
Citation: Rayimbaev, J.; Juraeva, N.;

Xudyoberdiyeva, M.; Abdujabbarov,

A.; Abdullaev, M. Quasiperiodic

Oscillations and Dynamics of Test

Particles around Regular-Kiselev

Black Holes. Galaxies 2023, 11, 113.

https://doi.org/10.3390/

galaxies11060113

Academic Editor: Peter Dunsby

Received: 11 September 2023

Revised: 22 October 2023

Accepted: 10 November 2023

Published: 16 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

galaxies

Article

Quasiperiodic Oscillations and Dynamics of Test Particles
around Regular-Kiselev Black Holes
Javlon Rayimbaev 1,2,3,4,* , Nozima Juraeva 5,6, Malika Khudoyberdiyeva 4,5, Ahmadjon Abdujabbarov 5,7

and Mardon Abdullaev 8

1 School of Mathematics and Natural Sciences, New Uzbekistan University, Mustaqillik Ave. 54,
Tashkent 100007, Uzbekistan

2 School of Engineering, Central Asian University, Tashkent 111221, Uzbekistan
3 Institute of Fundamental and Applied Research, TIIAME National Research University, Kori Niyoziy 39,

Tashkent 100000, Uzbekistan
4 Faculty of Physics, National University of Uzbekistan, Tashkent 100174, Uzbekistan;

xudoyberdiyeva94@inbox.ru
5 Ulugh Beg Astronomical Institute, Astronomy Str. 33, Tashkent 100052, Uzbekistan; nozima@astrin.uz (N.J.);

ahmadjon@astrin.uz (A.A.)
6 Institute of Nuclear Physics, Ulugbek 1, Tashkent 100214, Uzbekistan
7 Faculty of Computer Engineering, Tashkent University of Applied Sciences, Gavhar Str. 1,

Tashkent 100149, Uzbekistan
8 Power Engineering Faculty, Tashkent State Technical University, Tashkent 100095, Uzbekistan;

mardon050592@gmail.com
* Correspondence: javlon@astrin.uz

Abstract: Testing gravity theories combining (massive and massless) scalar & electrodynamic fields
become the most important issue in relativistic astrophysics using data from, black hole observations.
In the present work, we first show a spherically symmetric black hole solution in general relativity
coupling to generic-type nonlinear electrodynamics (NED) together with the quintessential field. We
also obtain possible values for the parameters of the quintessential field and NED charge in the black
hole environment for different values of degree of nonlinearity. Also, event horizon properties and
scalar invariants of the black hole spacetime are studied. We investigate the equatorial motion of test
particles around the regular-Kiselev black holes and study the combined effects of quintessential field
and the NED charge of the black hole on particle angular momentum together with its energy at their
circular orbits as well as their innermost circular stable orbits (ISCOs) and compared the obtained
results with Reissner-Nordström black hole (RN BH) case. Moreover, we study particle oscillations
along the orbits above than ISCO and applications to quasiperiodic oscillations (QPOs) where we
obtain constrain values for the quintessential parameter and black hole mass charge parameters using
observational QPO data from microquasars.

Keywords: black holes; nonlinear electrodynamics; quintessential field; quasiperiodic oscillations

1. Introduction

In astrophysics, QPOs have been identified in the X-ray emissions of neutron stars
and black holes, providing insights into the extreme gravitational environments near these
objects. These quasiperiodic fluctuations in luminosity suggest the presence of underlying
physical processes, such as oscillations of accretion disks or gravitational interactions,
which could serve as probes to study the fundamental nature of spacetime.

The presence of QPOs in accretion disks around black holes suggests the existence of
resonant oscillations that could be linked to the innermost stable circular orbits, shedding
light on the strong gravity regime and testing Einstein’s theory of general relativity. Neutron
star QPOs, on the other hand, provide a platform to study the behavior of ultra-dense
matter and the nuclear matter properties under extreme density and gravity conditions.
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The interpretation of QPOs involves interdisciplinary collaboration, integrating theo-
retical models with observational data. Spectral-timing analysis and numerical simulations
are employed to decipher the intricate interplay between accretion flows, magnetic fields,
and gravitational interactions.

Furthermore, the observation of twin-peak QPOs in some systems has sparked debates
about their origins and potential connections to oscillatory modes within the accretion disk.
These findings underscore the need for advanced theoretical frameworks and more precise
observational data. After the first detection of QPO in the analyses of the spectrum and
the flux from X-ray binaries [1] have been studied in numerous works together with the
theoretical investigations of QPO and their nature. The most promising model of QPO is
related to particle dynamics and corresponding oscillations of their trajectories. From this
point of view, QPOs resulting in the collective motion of test charged particles containing
accretion disk have been investigated in [2–16].

Regular black holes, an intriguing concept in astrophysics, challenge the traditional
notion of singularities at the center of astrophysical black holes. Unlike classical black
holes that exhibit infinite curvature and density at their centers, regular black holes are
proposed to possess a core where the spacetime curvature remains finite [17–23]. This
idea has potential implications for resolving the information paradox and harmonizing
quantum mechanics with general relativity [24–26].

Regular black holes are posited to be formed via mechanisms that prevent the complete
collapse of matter, avoiding the formation of singularities. Various theoretical frameworks,
such as modifications to Einstein’s equations or the introduction of exotic forms of matter,
have been proposed to describe these objects. One of the regularizations of black holes has
been proposed within the Kiselev model [27].

Our aim of this work is to investigate test particle dynamics around regular Kiselev
black holes and corresponding applications to describe QPOs. The paper is organized as
follows: In Section 2 we review the generic regular black hole surrounded by a quintessen-
tial field. The Section 3 is devoted to studying the test particle dynamics around regular
Kiselev black hole. We study the fundamental frequencies in spacetime around the regular
Kiselev black hole in Section 4. In Section 5 we discuss the QPO models and possible
applications to observed sources. We conclude our results in Section 7.

In this work, we use the geometrical system of units G = c = 1 and run the Greek
indices from 0 to 3, and Latin indices from 1 to 3.

2. Generic Regular Black Holes in Quintessential Fields

The generic case of the regular back solution is obtained in Ref. [23], in general,
relativity coupling to nonlinear electrodynamics with the following Lagrangian:

L(F) =
4µ

α

(αF)
ν+3

4[
1 + (αF)

ν
4
]1+ µ

ν

(1)

where dimensionless constants µ and ν are degree of nonlinearity, and can be µ > 3 & ν > 0,
α dimension of length squared, and F = 1

4 FµνFµν, with Fµν = 2O[µ Aν], where Fµν denotes
the Maxwell electromagnetic field tensor.

However, we assume the generalized action for this theory as:

S =
1

16π

∫
d4x
√
−g(R−L(F) + Lm), (2)

where g is a determinant of the metric tensor, R is the Ricci scalar curvature, and Lm is
Lagrangian for an anisotropic matter field.



Galaxies 2023, 11, 113 3 of 13

Here we consider the field as a quintessential field. The components of the non-
vanishing stress-energy tensor of the field derived by Kiselev [27].

Tt
t = Tr

r = ρq,

Tθ
θ = Tφ

φ = −1
2

ρq(1 + 3ωq), (3)

where ωq is the state parameter of the corresponding equation of state of the quintessential
field pq = ωqρq, and take values −1 < ωq < −1/3. When ωq = 0 corresponds to the
Schwarzschild black hole case, ωq = −1/3 to RN BH case and the case ωq = −1 defines
Schwarzschild-(anti)-de Sitter black hole spacetime. ρq is the density which is always
positive and ρq = −3ωq(c/2)/r3(1+ωq) and c > 0 is a normalization factor.

The GR BH spacetime satisfying the weak energy condition can be obtained by cou-
pling Einstein’s gravity to a nonlinear electrodynamic field [23,28]. This model is described
by the metric given by

ds2 = − f (r)dt2 +
1

f (r)
dr2 + r2(dθ2 + sin2 θdφ2), (4)

with

f (r) = 1− 2M
r

(
1 +

qν

rν

)− µ
ν

− C
r3ωq+1 (5)

where M is the total mass of the BH, and q is the magnetic charge of a nonlinear self-
gravitating monopole. When q = C = 0 the solution (5) turns to the Schwarzschild solution,
while at C = 0, it becomes the generic regular black hole solution.

2.1. Horizon Structure

Here, we will analyze the radial profiles of the metric function f (r).
In Figure 1, we analyze the zeros of the metric function (5) as a radial function by varying

the non-linearity parameter ν, the black hole charge q, and the quintessence field parameters C,
and ωq. Observed that when C = 0 an increase of ν causes a decrease (increase) in the radius
of the event (Cauchy) horizon. However, at ωq = −1/2, the radius of the event horizon
increases with increasing ν and C. When, ν changes from 0 to 1, the event horizon shifts out
sufficiently, while in charges from 2 to 3, the horizon shift is very small.

Schw BH
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1
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2

3

Figure 1. Radial profiles of f (r) for different values of the black hole charge, nonlinearity, and
quintessential field parameters. M = 1.
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Now, we will find the separate are in values of the quintessence parameter C and the
black hole charge q which changes the event horizon oppositely, by two: black hole no
black hole regions using the set of equations f (r) = 0 and ∂r f (r) = 0. The black hole region
means that when we choose the values for q and C the metric (5) should have zeros, where
black hole horizons exist. In the black hole region, the metric (5) determines the spacetime
of horizonless objects, such as a naked singularity.

It is clearly observed from Figure 2 that with an increase of ν the maximum value of C
decreases, however, extreme charge q increases, and the black hole region expands.

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

0.00

0.05

0.10

0.15

0.20

q/M

·M

ν=1

ν=2
ν=3

Black hole

No black hole

Figure 2. The relationships between the black hole magnetic charge (q) and the quintessential field
parameter (C) corresponding to a black hole. Black lines for ν = 1, while the red dashed and blue
large-dashed lines for ν = 2, and ν = 3 cases.

2.2. Scalar Invariants

The curvature invariants of a spacetime are quantities that describe its curvature
properties and are useful for understanding the geometry of spacetimes around black holes.
Three well-known scalar curvature invariants are the Ricci scalar, the square of the Ricci
tensor, and the Kretschmann scalar. By analyzing the behavior of the curvature invariants,
we can learn about the geometry of spacetime. For example, the square of the Ricci tensor
is defined as the square of the energy-momentum tensor of a field in the spacetime of
a black hole as R = RµνRµν ≡ 1/(8πG)TµνTµν. The Kretschmann scalar is responsible
for the effective gravitational energy density of the spacetime (

√
K ∼ ρM). Now, we can

calculate the Ricci scalar, the square of the Ricci tensor, and the Kretschmann scalar of
spacetime (5). Due to the large form of their expressions, below, we plot to visualize the
curvature properties of the spacetime and analyze them graphically.

Figure 3 shows the radial dependence of scalar invariants of spacetime (5), such as the
Ricci scalar in the top left panel, the square of the Ricci tensor in the top right panel, and
the Kretchman scalar (square of Riemann tensor) in the bottom panel. One can see from the
figure that an increase in the values of ν and C causes an increase in the Ricci scalar and
square of the Ricci tensor, while the Kretchman scalar decreases.
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Figure 3. Radial profiles of scalar invariants.

3. Test Particles in the Spacetime of the Regular-Kiselev Black Holes

In the present section, we consider the effects of NED and quintessential fields on
particle dynamics around spherically symmetric black holes.
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3.1. Deriving Equations of Electrically Particles Motion

The equations of motion for massive electrically neutral particles govern using time-
like geodesics of the spacetime (5).

Taking into account integrals of motion, such as the particle’s specific energy E = E/m
and its angular momentum L = L/m, one may derive the equations in the form,

ṙ2 = E2 + gtt

(
1 +
K
r2

)
, (6)

θ̇ =
1

g2
θθ

(
K− l2

sin2 θ

)
, (7)

φ̇ =
l

gφφ
, (8)

ṫ = − E
gtt

, (9)

where K is the Carter constant which corresponds to the particle’s angular momentum.
Furthermore, one may restrict the dynamics of the particles to some constant plane as

θ = θ0 = const and that implies the momentum along θ is zero (θ̇ = 0). Consequently, the
Carter constant takes K = L2/ sin2 θ0. Thus, the equation of motion in the constant plane
takes in the following form

ṙ2 = E2 −Veff(r) , (10)

where Veff(r) is the effective potential corresponding to circular motion which has with
the form,

Veff(r) = f (r)
(

1 +
L2

r2 sin2 θ0

)
. (11)

In order to observe the effects of the charge (q) sourced by the NED field and the
quintessential field on the effective potential at the equatorial plane, we analyze it graphi-
cally for different values of the quintessential field and nonlinearity parameters in Figure 4.

2 5 10

0.8

1.0

1.2

1.4

1.6

r

Veff

ℒ2=20; μ=3; ωq=-
1

2

Schw BH

q=0.2; ν=1; C=0

q=0.2; ν=1; C=0.01

q=0.2; ν=2; C=0.01

q=0.2; ν=3; C=0.01

2 5 10
0.4

0.6

0.8

1.0

1.2

1.4

1.6

r

Veff

ℒ2=20; μ=3; ωq=-
2

3

Figure 4. The effective potential as a function of the radial coordinate for different q, ν, C and ωq

parameters. M = 1.

It is observed from Figure 4 that the presence of NED charge causes an increase
in the maximum of the effective potential and the orbit where the effective potential
takes maximum shifts towards the black hole. While the maximum decrease is due to
the presence of the quintessential field. Also, the effective potential at larger distances
decreases at smaller values of the ωq parameter.

3.2. Circular Orbits

The circularity of the orbits of test particles orbiting a central black hole is described
by the following conditions.

Veff = E , V′eff = 0 . (12)
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In circular orbits, no radial motion means that radial forces compensate each other at
the corresponding values of angular momentum of the particles. Expressions of the particle
energy and its angular momentum along circular orbits in the equatorial plane using the
conditions (12) in the form

L2 =
r3
(

2Mr(2qν − rν) + C(qν + rν)
ν+3

ν

)
6Mrν+2 + (Cr− 2)(qν + rν)

ν+3
ν

, (13)

E2 = −
2(qν + rν)

ν−3
ν

[
2Mr2 + (Cr− 1)(qν + rν)

3
ν

]2

6Mrν+2 + (Cr− 2)(qν + rν)
ν+3

ν

. (14)

Figure 5 presents radial profiles of specific energy and angular momentum of the
particles for fixed values of the parameters µ = 3, C = 0.25 and ωq = −1/3 and different
values of the parameter ν. Moreover, to show the effects of the quintessential medium and
the feature of the nonlinear electrodynamics, in the figures, we have also provided the plots
for the energy and angular momentum of test particles around RN BH. It is shown that
the existence of the quintessential medium with the parameter ωq = −1/3 decreases the
asymptotics of the energy values. Vice versa, an increase in ν also causes to increase in it.
However, the effect of the NED field is more sensitive to the angular momentum compared
to the energy and causes an increase over that of the RN BH case.

� � �� ��
����

����

����

����

����

����
����

�/�

ℰ

=����
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ν=3

RN BH

� � �� ��

�

�

�

��

�/�

ℒ

�

=����

ν=1

ν=2

ν=3

RN BH

Figure 5. Specific energy and angular momentum of test particles corresponding to circular orbits
around regular generic BH in the quintessential field. In this graph, we have fixed values for the
parameters µ = 3, C = 0.25, and ωq = −1/3 as shown in this graph, by varying the parameter
ν = 1, 2, 3 with the comparison of the results obtained in RN BH.

3.3. ISCO Studies

The ISCO is an important concept in the study of black holes and accretion disks
around them, and it is a region of spacetime where the gravitational field of the black hole
is extremely strong and also where the physics of accretion disks is most complex. The
material in the accretion disk will eventually spiral inwards and cross the ISCO. Once parti-
cles cross the ISCO, they will inevitably fall into the central black hole. In fact, the circular
orbits can be stable when the effective potential satisfies the condition ∂rrVeff(rISCO) > 0,
while ISCO satisfies ∂rrVeff(rISCO) = 0, mostly, together with the conditions (12). One may
get the following equation using the ISCO conditions,

2C(3− Cr)(qν + rν)
6
ν +2 + 24M2rν+3((ν− 2)qν + rν)− 4Mr(qν + rν)

2
ν

×
[
q2ν(3Cr− 8) + qνrν(3ν− 3Cνr + 2) + (6Cr + 1)r2ν

]
= 0 . (15)

Equation (15) is impossible to solve concerning r, thus we obtain contour plots of the
equation for different NED fields and quintessential field parameters.

In Figure 6, the dependence of ISCO of a neutral particle orbiting regular generic BH in
the quintessential field on the fixed values of parameters µ = 3, C = 0.01 and ωq = −2/3
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and different values of ν parameter. The value of ν increases (decreases), and the minimum
value of the radius of ISCO also increases (decreases).

RN BH

ν=1

ν=2

ν=3

��� ��� ��� ��� ��� ���
���

���

���

���

���

���

���

�/�

�

�

=�����

Figure 6. The ISCO radius as a function of the charge for the different values of the parameter ν.

We have obtained that the ISCO radius decreases faster as ν = 1 compared with
ν = 2, 3 cases as well as the case of magnetically Reissner-Nordström black hole case. That
means in the ν = 1 case, the gravitational effect of the charge q is much stronger than in the
other cases.

4. Fundamental Frequencies

Here we consider the fundamental frequencies in oscillations of test particles orbiting
a regular black hole in the quintessential field. In particular, the orbital frequencies of the
particles in their Keplerian orbits and the radial and vertical oscillation frequencies along
the orbits are higher than ISCOs, and we apply them to QPO analyses.

4.1. Keplerian Frequency

The angular velocity of the particles in circular orbits ΩK = φ̇/ṫ around regular-Kiselev
black holes take th form,

Ω2
K =

M(rν − 2qν)

(qν + rν)
ν+3

ν

− C
2r

.

Furthermore, we express all the frequencies in the unit of Hz, multiplying by
c/(2πGM)Ω. We take the speed of light as c = 3 × 108 m/sec, and the gravitational
Newtonian constant as G = 6.67× 10−11 m3/(kg2 × sec).

4.2. The Radial and Vertical Oscillation Frequencies

The test particles orbiting a black hole along stable circular orbits may oscillate in the
directions of the radial and vertical axes, due to small displacement r0 + δr and π/2 + δθ.
Harmonic oscillator equations The frequencies of radial and vertical oscillations can be
evaluated by the following [29]:

d2δr
dt2 + Ω2

r δr = 0 ,
d2δθ

dt2 + Ω2
θδθ = 0 , (16)

where

Ω2
r = − 1

2grr(ut)2 ∂2
r Veff(r, θ)

∣∣∣
θ=π/2

, (17)

Ω2
θ = − 1

2gθθ(ut)2 ∂2
θVeff(r, θ)

∣∣∣
θ=π/2

, (18)

are the frequencies of radial and vertical oscillations, respectively.
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5. QPO Models

In this section, we theoretically apply the fundamental frequencies to obtain high-
frequency upper and lower frequencies (νU and νL) in twin QPOs. Several QPO models
explain the QPO frequencies as combinations of Keplerian, radial, and vertical frequencies
of test particles, i.e., the peak frequencies are described in terms of frequencies of radial
and vertical oscillations and Keplerian frequency. For example, according to the RP model,
νU is interpreted as orbital frequency (νU = νφ) while the lower frequency is the difference
between Keplerian and radial frequencies in stable orbits νL = νφ − νr. Now, we analyze
relationships between νU and νL to QPOs generated around regular black holes surrounded
by quintessential fields by test particles.

In Figure 7 we demonstrate the relations between the upper and lower frequencies
of the twin-peaked QPOs generated around the generic regular BH for various values
of the nonlinearity parameter ν, and the quintessential field parameter. Here, the black
hole mass is chosen as 10 M�, the NED field parameter µ = 3. In the top left panel, we
present the effects of the NED charge of the black hole and nonlinearity parameters on
the upper and lower frequencies in the absence of the quintessential field. The frequency
ratio at ν = 1 is observed to be more significant than in the case ν = 2 in the range of
νU < 200 Hz. Furthermore, low-frequency QPOs below 20 Hz disappear in the presence of
a quintessential field with C = 0.001, and the variation of ωq does not give much change in
QPO frequencies.
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Figure 7. The figure shows the νU − νL diagram for twin peak QPOs in the RP model (the top left panel
for C = 0 case, the top right one for C = 0.001 & ωq = − 1

2 and the bottom one for ωq = − 2
3 case).

QPO Orbits

For the first time, R. Sunyaev has suggested that rotating and nonrotating black holes
can be distinguished by signals generated by oscillated particles in orbits close to ISCO,
called QPOs. According to his idea, one may measure ISCOs around black holes by
studying QPO orbits. Our previous papers [my papers] showed that twin-peak QPOs are
generated in stable orbits close to the ISCO in the framework of various gravity theories.
As the frequency ratio tends to 1, the QPO orbit approaches ISCO. In this subsection, we
consider the radius of QPO orbits around regular black holes in the quintessential field in
the RP. One may obtain the dependence of the QPO radius from the black hole charge by
solving the equation with respect to r,

3νL(r; q, ν, µ, C, ωq) = 2νU(r; q, ν, µ, C, ωq), (19)

Now we are interested in how the QPO orbits depend on the black hole, NED, and
quintessential field parameters. Figure 8 shows the dependence of the radius of QPO
orbits for different values of nonlinearity and quintessential field parameters. Our per-
formed analyses have shown that an increase in the black hole charge causes a decrease
in the radius. It decreases faster at ν = 1 case compared to ν = 2, 3 cases which means
the gravitational effect of the black hole charge becomes weaker at higher values of the
nonlinearity parameter ν weak. However, the orbit shifts slightly out due to the presence
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of a quintessential field. Also, an increase of the ωq parameter slightly increases the radius
(see Figure 9).
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Figure 8. Dependence of the radius of the orbits where QPOs occur with the frequency ratio 3:2
from the magnetic charge q for various values of ν and C. Left panel for ωq = − 1
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ωq = − 2

3 . Analyses are done in the RP model.
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Figure 9. The same figure with Figure 8 but for fixed values of C = 0.001. Solid lined for ωq = − 2
3

and dashed ones for ωq = − 1
2 .

6. Constraining Black Hole Mass and Its Magnetic Charge Using QPO Data

The χ2 method is a powerful tool for constraining the parameters of black hole models.
It has been used to constrain the parameters of black holes in gravity theories in a variety
of astrophysical systems, including active galactic nuclei, (low-mass) X-ray binaries, and
gravitational wave sources. Here we obtain the constraints for mass and charge of the
regular black hole in a quintessential field using QPOs data observed in the microquasars
GRS 1915+105 and GRO J1655-40 performing χ2-method analyses [30]

χ2(M, B, r1, r2) =
(ν1φ − ν1U)

2

σ2
1U

+
(ν1per − ν1L)

2

σ2
1L

+
(ν1nod − ν1C)

2

σ2
1C

+
(ν2φ − ν2U)

2

σ2
2U

+
(ν2nod − ν2C)

2

σ2
2C

. (20)

6.1. QPOs from GRO J1655-40

The microquasar GRO J1655-40 is a black hole candidate binary system located in
the constellation Scorpius. It is one of the most well-studied black hole candidates, and
it has been used to constrain the parameters of black holes and to test theories of gravity.
This subsection is devoted to obtaining constraint values of the black hole mass and its
NED charge surrounding a quintessential field using observed QPO frequencies in the
microquasar GRO J1655-40 [11],
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ν1U = 441 Hz, σ1U = 2 Hz,

ν1L = 298 Hz, σ1L = 4 Hz,

ν1C = 17.3 Hz, σ1C = 0.1 Hz , (21)

and

ν2U = 451 Hz, σ2U = 5 Hz,

ν2C = 18.3 Hz, σ2C = 0.1 Hz . (22)

Our χ2-analyses have shown that the error reaches its minimum at r ' 4.60986 M,
q ' −0.9695 M�, M ' 6.60771 M�, and C = 0.00199784/

√
M when ωq = − 2

3 and equals
to χ2

min = 2.35409 × 10−11. While for the case ωq = − 1
2 , χ2

min = 5.99518 × 10−11, at
r ' 4.68708 M, q ' 0.481337 M�, M ' 3.21581 M� and C = 0.297692/M.

6.2. QPOs from GRS 1915+105

The QPOs in GRS 1915+105 have also been used to test theories of gravity. For example,
the frequency of the type-C QPO has been used to constrain the mass and spin of the black
hole in GRS 1915+105. This information has been used to test different models of black
holes, such as the Kerr metric. Here, we get black hole mass and charge constraints by
performing similar analyses done in the above subsection, but for QPO data from the GRS
1915+105 microquasar [31],

ν1U = 184.10 Hz, σ1U = 1.84 Hz,

ν2U = 142.98 Hz, σ2U = 3.48 Hz, (23)

and

ν1L = 67.40 Hz, σ1L = 0.60 Hz,

ν2L = 65.89 Hz, σ2L = 0.52 Hz ,

ν3L = 69.58 Hz, σ3L = 0.49 Hz. (24)

Here, we also perform similar numerical analyses for the cases ωq = − 2
3 and ωq = − 1

2 .
It is obtained that in the case ωq = − 2

3 , the minimum of χ2
min = 3.8563× 10−11 at the values

of the QPO orbit r ' 10.5034 M, the black hole charge q ' 0.518973 M�, quintessential
field parameter C → 0.00357793/

√
M, and the black hole mass M→ 5.02719 M�.

And when ωq = − 1
2 , the minimum is about χ2

min = 4.7845× 10−10, at r ' 13.9982 M,
q ' −1.18079 M�, C ' 0.0237965/M, and M ' 2.97625 M�.

In Figures 10 and 11 we have shown constraint values for the electric charge and mass of
the black hole located at the microquasars GRO J1655-40 and GRS 1915-105, respectively, for
different nonlinearity and quintessential field parameters in the 1σ, 2σ, and 3σ error bars.

6.3. Comparisons of the Black Hole Mass Constraints with Other Independent Findings

Here, in order to compare our results, we provide black hole mass constraints in the
above-mentioned microquasars obtained using independent observations such as the X-ray
timing techniques; their estimations on the mass of the central black hole in the microquasar
GRO J1655-40 has mass M/M� = 5.31± 0.07 [32].

The constraints on the black hole mass using QPOs data considering the central black
hole as a rotating Kerr black hole in the RP model have been obtained as M/M� = 5.3± 0.1
in Ref. [33].

Constraints of the black hole mass in the microquasar GRS 1915+105 obtained using
the infrared spectroscopy technique as M/M� = 12 ± 1.4 [34], using QPOs data and
considering the black hole as a Kerr black hole as M/M� = 13.1± 0.2 [35].

In fact, constraints on black hole parameters using astrophysical observations strongly
depend on the type of observation data, its accuracy, and the gravity model of the black
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hole spacetime, as well as the theoretical model of the study. Therefore, obtained constraint
values may differ from each other for different black holes in different observational data.
Unfortunately, it is quite hard to know which one is more trustworthy. It is seen from the
above-mentioned constraints from independent measurement that our results differ from
them. In our theoretical model, the test particles feel combined gravitational effects of the
black hole mass, NED field, and quintessential field on the spacetime around black holes.
Consequently, our obtained results show not only constraints on the black hole mass and
charge but also the value of the quintessential parameter for the models of the equation of
state of the quintessential field ωq = −1/2 and ωq = −2/3.
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Figure 10. Constraints on the mass and charge of the black hole located at the center of the micro-
quasar GRO J1655-40 in the presence of quintessential and NED fields.
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Figure 11. Similar plots Figure 10, but for GRS 1915-105.

7. Conclusions

In fact, testing gravity theories combined with different including massive and mass-
less scalar and linear/nonlinear electrodynamics fields using observational data from black
holes and neutron stars is the most important and actual issue in modern relativistic astro-
physics. In this paper, we have obtained a new spherically symmetric black hole solution
in general relativity coupling to nonlinear electrodynamics (NED) and quintessential fields.
Also, we have analyzed the possible values for the quintessential field parameter and NED
charge of the black hole for various values of the nonlinearity parameter ν in the ωq = − 2

3
case. Event horizon properties and scalar invariants of the black hole spacetime are stud-
ied. We have investigated the motion of test particles around the regular Kiselev black
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holes in the equatorial plane and studied the combined effects of the quintessential field
and the NED charge of the black hole on the angular momentum and energy of particles
corresponding to circular orbits together with their ISCOs. Moreover, we calculated the
oscillation frequencies of the particles along stable circular orbits in radial and vertical
directions together with the Keplerian frequency. Then, we applied the frequencies to study
QPOs in the RP model. It is shown that low-frequency QPOs below 20 Hz disappear in
the presence of quintessential field with C = 0.001, and the variation of ωq does not give
much change in QPO frequencies. Also, we have obtained the dependence of the radius of
orbits where the QPOs with the frequency ratio is 3:2, on the black hole charge for different
nonlinearity and quintessential field parameters. Our performed analyses have shown that
an increase in the black hole charge causes a decrease in the radius. It decreases faster at
ν = 1 case compared to ν = 2, 3 cases which means the gravitational effect of the black hole
charge becomes weaker at higher values of the nonlinearity parameter ν weak. However,
the orbit shifts slightly out due to the presence of a quintessential field. Also, an increase of
the ωq parameter slightly increases the radius.

Finally, we have obtained constrain values for the quintessential parameter together
with the black hole mass and its charge using observational data from QPOs observed
in the microquasars GRO J1655-40 and GRS 1915+105 performing χ2-method analyses
and compared the obtained results with the mass constraints obtained in the independent
astronomical observations.
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