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Abstract: This paper is devoted to the analysis of the dynamics of test particles in the vicinity of a
black hole within the framework of a gravitational aether model. First, we explored the structure of
spacetime by analyzing the curvature scalars. Then, we studied particle dynamics around a black
hole using the Hamilton–Jacobi equation.The influence of the aether on the effective potential of
the radial motion of test particles around the black hole has been investigated. The dependence
of the innermost stable circular orbits (ISCO) on the aether parameter has also been investigated.
We also considered particle collision near the black hole in the presence of aether, and studied the
fundamental frequencies of the orbital motion of the test particles around the black hole in the
presence of aether. Further, we applied the obtained results to the analysis of the upper and lower
frequencies of twin-peaked quasiperiodic oscillations (QPOs) occurring near black holes. Finally, we
use theoretical and numerical results to obtain constraints on model parameters using observation
data in QPO.

Keywords: black holes; gravitational aether fields; test particles; particle collisions

PACS: 04.50.-h; 04.40.Dg; 97.60.Gb

1. Introduction

The 21st century provided new discoveries in astrophysics, including the discovery
of an accelerated expansion of the Universe. Within the standard theory of gravity, these
phenomena can be modeled, including the cosmological constant to the corresponding
solution of Einstein’s equation. Modern observations show that the dark energy responsible
for the expansion and modeled by the cosmological constant constitutes 75% of the total
mass of the Universe. However, models based on the cosmological constant have some
fundamental problems. Particularly, in order to fit the observations, one should require an
extreme fine-tuning of more than 60 orders of magnitude. Another open question is related
to the value of the cosmological constant: why is its value minimal and not equal to zero?

In order to resolve the above-mentioned fundamental problems of the cosmological
model based on the cosmological constant, several alternative models have been proposed.
Authors of Ref. [1] proposed a gravity model applicable to cosmology. Cosmology based
on the braneworld model was proposed in Ref. [2]. It is important to note that the majority
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of alternative approaches aimed at resolving the cosmological constant problem involve
modifications to Einstein’s theory of gravity. These modifications often involve the inclusion
of higher-order curvature terms in the geometric aspect of Einstein’s equations.

In [3], a novel approach to modified gravity is proposed, introducing the concept of
gravitational aether. The gravitational aether serves as a component to disentangle the
vacuum of quantum field theory from gravity. According to this model, the right-hand side
of the Einstein field equation (Equation (1)) is modified as follows:

(8πG′)−1Gµν = Tµν −
1
4

Tα
α gµν + p(uµuν + gµν), (1)

and

dφ

dr
=

M + 4πr3 p
r(r− 2M)

, (2)

dp
dr

=
−p(M + 4πr3 p)

r(r− 2M)
, (3)

Additionally, the Tolman–Oppenheimer–Volkoff equations are employed, represented
by Equations (2) and (3), where p and φ denote the pressure and scalar potential of the field,
respectively. These equations provide essential insights into the dynamics of the system
under consideration.

The authors of [4] focused on the study of static black hole solutions within the gravita-
tional aether framework. They argued that the aether couples the spacetime metric near the
black hole horizon with the metric at infinity. By establishing this connection, they demon-
strated the possibility of an accelerating cosmological solution far away from the black
hole horizon. This intriguing relationship between the formation of stellar black holes and
the expansion acceleration of the Universe holds the potential to address the coincidence
problem by considering Planck-suppressed corrections within black hole physics.

When examining and testing gravity models and theories, it is crucial to establish
an observational or experimental foundation. Analyzing the dynamics of test particles in
the vicinity of a compact gravitating object described by the corresponding theory offers a
valuable approach for developing new tests of gravity models [5,6].

Moreover, the utilization of X-ray observation data from astrophysical objects provides
an avenue for constraining the physical parameters of the theory [7–10]. Additionally,
the presence of the gravitational field affects the structure of the electromagnetic field,
consequently influencing the behavior of charged particles [11–19]. Furthermore, the
motion of magnetically charged particles and particles possessing nonzero magnetic dipole
moments can provide valuable insight into the nature of the gravitational field surrounding
compact objects [20–25].

Another interesting astrophysical phenomenon that can be used as a test of gravity
models is quasiperiodic oscillations (QPOs). QPOs correspond to (several) peaks observed
in radio- to X-ray bands of the electromagnetic spectrum. Special cases of QPOs, called
twin peaked QPOs in microquasars, can be observed through the matter accreting into
compact objects [26–30].

Numerous models have been proposed to explain the underlying mechanisms respon-
sible for the generation of QPOs. Among these models, those based on the dynamics of test
particles have shown significant promise. In particular, the harmonic oscillations exhibited
by particles along radial, vertical, and azimuthal directions contribute to the observable
QPO signals. By analyzing such models, investigations concerning the inner edge of the
accretion disk around a compact object can be conducted [31,32]. The influence of gravity
theories on QPO generation has been extensively explored in the literature [33–38].

This manuscript is structured as follows: Section 2 provides a brief description of
the gravitational aether black hole solution, and Section 3 delves into the study of scalar
invariants within the black hole spacetime. The dynamics of test particles around the black
hole aether are investigated in Section 4, focusing on the influence of the aether field pres-
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sure on particle energy, angular momentum, circular orbits, the innermost stable circular
orbits (ISCOs), and energy efficiency of the Novikov–Thorne accretion disk. Additionally,
we demonstrate how the aether field parameter mimics the spin of rotating Kerr black
holes, yielding equivalent energy efficiencies. Section 9 explores test particle collisions
and calculates the center-of-mass energy. The analysis of fundamental frequencies and
their application to QPOs is presented in Section 7. Finally, we provide a summary of the
results obtained.

In this study, we utilize a unit system where the speed of light c, and the gravitational
constant G are set to unity, and we use a spacetime signature of (−, +, +, +). The coordinates
are chosen to be spherical (t, r, θ, ϕ), and Greek indices range from 0 to 3. We follow the
customary practice of summing over repeated indices in calculations.

2. Black Holes in the Gravitational Aether Theory

The static and spherical symmetric spacetime metric of the black hole with the total
mass M in the gravitational aether model with the energy–momentum tensor given in (1)
has the following form [4]

ds2 = −e2φ(r)dt2 +

(
1− 2M

r

)−1
dr2 + r2dΩ2 (4)

where dΩ2 = dθ2 + sin2 θdϕ2, from the TOV equations given in (2) and (3) one can eas-
ily obtain:

dφ

dp
= − 1

p
, (5)

and the solution of this equation is p = p0e−φ(r), where p0 is the integration (aether
pressure) constant. In general relativity, the pressure of gravitational fields is not inherently
negative. The curvature of spacetime is influenced by the distribution of matter and
energy. The properties of the gravitational field, such as pressure and energy density, are
determined by the stress–energy tensor, which describes the matter and energy content of
the system. In typical situations, the pressure associated with gravitational fields can be
positive, negative, or even zero, depending on the distribution and nature of the matter
and energy sources involved. For example, in the case of ordinary matter, the pressure
is typically positive. However, there are certain exotic forms of matter or energy, such
as dark energy or certain hypothetical fields, where the pressure may be negative. If the
aether exists in nature, it must be a shear-free tensile material with a constant tension
equal to its energy density. However, no known material of this nature currently exists.
Nevertheless, it is still worth considering the theoretical possibility. Einstein’s introduction
of a positive cosmological constant in their gravitational field equations, dating back to 1915,
is equivalent to assuming that the Universe is filled with an ideal fluid exhibiting negative
pressure equal to its constant energy density. This form of “dark energy” can also be
conceived as a tensile material with a tension of Λ that adheres to local Lorentz invariance.
Consequently, dark energy can be considered to be a type of aether. Therefore, this negative
pressure can lead to phenomena such as the accelerated expansion of the Universe.

Equation (5) corresponds to the condition of hydrostatic equilibrium governing the
aether field. This condition remains applicable regardless of assuming spherical symmetry,
being valid for any static spacetime.

If one integrates Equation (6) by using Equation (5)

dφ

dr
=

M + 4πr3 p0e−φ(r)

r(r− 2M)
, (6)

The equation at hand can be solved by recognizing it as a first-order inhomogeneous
linear differential equation in eφ(r), and the solution is given in [4] as:
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eφ(r) =

√
1− 2M

r
(1 + 4πp0 f (r)), (7)

with

f (r) =
r2

2

(
1− 2M

r

)− 1
2
(

1 +
5M

r
− 30M2

r2

)
+

15
2

M2 ln

[
r
M

(
1 +

√
1− 2M

r

)
− 1

]
(8)

From the metric (4), we can see that the horizon of this spacetime is located at rh = 2M,
and it is solely dependent on the mass of the black hole without any dependence on other
parameters of the spacetime.

3. Scalar Invariants

The expression of the scalar invariants such as the Ricci scalar, the square of Ricci
tensor, and Kretschmann scalars for the spacetime given in Equation (4) are calculated in
the next subsections.

3.1. Ricci Scalar

The Ricci scalar, also known as the scalar curvature, is a fundamental curvature
invariant in curved spacetime. It is defined as R = gµνRµν, where Rµν represents the
Ricci tensor. Positive and negative values of the Ricci scalar correspond to a sunken and
convex curvature of spacetime, respectively. By performing straightforward mathematical
calculations, one can readily obtain the expression for the Ricci scalar.

R = gµνRµν = − 8πp0

r(4πp0 f (r) + 1)

{(
2− M

r

)
f ′(r)− r

(
1− 2M

r

)
f ′′(r)

}
. (9)

3.2. Square of Ricci Tensor

Let us consider the second scalar invariant known as the square of the Ricci tensor.
This invariant is associated with the square of the energy–momentum tensor of a field in
the spacetime of a black hole (BH). It is defined asR = RµνRµν ≡ 1/(8πG)TµνTµν for the
spacetime around the aether black holes (4). The expression for the square of the Ricci
tensor is given by:

RµνRµν =
32π2 p2

0

(1 + 4πp0 f (r))2

{(
1− 2M

r

)2
f ′′(r)2 +

3
r2 f ′(r)2

×
(

1− 2M
r

+
3M2

r2

)
+

2
r

(
1 +

M
r

)(
1− 2M

r

)
f ′(r) f ′′(r)

}
(10)

3.3. Kretschmann Scalar

Next, we turn our attention to the Kretschmann scalar, denoted as K = RµνσρRµνσρ.
The square root of the Kretschmann scalar is often associated with an effective gravita-
tional energy density, represented as

√
K ∼ ρM. We can straightforwardly compute the

Kretschmann scalar for the spacetime metric (4) as follows:
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K = RµναβRµναβ =
16

r6(4πp0 f (r) + 1)2

{
3M2 + 4πp0r

[
πp0r5

(
1− 2M

r

)2
f ′′(r)2

+πp0r3
(

2− 8M
r

+
17M2

r2

)
f ′(r)2 + Mr

(
1− 5M

r

)
f ′(r)−Mr2

(
1− 2M

r

)
f ′′(r) (11)

(
1− 6πp0r f ′(r)

)
+ M f (r)

[
4πp0r

{(
1− 5M

r

)
f ′(r)− r

(
1− 2M

r

)
f ′′(r)

}
+

6M
r

]
+48πM2 p0 f (r)2

]}

Figure 1 presents the radial variations of scalar invariants in the spacetime (4), in-
cluding the Ricci scalar (top left panel), the square of Ricci tensor (top right panel), and
the Kretschmann scalar (bottom panel) for various values of the pressure parameter p0.
The figure illustrates that the scalar invariants exhibit a decreasing trend along the radial
coordinates. Additionally, as the absolute value of p0 increases, the scalar invariants also
experience an increase.
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Figure 1. Radial dependence of Ricci scalar (top left panel), the square of Ricci tensor (top right
panel), and Kretschmann scalar (bottom panel) for different values of the pressure parameter p0.

4. Motion of a Test Particle in the Vicinity of the Aether BH

In this section, we explore the circular orbit of test particles with mass m around a black
hole in the context of gravitational aether by employing the Hamilton–Jacobi equation.

gµν ∂S
∂xµ

∂S
∂xν

= −m2, (12)

We derive the equation of motion using a separable form of the action S as,

S = −Et + Lϕ + Sr + Sθ , (13)

where E and L are energy and the angular momentum of the test particle, acting as the
conserved quantities of the motion.
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After inserting it into Equation (12) and separating the variables in the equation, we
arrive at the radial motion equation in the equatorial plane θ = π/2 as follows:

(1 + 4πp0 f (r))2
(

dr
dτ

)2
= E2 −Veff (14)

Here, τ represents the proper time along the particle’s trajectory, and the effective
potential for radial motion is given by:

Veff(r,L, p0) =
(

1 + 4πp0 f (r)
)2
(

1− 2M
r

)(
1 +
L2

r2

)
(15)

In the above expressions, we have replaced E/m with E and L/m with L. Notably, the
effective potential depends not only on the energy, angular momentum, and the radius of
motion but also on the aether pressure p0.

In Figure 2, the radial dependence of the effective potential of the radial motion of
the test particle around gravitational aether BH (for different values of the aether pressure
p0) is observed graphically. For comparison, we have also plotted the Schwarzschild
dependence, corresponding to p0 = 0. We can see that the effective potential in the presence
of gravitational aether exhibits higher values compared to the case of Schwarzschild,
represented by the dashed red line. It is also observed that the aether field effects on the
effective potential are significant at large distances from the central BH. One can easily see
that the orbits of the particles become more stable with increasing modules of p0.

Schw. BH

M2p0=-1.5×10
-5

M2p0=-3×10
-5

2 5 10 20
0.80

0.85

0.90

0.95

1.00

r/M

Veff

Figure 2. Radial dependence of the effective potential of the radial motion of the test particles around
a BH in the gravitational aether theory for different values of the pressure p0. Here, we chose the
angular momentum of the particle as L = 4.3M.

The specific angular momentum of test particles along the circular motion can be
obtained by solving the equation ∂rVe f f (r) = 0, given as:

L2 =
r2(4πp0r(r− 2M) f ′(r) + M[1 + 4πp0 f (r)])

(r− 3M)[1 + 4πp0 f (r)]− 4πp0r(r− 2M) f ′(r)
(16)

and the energy

E2 =
(r− 2M)2[1 + 4πp0 f (r)]3

r[(r− 3M)[1 + 4πp0 f (r)]− 4πp0r(r− 2M) f ′(r)]
(17)

Figure 3 illustrates the radial dependencies of the specific energy and angular mo-
mentum for particles in circular orbits around a black hole in the gravitational aether,
considering various values of p0, along with a comparison of the Schwarzschild limit
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(p0 = 0). From the plot, it is evident that both the energy and the angular momentum
decrease as the absolute value of p0 increases.

4 6 8 10 12

0.94

0.96

0.98

1.00

r/M

ℰ

Schw. BH

M2p0=1.5·10
-5

M2p0=3.0·10
-5

4 6 8 10 12

3.4

3.6

3.8

4.0

4.2

r/M

ℒ

M

Schw. BH

M2p0=1.5·10
-5

M2p0=3.0·10
-5

Figure 3. Radial dependence of energy and angular momentum of the particle in the circular orbits
around a black hole in gravitational aether for the different values of the p0. For comparison, we have
also plotted the Schwarzschild BH case, corresponding to p0 = 0.

In Figure 4, the energy E and angular momentum L of the test particle moving
radially around the BH have been studied graphically. Note that the particle orbiting in the
Schwarzschild geometry has higher values of energy and angular momentum compared
to the case when the aether parameter p0 6= 0 is present. It is observed that as the value
of p0 increases, the energy and angular momentum decrease, and this behavior is more
prominent as the particle moves away from the central object.

0.935 0.940 0.945 0.950 0.955 0.960 0.965

3.4

3.5

3.6

3.7

3.8

3.9

4.0

ℰ

ℒ

M

Schw. BH

M2p0=1.5·10
-5

M2p0=3.0·10
-5

Figure 4. Relationships between angular momentum and energy of test particles corresponding to
circular orbits around gravitational aether black hole for different values of p0.

2p
{
(r)
(

pr(r− 2M)
(
r(2M− r) f ′′(r) + (10M− 3r) f ′(r)

)
+ 4M(6M− r)

)
+r(r− 2M)

(
f ′(r)

(
2pr(r− 2M) f ′(r) + 10M− 3r

)
− r(r− 2M) f ′′(r)

)
(18)

+2Mp f (r)2(6M− r)
}
+ 4M(6M− r) = 0

Because Equation (18) has a complex form that cannot be solved analytically to obtain
the ISCO radius, we performed graphical analyses of the ISCO radius in Figure 5.
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-0.0004 -0.0003 -0.0002 -0.0001 0.0000

6

8

10

12

14

16

4πM2p0

r

M

Figure 5. Dependence of the radius of the ISCOs (rISCO in solid blue line) and OSCOs (rOSCO in red
dashed line) on p0.

In Figure 5, we have shown the radius of ISCO as a function of p0. It is shown that an
increase in p0 causes a decrease in the ISCO radius and, at the Schwarzschild limit p0 = 0,
the ISCO radius equals 6M (as expected). Furthermore, upon solving Equation (18), two
real solutions for r are obtained for each value of negative p0, one of which is greater than
the other corresponding ISCO (solid blue) and outermost circular stable orbits (OSCO) (red
dashed), respectively. Since the smaller solution corresponds to the ISCO, we consider the
smaller solution. As p0 approaches the critical value πM2 p0 ' −10−4, Equation (18) yields
a single solution for the radius, indicating that this is the smallest value of p0 where ISCO
and OSCO coincide each other. For values of p0 smaller than this critical value, there are no
real solutions for the radius, implying the absence of an ISCO.

In fact, a way of determining the types of black hole in astrophysical observations is to
measure their ISCO radius, the inner radius of accreting matter around the black hole. In
this sense, the effects of the aether field parameter and negative spin parameter of rotating
Kerr black holes are similar: the presence of both parameters causes increasing the ISCO
radius showing degeneracy effects. Here, we find degeneracy values of the spin of the Kerr
black hole and the aether parameters using the numerical solution of Equation (18).

Figure 6 shows relationships between the values of spin of rotating Kerr black holes
and the pressure parameter of gravitational aether, which provide the same ISCO radius.
Moreover, our performed analysis reveals that as the parameter p0 becomes available, to
preserve the same ISCO radius, the Kerr parameter must be about 0.4M and an increase in
the absolute value of the pressure p0 leads to a decrease in the Kerr spin parameter.

-0.0004 -0.0003 -0.0002 -0.0001 0.0000
0.0

0.1

0.2

0.3

0.4

4πp0

a

M

Figure 6. The degeneracy graphs between the spin |a| and the aether pressure p0 providing the same
ISCO radius for the different values of p0.
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5. The Efficiency of Energy Extraction

The accretion process around a black hole involves particles moving in Keplerian
orbits, and the Novikov–Thorne model is often employed to describe the geometrically
thin accretion disk. According to this model, the efficiency of energy extraction from the
accretion disk can be calculated as the difference between the energy of matter falling into
the black hole from the disk at the ISCO and its rest mass energy. This extracted energy is
assumed to be converted into electromagnetic radiation, contributing to the total bolometric
luminosity of the accretion disk. The energy efficiency, denoted as η, can be expressed as
the ratio of the bolometric luminosity (Lbol) to the rest mass energy accretion rate (Ṁc2)
from the disk [39]. In this context, the efficiency of the accretion process is evaluated.

η = 1− EISCO, (19)

where EISCO is the energy of the particle at ISCO, r = rISCO, and it is calculated using the
energy of the particles given by Equation (17) at ISCO.

The influence of the aether parameter p0 on the efficiency of test particle accretion
around black holes in aether gravity is depicted in Figure 7. It is evident from the graph
that the efficiency increases almost linearly as the absolute value of the aether parameter
rises, reaching a peak of approximately η ≈ 14.2% within the range of the parameter
p0 = (−pcr, 0). However, in fact, the aether parameter can mimic the spin of rotating
Kerr black holes providing the same efficiency in measurements of the total bolometric
luminosity of a black hole accretion disk. Now, we show how the aether field mimics the
spin parameter in terms of the same luminosity.

-������ -������ -������ -������ ������

����

����

����

����

����

����

����

����

�π��

η�[%]

Figure 7. Dependence of energy efficiency from the aether pressure p0 for the different values of p0.
The maximal efficiency is at about critical pressure 4πM2 pcr = −4× 10−4.

In Figure 8, we have shown the efficiency of energy release from particles in corotating
and contour rotating orbits around Kerr black holes. It is observed that in the corotating
case, the efficiency increases exponentially with the spin parameter increase and reaches
up to about 42%. However, in the contour rotating case, the efficiency increases first and
reaches its maximum at about 5.9% up to about a ' 0.2M and then as the spin parameter
increases the efficiency decreases back up to about 5.2%.

The mimicking values between the spin parameter and the aether pressure p0 provide
the same energy efficiency.

Figure 9 illustrates the degeneracy between the spin parameter of a rotating Kerr
black hole a and the pressure parameter of the gravitating aether field p0 in terms of the
same value in the energy efficiency. It can be observed that with an increase in the aether
pressure parameter, the Kerr spin parameter should decrease to maintain a constant energy
efficiency level.
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Figure 8. The efficiency of energy release from corotating and contour rotating test particles around
the Kerr black hole.
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Figure 9. The degeneracy graphs between the spin parameter and the aether pressure p0 that provide
the same energy efficiency.

6. Center of Mass Energy of the Colliding Particles

For the first time, Banados–Silk–West (BSW) proposed a theoretical analysis of the
process of high-energy particle collisions close to the black hole horizon, which might be a
source of energy extraction from the black hole. Subsequent research has been conducted
in various contexts to expand upon this work, and it has been established that head-on
collisions are more successful in extracting energy from the central black hole.

In this section, we analyze the collision of neutral particles in a gravitational aether
black hole spacetime, and the associated radial velocity and critical angular momentum of
these particles, originating from infinity. The center of mass of the colliding particles can be
determined using the following relation.

E2
cm

2m2 = 1− gµνuµ
1 uν

2

= 1− gtt ṫ1 ṫ2 − grr ṙ1ṙ2 − gϕϕ ϕ̇1 ϕ̇2 (20)

The constants of motion can be found from Equation (13) in the following way:

gtt ṫ = −E , gϕϕ ϕ̇ = L (21)

and we can obtain radial velocity from Equation (14):

ṙ2 =
E2

(1 + 4πp0 f (r))2 −
(

1− 2M
r

)(
1 +
L2

r2

)
(22)

Utilizing the above equations, the expression for the center of mass energy of the
colliding particles can be derived as follows:
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E2
cm

2m2 = 1− E1E2

gtt
− L1L2

gϕϕ
− grr

√√√√ E2
1

(1 + 4πp0 f (r))2 −
(

1− 2M
r

)(
1 +
L2

1
r2

)
(23)

×

√√√√ E2
2

(1 + 4πp0 f (r))2 −
(

1− 2M
r

)(
1 +
L2

2
r2

)

The critical angular momentum of the particles is an essential parameter for particles
coming from infinity, as it denotes the limit in the angular momentum of the particles; if
the particle’s angular momentum exceeds the critical value, it cannot approach the central
object. To obtain the critical angular momentum value, conditions ṙ2 = 0 and dṙ2/dr = 0
must be satisfied.

The square of the radial velocity, as seen in Figure 10, becomes negative for certain
values of the angular momentum, indicating that if the angular momentum is greater than
the critical value, the particle cannot come close to the black hole, as the radial velocity
is negative.

2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

1.0

r/M


• 2

ℒ/M = 3.5

ℒcr/M = 4.035

ℒ/M = 4.3

Figure 10. The dependence of the square of the radial velocity to the radial distance in different
values of angular momentum 4πp0 = −0.0003.

Figure 11 shows the dependence of the critical angular momentum on the aether
constant 4πp0. It can be seen that the critical angular momentum is linearly proportional
to the aether pressure constant. For the given values of the aether pressure constant, the
angular momentum ranges between Lcr = 4.0 ∼ 4.05.
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4πp0

ℒcr

M

Figure 11. The dependence of the critical angular momentum to 4πp0.
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Figure 12 shows the radial dependence of the center of mass energy of two colliding
particles with the angular momentum L/M = ±4 and ±2 at left and right panels, respec-
tively. It can be seen that the aether pressure constant does not have a significant effect, but
there is a difference near the horizon.

The right panel of this figure shows the colliding particles with a critical angular
momentum value, as described in the following subsection.

Schw
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-4

4πp0=-3×10
-4
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Figure 12. Radial dependence of the center of mass energy of two colliding particles with angular
momentum L1 = −L2 = 4 (left panel) and L1 = −L2 = 2 (right panel).

7. Fundamental Frequencies

In this section, we calculate the fundamental frequencies of test particles moving in
circular orbits around the black hole with a gravitational aether. This serves as a simplified
model for explaining the presence of QPOs observed around black holes.

7.1. Keplerian Frequency

The angular velocity of the test particle around the gravitational aether black hole, as
measured by a distant observer, commonly referred to as the Keplerian frequency, can be
expressed as follows:

Ω2
K =

M
r3 + p0

r(r− 2M) f ′(r) + 2M f (r)
2r3 , (24)

To obtain the values of the fundamental frequencies in units of Hz, one can multiply the
frequencies by the factor c3/(2πGM). Here, we employ the values for the speed of light in
a vacuum, c = 3× 108 m/s, and the gravitational constant, G = 6.67× 10−11 m3/(kg2 · s).

7.2. Harmonic Oscillations

When a test particle is in a stable circular orbit at the equatorial plane around the black
hole, small perturbations in its radial (r → r0 + δr) and vertical (θ → θ0 + δθ) coordinates
cause oscillations along these axes.

To derive the equations that govern these oscillations, we expand the effective potential
in terms of the coordinates r and θ and use the conditions for the extrema of the effective
potential, namely Veff(r0, θ0) = 0 and ∂r(θ)Veff = 0. This leads to the following expressions:

d2δr
dt2 + Ω2

r δr = 0 ,
d2δθ

dt2 + Ω2
θδθ = 0 , (25)

Here, Ω2
r and Ω2

θ represent the square of the radial and vertical angular frequencies of
the particles around the black hole, respectively, as measured by a distant observer. They
are given by:

Ω2
r = − 1

2grr(ut)2 ∂2
r Veff(r, θ)

∣∣∣
θ=π/2

, (26)
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Ω2
θ = − 1

2gθθ(ut)2 ∂2
θVeff(r, θ)

∣∣∣
θ=π/2

, (27)

After performing some algebraic calculations, we obtain the expressions for the radial
and vertical frequencies as follows:

Ω2
r =

1
4r4

{
2p0

[
f (r)

(
p0r(r− 2M)

(
r(r− 2M) f ′′(r) + (3r− 10M) f ′(r)

)
+ 4M(r− 6M)

)
+ r(r− 2M)

(
r(r− 2M) f ′′(r) + f ′(r)

(
2p0r(2M− r) f ′(r)− 10M + 3r

))
(28)

+ 2Mp0 f (r)2(r− 6M)
]
+ 4M(r− 6M)

}
,

Ωθ = Ωθ = ΩK (29)

Additionally, Figure 13 presents the radial dependence of the Keplerian frequencies of
test particles around gravitational aether black holes.

Keplerian

radial

5 10 20 50
0.00

0.01

0.02

0.03

0.04

0.05

r/M

Ω Aether BH

p0=-10-4 Schw BH

Figure 13. Keplerian frequencies (red large dashed line and brown dot dashed line) and the frequency
of radial oscillations (solid black and blue dashed lines) of test particles around gravitational aether
black holes as a function of radial coordinates.

Figure 13 illustrates the radial dependence of the frequency of particle oscillations
in the radial, vertical, and angular directions. A comparison with the Schwarzschild case
reveals that in the presence of the aether pressure p0, the frequencies slightly decrease
compared to the Schwarzschild scenario. Moreover, it is also observed that the presence of
p0 restricts the range of radial distances where the frequencies occur, with radial oscillation
frequencies limited to approximately r ∈ (6M, 17M) where a closer one corresponds to
ISCO and the other is for OSCO. Similarly, there are angular oscillation frequencies up to
r ≈ 30M.

8. QPOs

Black holes do not emit electromagnetic information about their surface, but they
play a significant role in the radiation processes that occur in the accretion disk. QPOs are
astrophysical phenomena observed in Fourier analyses of the continuous electromagnetic
radiation emitted by the accretion disk surrounding a black hole. The source of electromag-
netic emission in the accretion disk is closely linked to the oscillations of particles. When
a charged particle oscillates, it emits an electromagnetic wave with a frequency equal to
its oscillation frequency. Therefore, the dynamics of charged test particles around black
holes can explain the origin of QPOs through their oscillations in the radial and angular
directions. Various QPO models have been proposed and developed to explain different
sources of QPOs. In this study, we consider the following models:
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• Relativistic Precession (RP) model: Originally introduced in Ref. [29] to explain the
kHz twin-peak QPOs observed in neutron stars of Low-Mass X-ray Binary systems.
Later, the RP model was shown to be applicable to black hole candidates in binary
systems involving black holes and neutron stars [40]. The RP model was further
developed in Ref. [41] to obtain mass and spin measurements of black holes located at
the centers of microquasars, utilizing data from the power–density spectrum of the
accretion disk. In the RP model, the upper and lower frequencies are described by the
frequencies of the fundamental oscillations, νU = νφ and νL = νφ − νr, respectively.

• Epicyclic resonance (ER) model: This model is based on the resonances of modes
of axisymmetric oscillations in the accretion disk of black holes [42]. It has been
demonstrated that the oscillation modes of the disk are related to the frequencies
of harmonic (quasi-) oscillations of circular geodesics of test particles. We consider
two submodels within the ER model: ER2 and ER3, which differ in their oscillation
modes. The upper and lower frequencies in the ER2 and ER3 models are given by
νU = 2νθ − νr and νL = νr, and νU = νθ + νr and νL = νθ − νr, respectively, [42].

• Warped Disc (WD) model: This model utilizes the nonaxisymmetric oscillatory modes
of the accretion disk oscillations around black holes and neutron stars [43,44]. Ac-
cording to the WD model, the upper and lower frequencies are νU = 2νφ − νr and
νL = 2(νφ − νr), respectively, and the vertical oscillations cause the thin accretion disk
to warp [43,44].

We proceed by analyzing the possible values of the upper and lower frequencies of
twin-peaked QPOs generated by the oscillating particles along their stable circular orbits
around a black hole in the gravitational aether field using the aforementioned models and
present the results graphically.

Figure 14 depicts the relationships between the upper and lower frequencies of twin-
peak QPOs corresponding to different models of black holes and QPO sources. In our
numerical calculations, we consider black holes with a mass of 5M�, representing stellar-
mass black holes. The figure reveals several key observations. Firstly, an increase in the
absolute value of the pressure parameter leads to a decrease in the possible values of the
frequency ratio. Additionally, it is notable that QPOs are not observed in the low-frequency
regime. Furthermore, the figure demonstrates that the pressure parameter cannot emulate
the spin of a Kerr black hole, as it fails to provide identical values for the upper and lower
frequencies in twin-peaked QPOs.
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Figure 14. Relations between the frequencies of upper and lower picks of twin-pick QPOs in the RP,
WD, and ER2-4 models around an aether black hole.

9. Constraints on the BH Mass and Aether Parameter

In this section, we aim to obtain constraints on the values of the pressure parameter
of the gravitational field surrounding the Schwarzschild black hole and its mass using
frequencies of the QPOs from the microquasars GRO J1655-40 and GRS 1915+105. Accord-
ing to the relativistic precession model, the frequencies of the periastron precession νper
and the nodal precession νnod are defined by the following relations: νper = νφ − νr and
νnod = νφ − νθ , respectively, [35,45].

In order to obtain the estimation for the five parameters as the peak frequencies of
QPOs observed in the microquasars, we perform the χ2 analysis with [46]

χ2(M, B, r1, r2) =
(ν1φ − ν1U)

2

σ2
1U

+
(ν1per − ν1L)

2

σ2
1L

+
(ν1nod − ν1C)

2

σ2
1C

+
(ν2φ − ν2U)

2

σ2
2U

(30)

+
(ν2nod − ν2C)

2

σ2
2C

.

In fact, the best estimates for the values of the parameters M, p, r1, and r2 that make
χ2

min to be minimum and the range of the parameters at the confidence level (C.L.) can be
determined in the interval χ2

min ± ∆χ2.

9.1. GRO J1655-40

Here, we obtain constraints on the mass of the black hole and surrounding aether field
pressure in the microquasar GRO J1655-40 using the two sets of QPO frequencies in the
astrophysical observations [27],

ν1U = 441 Hz, σ1U = 2 Hz,

ν1L = 298 Hz, σ1L = 4 Hz, (31)

ν1C = 17.3 Hz, σ1C = 0.1 Hz

and

ν2U = 451 Hz, σ2U = 5 Hz,

ν2C = 18.3 Hz, σ2C = 0.1 Hz . (32)

It is obtained that the χ2 take minimum as χ2
min = 0.000129108 at r1 = 6.9069M, r2 =

9.4529M, M = 16.1843M�, p0 = −0.0756.

9.2. GRS 1915+105

Furthermore, we perform a similar analysis on the GRS 1915+105 microquasar with
QPO frequencies [47],
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ν1U = 184.10 Hz, σ1U = 1.84 Hz,

ν2U = 142.98 Hz, σ2U = 3.48 Hz, (33)

and

ν1L = 67.40 Hz, σ1L = 0.60 Hz,

ν2L = 65.89 Hz, σ2L = 0.52 Hz , (34)

ν3L = 69.58 Hz, σ3L = 0.49 Hz.

and it is also found that χ2
min = 9.1966× 10−15 at the best fit values of the parameters

r1 = 7.11812M, r2 = 9.525M, p = −0.0956658, and M = 44.4246M�.
In Figure 15, the best values of the pressure of the aether field p and the mass of the

central black hole in the center of GRO J1655-40 (left panel) and GRS 1915+105 (right panel).
Furthermore, we present the contour levels 1σ, 2σ, and 3σ of p and M/M�.
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Figure 15. Constraints on black hole mass and the aether pressure in the microquasars GRO J1655-40
(left panel) and GRS 1915+105 (right panel).

10. Conclusions

In the present work, we have studied test particle motion around a black hole sur-
rounded by a gravitational aether field. The results obtained can be summarized as follows:

• First, we have explored the spacetime structure by analyzing the scalar invariants. It
has been shown that the presence of the aether field causes a decrease in the Ricci
scalar and the square of the Ricci tensor. We have also shown that the Kretschmann
scalar is less sensitive to the change in aether parameter.

• We performed an analysis of the dynamics of test particles around the black hole in
the presence of aether. Particularly, we explored the circular orbits of the particles
around the central object. The study of specific energy and angular momentum of test
particles corresponding to circular orbits around the black hole has shown that both
energy and angular momentum decrease in the presence of the aether field. However,
the ISCO radius increases with increasing absolute values of the aether parameter.

• Collisions of test particles near the aether black holes have also been studied. The
critical value of the angular momentum of the colliding particle, in which collision
may occur, has been analyzed. Our analysis has shown that in the presence of the
aether field, the angular momentum increases slightly and takes values between
Lcr/M ∈ (4.05÷ 0) and the corresponding values of 4πM2 p ∈ −4× 10−4 ÷ 0. The
expression for the center of mass energy has been obtained, and it has been shown that
the latter decreases with the increase in the absolute value of the aether parameter.
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• In this work, we have also investigated the fundamental frequencies of radial and
vertical oscillations of test particles around the equatorial plane along stable circular
orbits around a black hole in the presence of the aether field. It has been shown that
the frequencies of Keplerian orbits and radial oscillations decrease with the increase
in the absolute value of the aether parameter.

• As an application of fundamental frequencies, we considered the upper and lower
frequencies of twin-peaked QPOs around the black holes. It has been shown that an
increase in the absolute value of the aether parameter causes a decrease in the possible
values of the frequency ratio. In this case, the QPO at the low-frequency regime will
not be observed. We have also noted that the aether parameter cannot mimic the spin
of the Kerr black hole, providing the same value of upper and lower frequencies in
twin-peaked QPOs.

• Finally, using the observation data on observed twin peak QPOs and our numeri-
cal results, we obtained the constraints on the aether parameter (see Section 9 for
the details).
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1. Hořava, P. Quantum gravity at a Lifshitz point. Phys. Rev. D 2009, 79, 084008. [CrossRef]
2. Randall, L.; Sundrum, R. Large Mass Hierarchy from a Small Extra Dimension. Phys. Rev. Lett. 1999, 83, 3370–3373.
3. Afshordi, N. Gravitational Aether and the thermodynamic solution to the cosmological constant problem. arXiv 2008,

arXiv:0807.2639.
4. Prescod-Weinstein, C.; Afshordi, N.; Balogh, M.L. Stellar black holes and the origin of cosmic acceleration. Phys. Rev. D 2009,

80, 043513. [CrossRef]
5. Bambi, C. Black Holes: A Laboratory for Testing Strong Gravity; Springer: Singapore, 2017.
6. Chandrasekhar, S. The Mathematical Theory of Black Holes; Oxford University Press: New York, NY, USA, 1998.
7. Bambi, C. Testing the Kerr nature of stellar-mass black hole candidates by combining the continuum-fitting method and the

power estimate of transient ballistic jets. Phys. Rev. D 2012, 85, 043002. [CrossRef]
8. Bambi, C.; Jiang, J.; Steiner, J.F. Testing the no-hair theorem with the continuum-fitting and the iron line methods: A short review.

Class. Quantum Gravity 2016, 33, 064001. [CrossRef]
9. Zhou, M.; Cao, Z.; Abdikamalov, A.; Ayzenberg, D.; Bambi, C.; Modesto, L.; Nampalliwar, S. Testing conformal gravity with the

supermassive black hole in 1H0707-495. Phys. Rev. D 2018, 98, 024007. [CrossRef]
10. Tripathi, A.; Yan, J.; Yang, Y.; Yan, Y.; Garnham, M.; Yao, Y.; Li, S.; Ding, Z.; Abdikamalov, A.B.; Ayzenberg, D.; et al. Constraints

on the spacetime metric around seven “bare” AGN using X-ray reflection spectroscopy. arXiv 2019, arXiv:1901.03064.
11. Wald, R.M. Black hole in a uniform magnetic field. Phys. Rev. D. 1974, 10, 1680–1685. [CrossRef]
12. Aliev, A.N.; Galtsov, D.V.; Petukhov, V.I. Negative absorption near a magnetized black hole: Black hole masers. Astrophys. Space

Sci. 1986, 124, 137–157. [CrossRef]
13. Aliev, A.N.; Gal’tsov, D.V. Reviews of Topical Problems: “Magnetized” black holes. Sov. Phys. Uspekhi 1989, 32, 75–92. [CrossRef]
14. Aliev, A.N.; Özdemir, N. Motion of charged particles around a rotating black hole in a magnetic field. Mon. Not. R. Astron. Soc.

2002, 336, 241–248. [CrossRef]
15. Stuchlík, Z.; Schee, J.; Abdujabbarov, A. Ultra-high-energy collisions of particles in the field of near-extreme Kehagias-Sfetsos

naked singularities and their appearance to distant observers. Phys. Rev. D 2014, 89, 104048. [CrossRef]
16. Stuchlík, Z.; Kološ, M. Acceleration of the charged particles due to chaotic scattering in the combined black hole gravitational

field and asymptotically uniform magnetic field. Eur. Phys. J. C 2016, 76, 32. [CrossRef]
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19. Stuchlík, Z.; Kološ, M.; Kovář, J.; Slaný, P.; Tursunov, A. Influence of Cosmic Repulsion and Magnetic Fields on Accretion Disks
Rotating around Kerr Black Holes. Universe 2020, 6, 26. [CrossRef]

20. de Felice, F.; Sorge, F. Magnetized orbits around a Schwarzschild black hole. Class. Quantum Gravity 2003, 20, 469–481.
21. de Felice, F.; Sorge, F.; Zilio, S. Magnetized orbits around a Kerr black hole. Class. Quantum Gravity 2004, 21, 961–973. [CrossRef]
22. Rahimov, O.G.; Abdujabbarov, A.A.; Ahmedov, B.J. Magnetized particle capture cross section for braneworld black hole.

Astrophys. Space Sci. 2011, 335, 499–504. [CrossRef]
23. Narzilloev, B.; Rayimbaev, J.; Shaymatov, S.; Abdujabbarov, A.; Ahmedov, B.; Bambi, C. Can the dynamics of test particles

around charged stringy black holes mimic the spin of Kerr black holes? Phys. Rev. D 2020, 102, 044013. [CrossRef]
24. Vrba, J.; Abdujabbarov, A.; Kološ, M.; Ahmedov, B.; Stuchlík, Z.; Rayimbaev, J. Charged and magnetized particles motion in the

field of generic singular black holes governed by general relativity coupled to nonlinear electrodynamics. Phys. Rev. D 2020,
101, 124039. [CrossRef]

25. Vrba, J.; Abdujabbarov, A.; Tursunov, A.; Ahmedov, B.; Stuchlík, Z. Particle motion around generic black holes coupled to
non-linear electrodynamics. Eur. Phys. J. C 2019, 79, 778. [CrossRef]

26. Ingram, A.; van der Klis, M.; Middleton, M.; Done, C.; Altamirano, D.; Heil, L.; Uttley, P.; Axelsson, M. A quasi-periodic modulation of
the iron line centroid energy in the black hole binary H1743-322. Mon. Not. R. Astron. Soc. 2016, 461, 1967–1980. [CrossRef]

27. Stuchlík, Z.; Kotrlová, A.; Török, G. Multi-resonance orbital model of high-frequency quasi-periodic oscillations: Possible
high-precision determination of black hole and neutron star spin. Astron. Astrophys. 2013, 552, A10. [CrossRef]

28. Toshmatov, B.; Stuchlík, Z.; Ahmedov, B. Generic rotating regular black holes in general relativity coupled to nonlinear
electrodynamics. Phys. Rev. D 2017, 95, 084037. [CrossRef]

29. Stella, L.; Vietri, M. Lense-Thirring Precession and Quasi-periodic Oscillations in Low-Mass X-Ray Binaries. Astrophys. J. Lett.
1998, 492, L59–L62. [CrossRef]

30. Rezzolla, L.; Yoshida, S.; Maccarone, T.J.; Zanotti, O. A new simple model for high-frequency quasi-periodic oscillations in black
hole candidates. Mon. Not. R. Astron. Soc. 2003, 344, L37–L41. [CrossRef]

31. Stuchlík, Z.; Kotrlová, A.; Török, G. Resonant radii of kHz quasi-periodic oscillations in Keplerian discs orbiting neutron stars.
Astron. Astrophys. 2011, 525, A82. [CrossRef]

32. Török, G.; Kotrlová, A.; Srámková, E.; Stuchlík, Z. Confronting the models of 3:2 quasiperiodic oscillations with the rapid spin of
the microquasar GRS 1915+105. Astron. Astrophys. 2011, 531, A59. [CrossRef]

33. Silbergleit, A.S.; Wagoner, R.V.; Ortega-Rodríguez, M. Relativistic Diskoseismology. II. Analytical Results for C-modes. Astrophys.
J. 2001, 548, 335–347. [CrossRef]

34. Wagoner, R.V.; Silbergleit, A.S.; Ortega-Rodríguez, M. “Stable” Quasi-periodic Oscillations and Black Hole Properties from
Diskoseismology. Astrophys. J. Lett. 2001, 559, L25–L28. [CrossRef]

35. Rayimbaev, J.; Majeed, B.; Jamil, M.; Jusufi, K.; Wang, A. Quasiperiodic oscillations, quasinormal modes and shadows of
Bardeen-Kiselev Black Holes. Phys. Dark Universe 2022, 35, 100930. [CrossRef]

36. Stuchlík, Z.; Vrba, J. Epicyclic Oscillations around Simpson-Visser Regular Black Holes and Wormholes. Universe 2021, 7, 279.
[CrossRef]

37. Stuchlík, Z.; Vrba, J. Epicyclic orbits in the field of Einstein–Dirac-Maxwell traversable wormholes applied to the quasiperiodic
oscillations observed in microquasars and active galactic nuclei. Eur. Phys. J. Plus 2021, 136, 1127. [CrossRef]

38. Stuchlík, Z.; Vrba, J. Supermassive black holes surrounded by dark matter modeled as anisotropic fluid: Epicyclic oscillations
and their fitting to observed QPOs. J. Cosmol. Astropart. Phys. 2021, 2021, 059. [CrossRef]

39. Bian, W.H.; Zhao, Y.H. Accretion Rates and the Accretion Efficiency in AGNs. Publ. Astron. Soc. Jpn. 2003, 55, 599–603. [CrossRef]
40. Stella, L. The relativistic precession model for QPOs in low mass X-ray binaries. In Proceedings of the X-ray Astronomy: Stellar

Endpoints, AGN, and the Diffuse X-ray Background, Bologna, Italy, 6–10 September 2001; American Institute of Physics Conference Series;
White, N.E., Malaguti, G., Palumbo, G.G.C., Eds.; Curran Associates, Inc.: Nice, France, 2001; Volume 599, pp. 365–376. [CrossRef]

41. Ingram, A.; Motta, S. Solutions to the relativistic precession model. Mon. Not. R. Astron. Soc. 2014, 444, 2065–2070. [CrossRef]
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