλ andDSrφ=dλ, yielding a
system of equations for the nonzero components of Sαβ. This
system can then be used to calculate the radial and azimuthal
components of the 4-velocity vector, ur and uφ.

DStr

dλ
¼ ptur − utpr;

DStφ

dλ
¼ ptuφ − utpφ;

DSrφ

dλ
¼ pruφ − urpφ: ð30Þ

By making a unique gauge with the choice of λ ¼ t, as
specified inRef. [41], the systemof equations for the nonzero
components of Sαβ can be reduced to a single equation in
terms of Sφr only. This is a consequence of the MPD
equations, which allow for the deduction of constraints on
the components of Sαβ.

ur ¼ C
B
pr

pt
; ð31Þ

uφ ¼ A
B
pφ

pt
; ð32Þ

with

A ¼ gφφ þ Rtrrt

�
Sφr

pt

�
2

; ð33Þ

B ¼ gtt þ Rφrrφ

�
Sφr

pt

�
2

; ð34Þ

C ¼ grr þ Rφttφ

�
Sφr

pt

�
2

: ð35Þ

By inserting Eq. (31) into the superluminal bound
condition (29), we can obtain a condition for the validity
of the superluminal bound.

gttB2ðptÞ2 þ grrC2ðprÞ2 þ gφφA2ðpφÞ2 < 0; ð36Þ

By making use of the conservation of the four-momentum,
as in Eq. (12), the superluminal bound condition can be
simplified.

F ¼
�
pt

m

�
2

X þ
�
pφ

m

�
2

Y − Z < 0; ð37Þ

with

X ¼ gttB2 −
C2

gtt
;

Y ¼ gφφA2 −
C2

gφφ
;

Z ¼ grrC2ð1 − β
ffiffiffiffiffiffiffiffiffi
fðrÞ

p
Þ2: ð38Þ

One can find a more detailed discussion about super-
luminal bound and its function in Refs. [20,39,40] using the
function F , in order to have timelike particles which are
moving in a circular orbit F < 0 condition should be met.

D. Stable circular orbits

In order to study BH, the structure of spacetime, and the
accretion process, stable circular orbits are always interest-
ing. This subsection is devoted to the innermost stable
circular orbits (ISCO) of the spinning magnetized particles
in the background of the Schwarzschild spacetime. There are
two conditions in order to find a stable circular orbit: the
radial velocity should be zero dr=dτ ¼ 0 orVeff ¼ E and the
particle should not have radial acceleration d2r=dτ2 ¼ 0 or
dVeff=dr ¼ 0. By using these two conditions one may find
circular orbits, however, interestingly we also need to know
where the inner edge of these orbits is, or just ISCO. There is
another condition for the ISCO:

d2Veff

dr2
≥ 0: ð39Þ

In order to have ISCO region we need to solve a
nonlinear system of equations: Veff ¼ E, dVeff=dr ¼ 0,
and d2Veff=dr2 ¼ 0. As these equations are nonlinear we
solve them numerically.
The behavior of rISCO;LISCO and EISCO are plotted as a

function of spin s, in Fig. 3, magnetic parameter β, in Fig. 4,
of the particle. Throughout the work, we use LISCO
(J ISCO ¼ LISCO þ s) notation, the reason is we want to
show the effect of the spin and magnetic parameter of the
particle to circular orbits. In Fig. 5, relations between rISCO
vs EISCO, LISCO vs EISCO, and rISCO vs LISCO are given as a
parametric plot for the values of s ∈ ð−2; 2Þ.
In Fig. 3, vertical lines denote the points where Eq. (37)

F → 0, indicating whether the particles are timelike or
spacelike, as discussed in Sec. II C. The right side of the
lines corresponds to spacelike particles, which are super-
luminal but lack physical meaning. The left side of the lines
is for the timelike particles, which are the ones of interest.
One can see that magnetic parameter β has a significant
effect on the radius, specific angular momentum, and
specific energy at the ISCO point. The first panel of
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Fig. 3 illustrates the innermost stable circular orbit (ISCO)
radius of the particles as a function of the spin of the
particle. One can see that the ISCO radius increases when
the magnetic parameter β gets higher for the same spin of
the particle. Moreover, for the same magnetic parameter β,
the radius, specific angular momentum, and specific energy
of the particle all decrease as the spin increases. For larger
values of the spin of the particle (s ≈ 2), the ISCO radius of
the particle is observed to be independent of the magnetic
parameter. Figure 3 also shows a clear relationship between
the magnetic parameter and the specific energy of the
particle, indicating that the magnetic parameter has a strong
effect on the specific energy of the particle. However, the
specific energy of the particle decreases significantly

when the spin of the particle increases from s ≈ 1.5
to s ≈ 2.
In Fig. 4, the behavior of the radius, specific angular

momentum, and specific energy of the particle at the ISCO is
depicted by varying the spin (s ¼ −0.4;−0.2; 0.0; 0.2; 0.4)
of the particle as a function of the magnetic parameter. From
the figure, one can observe a similar trend for the specific
angular momentum and specific energy of the particle; both
decrease with an increase in the magnetic parameter β, while
the spin (s) remains constant. The top left panel of the figure
illustrates the behavior of the radius of the particle at the
ISCO. It is observed that the radius increases at a faster rate
for higher values of themagnetic parameter when the spin (s)
is held constant. If themagnetic parameter β is kept constant,

FIG. 3. Dependence of ISCO radius, specific angular momentum, and the specific energy at the ISCO radius to the spin of the particle
for the different values of the magnetic parameter β (Left side plots for corotating case, right side for counterrotating).

FIG. 4. ISCO radius, the specific energy and specific angular momentum of the particles at ISCO as a function of β for different values
of s.

FIG. 5. Dependences between ISCO radius, specific energy, and specific angular momentum of the particles at ISCO for different
values of β.
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then an increase in the spin s of the particle will result in a
decrease in the radius. Similarly, the second panel of Fig. 4
depicts the specific angular momentum (LISCO) of the
particle at the innermost stable circular orbit (ISCO). The
same pattern is observed in this panel; when the magnetic
parameter β remains constant, an increase in the spin s of the
particle results in a decrease in the specific angular momen-
tum. Analogously, the decrease in specific angular momen-
tum is inversely proportional to the increase in the magnetic
parameter. Finally, the third panel of Fig. 4 depicts the
specific energy behavior of the particle. As depicted in the
figure, the spin s of the particle does not have a significant
influence on the specific energy of the particle in ISCO.
Furthermore, the specific energy of the particle is linearly
decreasing with an increase in the magnetic parameter of the
particle β.
Figure 5 shows the connection between the specific

energy, angular momentum, and radius of the particle at
ISCO for a range of magnetic parameter values by para-
metrizing the spin of the particle. The first left panel of
Fig. 5 illustrates the relationship between the specific
energy and radius at the ISCO for a range of values of
the magnetic parameter β. Higher values of the magnetic
parameter β necessitate the spinning magnetized test
particle to travel in a circular orbit with lower energy
(when the radius of the circular orbit is held constant). The
same behavior for the spinning magnetized test particle can
be observed in the second panel of Fig. 5 when the angular
momentum of the particle is held constant in a
Schwarzschild spacetime. Finally, the last panel of Fig. 5
reveals the amount of angular momentum needed for the
spinning magnetized particle to travel in a circular orbit,
where an increase in the magnetic parameter causes the
angular momentum for a specific circular orbit to decrease.
Furthermore, larger values of the circular orbit necessitate a
greater amount of angular momentum.
Finally, Fig. 6 shows the correlation between the

magnetic parameter and the spin of the particle for a fixed
circular orbit (with rISCO ¼ 6M). As depicted in the figure,
the spin and magnetic parameters of the particle can

mutually offset each other. Therefore, if the spinning
magnetized particle is traveling with a specific amount
of spin and magnetic parameter, one cannot differentiate
between neutral nonspinning and magnetized spinning
particles.

III. COLLISIONS OF SPINNING MAGNETIZED
PARTICLES

For the first time, Banados-Silk-West (BSW) theoreti-
cally have been analyzed the fascinating process of high-
energy collisions of particles close to the black hole horizon
that may be a candidate process for the energy release from
the black hole [42]. Subsequently, numerous studies have
been conducted in various settings to build on their work
[43–45]. It has been established that head-on collisions
more effectively extract energy from the central black hole.
The first energy extraction from rotating Kerr black holes

is suggested in Ref. [46] where the acceleration processes
become more efficient when the primary particle decays by
two in the ergoregion. When the ergoregion disappears, the
energy released from the black hole does not extract. So,
big ergoregion corresponds to big energy efficiency.
Moreover, the process is more efficient in the presence
of an external magnetic field and is called the magnetic
Penrose process (MPP) [47,48]. Protons and ions could be
accelerated near magnetized supermassive black holes up
to energies 1022 eV, which is explains the highest energetic
protons observed in cosmic rays [49].
This section is devoted to investigating head-on colli-

sions and the center of mass energy of two colliding
spinning magnetized particles in a Schwarzschild space-
time. It is worth noting that we have also examined the
critical angular momentum of the spinning magnetized
particles, which enables the particles to approach the
central object from infinity.
In the following, we assume that the energy-to-mass ratio

for particles arriving from infinity is equal to one for both
E1 and E2. We first derive the expression for the center of
mass energy of the colliding spinning magnetized particles
as follows [50,51]

E2
cm ¼ −gμνðpð1Þ

μ þ pð2Þ
μ Þðpð1Þ

ν þ pð2Þ
ν Þ

¼ m2
1 þm2

2 − 2gμνpð1Þ
μ pð2Þ

ν ð40Þ

Here, pð1Þ
μ and pð2Þ

μ are the momentum of the first and
second particle, respectively, given in Eqs. (20) and (21).

A. Critical angular momentum

Before starting discussions in the center of mass energy
of collisions of particles with spin and magnetic parame-
ters, we first clarify in which values of angular momentum
of particles, the particles can approach the central object
from an infinite distance and the collision occurs near the
horizon. To achieve this, we impose a condition on the

FIG. 6. The relationships between the spin and magnetic
parameters providing the ISCO radius as r ¼ 6M.
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radial motion of the particle, ṙ2 ≥ 0. From Eq. (21), it can
be observed that an increase in angular momentum results
in a decrease in radial velocity.
This suggests that there is a critical value of angular

momentum that can be obtained by solving the two
equations ṙ2 ¼ 0 and dṙ2=dr ¼ 0 simultaneously. We
can now conclude that particles with higher angular
momentum than the critical value cannot approach close
to a black hole, and instead move at a distance from the
central object.
Figure 7 displays the dependence of the critical

angular momentum of a spinning magnetized particle
on its spin and magnetic parameter, with the left and right
panels depicting the variation of the magnetic parameter
and spin respectively. The left panel of Fig. 7 shows that
an increase in the magnetic parameter leads to an
increase in the angular momentum. For a fixed spin,

the difference inangular momentum is greater for a
negative spin than for a positive spin of the particle in
Schwarzschild spacetime. For a spin of the particle
approximately s ≈ 1.8, the effect of the magnetic param-
eter β on the angular momentum is negligible. Moreover,
there is a maximum angular momentum for certain spin
values. As the spin of the particle increases, the angular
momentum also increases until a maximum value is
reached at approximately s ¼ 0.8, after which it
decreases. The right panel of Fig. 7 depicts the critical
angular momentum versus magnetic parameter for vary-
ing spin values of s ¼ −0.2, 0, 0.2. The plot shows that
the critical angular momentum is approximately linearly
proportional to the magnetic parameter. Additionally, an
increase in the spin s of the particle leads to an increase
in the angular momentum for a fixed value of the
magnetic parameter β.

FIG. 7. Dependence of the critical values of the specific angular momentum for the spin (s) and magnetic parameter (β) of the particle
respectively.

FIG. 8. Radial dependence of the center of mass energy of collisions of magnetized spinning particles motion with different s and β
parameters.
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B. Collisions of spinning magnetized particles

Here, we investigate the center of mass energy of two
colliding spinning and magnetized particles near a
Schwarzschild black hole.
We assume that the particles have equal mass such that

m1 ¼ m2 ¼ m, and the expressions of pt; pφ, and pr are
given in Eqs. (19)–(21).
We can now derive an expression to calculate the center-

of-mass energy of colliding particles as follows:

Ecm ¼ Ecm

2m2

¼ 1−gttpð1Þ
t pð2Þ

t −grrpð1Þ
r pð2Þ

r −gφφpð1Þ
φ pð2Þ

φ ð41Þ

Applying Eq. (41) to the expression above yields an
expression for the center of mass of the colliding spinning
magnetized particles.
Figure 8 illustrates the radial dependence of the center of

mass energy Ecm of two colliding spinning magnetized
particles for various values of the spin s and magnetic
parameter β. It consists of six panels In the top row panel,
we consider one of the particles to be spinless, and in the
bottom panel β1 ¼ 0. It is observed that β decreases the
energy. The top-left row is for collisions of test neutral and
magnetized particles, while at the bottom-left panel, we
show radial profiles of the center of mass energy of two
magnetized (nonspinning) particle collisions.
The middle and right columns are for the negative and

positive spinning particles’ collisions, respectively. In the
top row of the columns, the first particle’s spin is zero while
the bottom row is for the particles with spin s2 ¼ 1. One
can see from the figure that the center of mass energy Ecm
decreases (increases) at s > 0 (s < 0) cases. Moreover, the
effect of s is sufficiently near the horizon while β influence
on Ecm is visible far from the object.

IV. ASTROPHYSICAL RELEVANT SPINNING
MAGNETIZED OBJECTS

A. Neutron stars as spinning magnetized objects

In fact, neutron stars with the magnetic dipole moment
μ ¼ ð1=2ÞBsR3, are rotating magnetized objects in the
universe, where Bs is the surface magnetic field. Now, here
we simply estimate the spin parameter for the objectswith the
rotational angular momentum S ¼ IΩ, where Ω ¼ 2π=P
and P is the rotational period of the neutron star.
As mentioned in Eq. (26) that the dimensionless spin

parameter for NSs can be calculated as

sNS ¼
IΩ

mNSMBH
; ð42Þ

where I is the inertia momentum of the NS. In Newtonian
gravity, spherical massive bodies, NSs as well, have inertia
momenta I ¼ ð2=5ÞmNSR2. However, the inertiamomentum

of an object changes due to the strong gravity and matter
inside it. In our previous work [52], we have estimated the
moment of inertia of neutron stars assuming it consists of
uniform density matter ρ ¼ const, showing that the inertia
momenta in GR do not change much even for most massive
NSs, the difference is about 3%.
Now, we evaluate the spin parameter for a neutron star

orbiting an intermediate-mass black hole as,

sNS ≃ 6 × 10−3
R2
6

M4Pms
ð43Þ

where R6 ¼ RNS=ð106 cmÞ is a normalized radius of the
star to 106 cm, Pms is the rotational period of the NS
expressed in milliseconds and M4 ¼ MBH=ð104M⊙Þ is the
mass of the central black hole. Also, the magnetic coupling
parameter is,

βNS ≃ 3 × 10−3
B12R3

6B1

M14

ð44Þ

where B12 ¼ BNS=ð1012 GÞ and B1 ¼ Bextr=ð10 GÞ are the
dimensionless surface magnetic fields of the neutron star
and external local magnetic field around the central black
hole, respectively. The mass of the star is also given in the
normalized form M14 ¼ mNS=ð1.4M⊙Þ.
In fact, when s ≪ β the particle can be a magnetized

particle, or when s ≫ β it is spinning. So, we are interested
in the magnetic field value where the magnetic interaction
parameter β is of the same order as the spin parameter s ≈ β
that satisfies the particle as a candidate for a test spin
magnetized one. For this case, we let the mass of the NS be
1.4M⊙, its radius about 10 km, and the surface magnetic
field ∼1012 G. Our rough estimations show that the
external magnetic field has to be bigger than about 20
Gauss to provide the same order of magnetic interaction
with the spin-curvature interaction (s ¼ β ¼ 0.006).

B. Rotating stellar mass black holes as spinning
magnetized objects

Moreover, one can treat stellar-mass black holes with the
ionized accretion disc generating a dipolar magnetic field
around the black hole as test spinning magnetized particles
orbiting massive black holes.
Stellar-mass black holes with ionized accretion discs can

have a dipolelike magnetic field generated by the current
loop. Authors of Ref. [53] have shown that the magnetic
field value can be of the order of 108 Gauss around the
stellar-mass black holes and 104 Gauss around super-
massive black holes. The magnetic dipole moment of the
current loop around a stellar-mass black hole is
μcl ¼ ð1=2ÞBclr3cl, where Bcl is the magnetic field gener-
ated by the current loop. Here, we assume the orbits of the
current loop is located near ISCO. In order to estimate the
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magnetic parameter for the magnetized stellar mass black
hole with the Kerr parameter a� (where a� ¼ a=mSBH is
dimensionless Kerr parameter), we first calculate the radius
of the current loop using the expression for the ISCO radius

RISCO ¼ 3þ Z2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3 − Z1Þð3þ Z1 þ 2Z2Þ

p
;

where þ and − signs stand for retrograde and prograde
orbits/loops, respectively, and

Z1 ¼ 1þ
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ a�
3
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a�

3
p � ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − a2�
3

q
;

Z2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3a2� þ Z2

1

q
:

The magnetic parameter for the fixed values of the rotation
parameter of the stellar black hole a ¼ 0.5mSBH and the
loop magnetic field (see, [53]) Bcl ¼ 108 G is

β ≃ 3.6 × 10−3
B8B3

M1

; ð45Þ

where M1 ¼ mSBH=10M⊙ is the mass of the stellar mass
black hole normalized to 10M⊙. B8 ¼ Bcl=ð108 GÞ and
B3 ¼ Bextr=ð103 GÞ.
The spin parameter s for the system consisting of a

dipolar magnetized stellar-mass black hole and the massive
central black hole is

s ≃ 10−3a�
M1

M4

: ð46Þ

Now, it is possible to estimate values of the external
magnetic field that provide the magnetic interaction to be
comparable with the spin parameter for the particle (rotat-
ing stellar mass black hole) using Eqs. (45) and (46). Our
calculations have shown that the magnetic field have to be
greater than Bextr ≃ 280 G forMBH ¼ 104M⊙ for the black
hole with the mass mSBH ¼ 10M⊙ when the magnetic field
of the current loop is in the order of 108 G.
We performed a comparison between the particle spin s

in Eq. (46) and the magnetic parameter β in Eq. (45), which
allowed us to derive as a function of B3. This function was
then plotted and presented in Fig. 9. In the top panel of
Fig. 9, where B8 ¼ 1ð∼108 GÞ and a� ¼ 0.9, we observe
the relationship between M4 and M1, with the right color
bar indicating the corresponding values of B3. Furthermore,
the bottom panel of Fig. 9 illustrates the relationship
between M4 and B8, with M1 fixed at 1.
This density plot, displaying the function B3, provides

insights into the interplay between the magnetic parameter,
particle spin, and the massesM4 andM1. By examining the
color-coded values of B3 and the corresponding parame-
ters, we gain a deeper understanding of their relationships
and their influence on the dynamics of the system.

V. CONCLUSION

In this paper, we have studied the dynamics of spinning
magnetized particles around a Schwarzschild black hole
immersed in an externally asymptotically uniformmagnetic
field. Here we have used the Mathisson-Papapetrou-Dixon
equation for the motion of spinning test particles and the
modified Hamilton-Jacobi equation, which are taken into
account the gravitational interaction between the spin of the
particles and magnetic interaction between the external
magnetic field and magnetic dipole moment of the par-
ticles, respectively.
We have derived the effective potential of test spinning

magnetized particles’ motion around the magnetized black
hole. It is obtained that the effective potential decreases due
to an increase in the magnetic interaction. Similarly, in the
presence of negative values of the spin parameter, the

FIG. 9. Density plot of a B3 as parameter ofM1;M4; a�, and B8.
And we have chosen a� ¼ 0.9 in both panels.
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effective potential decreases with a smaller effect than the
effect of β. At s > 0 the potential increases.
We have also studied the effect of spin and magnetic

interaction on innermost stable circular orbits. It is obtained
that ISCOs go far from the black hole in the presence of
magnetic interaction due to the repulsive behavior of
Lorentz forces. The increase of the positive spin of the
particle also increases the ISCO radius due to the increase
of total angular momentum, while the negative one
decreases. Moreover, we have also considered the case
that the spinning magnetized particle’s ISCO radius is the
same as the neutral one’s being equal to 6M. That means
positive spin and magnetic field effects have opposite
behavior and may compensate for each other with the
relation given in Fig. 6.
We have also analyze, the energy and angular momentum

of the particles at ISCO by varying β and s parameters and
show that an increase of β causes the decrease of both the
angular momentum and energy at the particle’s ISCO
corresponding to the value of the parameter β. However,
the spin parameter slightly changes the energy and angular
momentum. Relationships between the ISCO radius and the
energy & angular momentum of the particles at ISCO. It is
also observed that as β increases both the energy and angular
momentum for the fixed ISCO decrease. Similarly, in the
presence of β the energy of particles at ISCO decrease for the
corresponding values of angular momentum of the particle
at ISCO.
We have also studied the superluminal motion of

spinning magnetized particles. As shown in Fig. 3, the
spin axis is divided into two parts by vertical colored lines,
representing the time and spacelike particles, respectively.
The results indicate that an increase in the magnetic
parameter β leads to increasing the spin limit of the
spinning particles. It means that the Lorentz force and
spin-curvature interactions compensate for each other.
We have also investigated collisions of the spinning

magnetized particles and calculated the critical values of
the angular momentum of the particles at which the
particles can collide and the center of mass energy of
the collisions. It is shown that the critic value increase with

the increase of the external magnetic field or magnetic
moment of the particles, while, it increases with the
increase of the spin of the particle, reaches its maximum,
and decreases back again. However, at higher values of the
spin near s ¼ 2, the effects of the magnetic interaction on
the critic angular momentum disappear, which means that
near s ¼ 2 the spin interaction becomes much higher than
the magnetic one.
Studies of the center of energy of the collisions have

shown that the presence of positive spin and magnetic
dipole moment of the colliding particles causes decreasing
the energy, while negative spin causes increasing it.
Finally, we evaluated and compared the spin and

magnetic interactions in the circular stable orbits of
neutron stars and white dwarfs around massive black
holes, considering them a test of spinning and magnetized
particles. It is found that magnetic interaction effects are
much larger than the spin ones even in the presence of
external magnetic fields of about mGs. Our estimations
have shown that in the case of typical neutron stars
orbiting intermediate-mass black holes, the external mag-
netic field has to be greater than 20 Gs to support a similar
order of magnetic interaction with the spin interaction
(s ¼ β ¼ 0.006). Also, the lower limit for the external
magnetic field is obtained as 280 Gausses for comparable
values of the spin and magnetic interaction parameters
where a stellar-mass black hole is treated as a spinning
magnetized object.
In our future studies, we plan to extend this work by

investigating the dynamics of spinning magnetized par-
ticles in the close environment of magnetized rotating black
holes and magnetically charged black holes in the frame-
work of various gravity theories.
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