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Abstract We have considered a time-like geodesics in the background of rotating Simpson–Visser (SV) black hole (BH) to examine
structure of the horizon and ergosphere. The innermost stable circular orbits (ISCO) and the effective potential, which controls the
particle’s motion in spacetime, have been studied for different values of parameters in SV BH. Center-of-mass (CM) energy of two
colliding particles near the horizon has been investigated for both extremal and non-extremal cases. Furthermore, thermodynamic
properties of SV black hole have been also investigated in detail.

1 Introduction

The general relativity (GR) is a part of standard model describing the gravitational interaction. GR has been justified via the
observation of gravitational lensing of photons near the Sun detected during the solar eclipse in 1919 [1, 2] just after its proposal
by Einstein in 1915 [3]. Later GR has been several times well tested in weak (e.g., using solar system tests [4]) and strong field
regimes (e.g., gravitational wave observation [5] and observation of shadow of black holes (BHs) [6, 7]). Besides, Authors of Refs.
[8, 9] provide more stringent constraints on possible deviations from the Kerr solution than GWs and shadow. At the same time,
GR meets some fundamental problems related to, for example, the existence of the singularity at the origin of vacuum solutions,
etc. There is strong belief that these issues may be resolved by introducing the modifications or alternatives to the standard theory
of gravity.

Any modifications/alternates to standard theories have to be probed using experimental and observational data. However, the
big number of modified and alternative theories of gravity create additional degeneracy problem: the effects due to parameters of
different models may mimic each other. In order to resolve one may consider several independent experiments/observations [10,
11] or use the parameterization [12, 13].

Authors of Ref. [14] have proposed very interesting approach to generalize the Kerr BH solution into regular rotating Kerr-like (or
rotating SV) one. This new regular Kerr-like solution contains asymptotically Minkowski core. Optical properties of this Kerr-like
regular spacetime has been studied in [15]. The non-rotating case of this regular BH solution has been analyzed in [16]. The geodesic
properties of spherical-symmetric regular spacetime containing asymptotically Minkowski core have been explored in Ref. [17].
Particularly, gravitational lensing effect in the weak field regime around Schwarzschild-like BH has been studied in Ref. [18] in the
presence of plasma. Here, we plan to explore the thermodynamics, energetic properties and dynamics of rotating SV BH.

One of the most prominent way to test the metric theory of gravity is exploration of particle dynamics [19–24]. Especially, the
dynamics of the charged test particles become very sensitive to external electromagnetic field [25–27]. One may find interesting
works where test particles with nonvanishing electric and/or magnetic charges dynamics have been explored in detail [28–42].
Authors of Ref. [19] have shown that extreme rotating Kerr BH can play a role of accelerator of particles. Particularly, for the fine-
tuned value of the particle’s angular momentum the center of mass energy diverges at the horizon. The effect of other parameters
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of rotating BH in different gravity models have been discussed in Refs. [43–48]. Magnetic field around no-rotating BH may mimic
the effect of rotation and accelerate the charged particles [49–53].

The study of the BH thermodynamics is directly related to the properties of the entropy of the BH. The pioneering works on
thermodynamic properties of BH can be found in Refs. [54–56]. Surely, the simplest BH solution is described by the Schwarzschild
spacetime metric and the entropy and related thermodynamic properties of this type of BH have been explored in [57–59]. Particle
spectrum and some thermodynamical properties of Reissner–Nordström BH have been studied in [60]. The thermodynamics of a
magnetically charged regular BH obtained using the action of general relativity and nonlinear electromagnetics has been studied in
[61]. The effects of quintessence on thermodynamics of BH have been analyzed in [62]. The thermodynamic properties of BH in
Hořava–Lifshitz gravity have been explored in Refs. [63, 64]. Thermodynamic properties and Joule–Thomson expansion for conical
or BTZ-like BH is investigated in [65]. Besides, several works are studied regarding thermodynamics of non-rotating and rotating
black hole in detail in Refs. [66–72].

Here, we plan to study the particle dynamics, acceleration process, and thermodynamic properties of rotating SV BH. The current
work is organized as follows: we start with the short description of the Kerr-like spacetime metric in Sect. 2. The equations of motion
of test particles have been explored in Sect. 3. The acceleration of test particles near the horizon of rotating SV BH is studied in
Sect. 4. Finally, we discuss the thermodynamic properties of the rotating SV BH in Sect. 5. We conclude our results in Sect. 6. Here,
we use the geometrized unit of system where gravitational constant G and vacuum speed of light c set to unity. For the spacetime
signature we use (−, +, +, +).

2 Rotating Simpson–Visser black hole

The gravitational field of a rotating Simpson–Visser compact object in Boyer–Lindquist coordinates can be expressed through the
following line element [14, 15]

ds2 � − �

ρ2 (dt − a sin2 θdφ)2 +
ρ2

�
dr2 + ρ2dθ2

+
sin2 θ

ρ2

(
adt − (r2 + a2)dφ

)2
, (1)

with the metric functions defined as

ρ2 � r2 + a2 cos2 θ , (2)

� � r2 + a2 − 2Mre−l/r , (3)

where a and l can be referred as spin and deviation parameters of SV BH, respectively. This metric is derived from regularization
procedure in Kerr metric like did in Schwarzschild metric before where M → M(r ) � Me−l/r modification is done. Here, l can
be viewed as quantifying the deviation from Kerr. The spacetime around this black hole behaves as one around typical rotating
and the limit l → 0 corresponds to Kerr BH. Furthermore, mathematically there is still a discontinuity at r � 0 and it maintains
asymptotically flatness as r → +∞.

The Kerr-like BH described by the spacetime metric (1) need to be investigated to possess the horizon structure and the ergosphere
region, likewise the other rotating BHs. We aim to examine the properties of the above indicated features depending on the spin
parameter a and the deviation parameter l. Figure 1 clearly shows the regions in a − l plane corresponding to BH and No black
hole cases. The radii of the Cauchy horizon r−

H and the event horizon r+
H are attained by � � 0 corresponding to the coordinate

singularity. The BH turns out to be an extremal BH when the two horizons coincide for a specific critical spin parameter (deviation
parameter) a � aE (l � lE ), whereas a < aE (l < lE ) refers to a non-extremal BH with two distinct horizons. Figures 2 and 3 show
the behavior of horizons by varying the spin parameters a and l. These figures imply that for a < aE or l < lE there exit a set of
values of parameters for which one can get two horizons and when a � aE or l � lE these horizons collide, i.e., we have an extremal
BH with degenerate horizons (cf. Table 1). Particularly, in Table 1, we have presented the numerical values of the radius of horizons
and their difference for different values of l and a. It can be noticed that with the rise of these two parameters, horizons come closer
to each other. In the case of a > aE or l > lE there is no BH because no horizon appears in that particular case. Moreover, the
BH admits two static limit surfaces r−

sls and r+
sls , which are the positive real roots of equation gtt � 0. In Fig. 4, we depict possible

solutions of this equation with different combinations of the parameters of a and l and different values of θ . Observing the outer
event horizon and the stationary limit surface of this BH, it is verified that the stationary limit surface always lies outside of event
horizon for all values of l. The region, i.e., r+

H < r < r+
sls connotes the ergosphere region and its boundary r+

sls is called the static
limit surface. Its shape is that of an oblate spheroid-bulging at the equator and flattened at the poles of the rotating BH. We have
studied how the parameters a and l affect the shape of the ergosphere. The behavior of ergospheres for a < aE and a ≈ aE are
shown in Fig. 5. It can be seen that the ergospere is sensitive to the parameter l, meaning that with the increase of parameter l, the
thickness of ergosphere also increases. The same is true for spin parameter a, as well.
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Fig. 1 Plot showing the behavior
of the spin parameter a and a
deviation parameter l of Kerr-like
BH. The solid line is the
boundary, which separates the BH
region from the no BH region.
Here M � 1
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Fig. 2 Plot showing the behavior of � with respect to r for different values of l. The case a � aE corresponds to an extremal BH. Here M � 1

3 Equations of motion and effective potential in an equatorial plane

Here, we consider motion of a time-like particle with a rest mass m0 in the equatorial plane θ � π/2 where the polar velocity θ̇

becomes zero. The metric and generalized momenta of the particle in the spacetime of a rotating BH is expressed in the form,

Pt � gtt ṫ + gtφφ̇, (4)

Pφ � gφφφ̇ + gtφ ṫ , (5)

where Pt and Pφ are the constants of motion. Basically, the two quantities Pt and Pφ correspond to the particle’s energy −E and the
angular momentum L, respectively. The overdot denotes differentiation with respect to the proper time. The equations of motion of
a massive particle are calculated from Eqs. (4)–(5) along with the normalization condition uμuμ � −1, given as below

ṫ � 1

r2

[
(a2 + r2)

�
(E(a2 + r2) − aL) + a

(
L − aE

)]
, (6)

φ̇ � 1

r2

[
a

�
(E(a2 + r2) − aL) +

(
L − aE

)]
, (7)

ṙ � ±
√

(aL − (a2 + r2)E)2 − �(m2
0r

2 + (L − aE)2)

r2 . (8)
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Fig. 3 Plot showing the behavior of � with respect to r for different values of a. Here M � 1

Table 1 The values of the horizons of a rotating SV BH with the parameter M=1 (δge � r+
sls - r+

H ). a∗
E� 1, 0.7986107603743899, 0.6950554457736542 and

0.5872962339024399, which, respectively, corresponds to l=0, 0.2, 0.3 and 0.4

a l � 0 l � 0.2 l � 0.3 l � 0.4

r−
H r+

H δ
g
e r−

H r+
H δ

g
e r−

H r+
H δ

g
e r−

H r+
H δ

g
e

0.4 0.0834 1.9165 1.8331 0.2481 1.6804 1.4323 0.3334 1.5428 1.2094 0.4385 1.3813 0.9427

0.5 0.1339 1.8669 1.7321 0.3289 1.6114 1.2824 0.4382 1.4558 1.0175 0.5882 1.2548 0.6666

0.6 0.2 1.8 1.6 0.43487 1.5151 1.0801 0.5875 1.3213 0.7337 – – –

0.7 0.2858 1.7141 1.4282 0.5863 1.3712 0.7848 – – – – – –

a∗
E 1 1 0 0.9818 0.9818 0 0.9602 0.9602 0 0.9302 0.9302 0

The + and − signs in Eq. (8) refer to the outgoing and incoming geodesics, respectively. In order to understand the motion of the
test particle around SV BH one needs to evaluate the effective potential, which is straightforwardly worked out using Eq. (8). We
can used following equations to calculate effective potential

1

2
ṙ2 + Veff � 0, (9)

Veff � − (aL − (a2 + r2)E)2 − �(m2
0r

2 + (L − aE)2)

2r4 . (10)

The range of angular momentum for free falling particle, which is depicted in Tables 2 and 3 is calculated by following equations:

Veff � 0 and
dVeff

dr
. (11)

The lowest and the highest limits of angular momentum of falling geodesic is described with L2, L1 in Table 2 and L4, L3 in Table
3, respectively. In Fig. 6, the effective potential is shown by varying the angular momentum of the incoming test particle for a fixed
a and l. it is observed that the potential barrier rises for greater values of L, which means a boosted particle can easily begin circling
around the BH.

When observing a particle’s geodesics in curved spacetime, the value of the particle’s momentum is crucial. Thus, one may get
the critical value of the angular momentum from Eq. (6) where for the time-like particles ṫ ≥ 0, i.e. Equation (6) leads to

1

r2

[
(a2 + r2)

�
(E(a2 + r2) − aL) + a

(
L − aE

)]
≥ 0. (12)

When r → r EH , the above condition reduces to

E − �H L ≥ 0, (13)

where �H � a
r2
h+a2 is the angular velocity of the black hole at the horizon, and it is derived in Eq. (20). The critical angular

momentum of the particle is defined by Lc � E/�H .
Figure 7 gives a comprehensible demonstration of the geodesics in this BH. It is numerically calculated that for the values of

l < l∗ (where l∗ � 0.53948), the particle with L < Lc is always captured by the BH gravity and falls exactly at the horizon if
L � Lc, however, when L > Lc the geodesics never fall into the BH. But for the cases of l > l∗, the particle which is equipped
with Lc cannot reach to the horizon. Meaning that turning points of this cases do not correspond to the event horizon.
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Fig. 4 Plot showing the variation of infinite redshift surface with different values of l, a and θ . Here M � 1

The solution to the simultaneous equations ṙ � ∂r Veff � ∂2
r Veff � 0 defines the innermost stable circular orbit rISCO of the

particle. It is difficult to find analytical solution of the radius of ISCO, but numerical analysis is given in Fig. 8, i.e., it illustrates
the variation of rISCO with respect to a and l for the different cases. Furthermore, it can be easily noticed from these figures that the
radius of the innermost stable circular orbit is sensible to the value of l and a. To be more precise, rISCO shows downward trend for
both parameters.
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Fig. 5 Plot showing the variation of the shape of ergosphere for a rotating SV BH in xz-plane for the different values of a and l. The blue and the red lines
correspond, respectively, to the static limit surfaces and horizons. The third row illustrates the merging of two event horizons. Here M � 1

4 Particle acceleration

In this section, we do an inclusive analysis to probe the acceleration of particles in the SV BH described by the spacetime metric (1).
We accurately consider the center of mass (CM) energy produced due to a two-particle collision near the horizon considering an
extremal and a non-extremal BHs in the Kerr-like spacetime. We put forth the scenario where two non-relativistic particles initially
located at infinity at rest fall freely toward compact object and ultimately encounter a massive collision near the horizon. Here, we
do a unique choice for the collision point because particles falling in from infinity appear with an infinite blue-shift at the horizon
and hence are considered to produce an arbitrarily large amount of energy.
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Table 2 The limiting values of
angular momentum for different
extremal cases. Here
l∗ � 0.53948 and M � 1

l aE r EH L2 L1 Lc

0 1.0 1.00000 −4.82843 2.00000 2.00000

0.2 0.79861076037439 0.98186 −4.52868 2.00578 2.00578

0.3 0.69505544577365 0.96026 −4.36208 2.02172 2.02172

0.4 0.58729623390243 0.93023 −4.17874 2.06069 2.06069

l∗ 0.47204473678589 0.871887 −3.97046 2.15248 2.15248

0.6 0.34180530576217 0.83888 −3.71893 2.35355 2.40064

0.7 0.16598902588924 0.76850 −3.35378 2.66542 3.72407

Table 3 The limiting values of
angular momentum for different
non-extremal cases. Here M � 1

l aE r+
H r−

H L4 L3 L ′
c

0 0.9 1.43589 0.56411 −4.75680 2.63246 3.19115

0.2 0.6 1.51505 0.43488 −4.36638 2.89374 4.42563

0.3 0.5 1.45583 0.43828 −4.19068 2.89207 4.73888

0.4 0.4 1.38133 0.43857 −3.99933 2.88869 5.17018

0.5 0.3 1.28554 0.44231 −3.78700 2.88276 5.80871

0.6 0.2 1.15506 0.46592 −3.54427 2.87306 6.87081

4.1 Near horizon collision

Now we analyze the ultrahigh energy produced as a result of a two-particle collision near the horizon of SV BH. We consider
particles with the same mass m0 and different four-velocities u1 and u2. CM energy ECM of collision between two particles at the
radial coordinate r is given by the following expression [19, 46]

ECM � m0
√

2
√

1 − gμνu1
μu2

ν . (14)

By substituting Eqs. (6)–(8) into the Eq. (14), we can easily obtain

E2
CM

2m0
2 � el/rK

r2�
, (15)

where K is defined in the following form

K � 2Mr (a − L1)(a − L2) − 2Mr3 + r2el/r
(
2a2 − L1L2 + 2r2)

− el/r
√

(
a2 − aL1 + r2

)2 −
(
a2 + r

(
r − 2Me− l

r

))(
(a − L1)2 + m2

0r
2
)

×
√

(
a2 − aL2 + r2

)2 −
(
a2 + r

(
r − 2Me− l

r

))(
(a − L2)2 + m2

0r
2
)
. (16)

Fig. 6 Plot shows the behavior of Veff versus r for different values of angular momentum, where M � 1
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Fig. 7 The variation of ṙ with respect to the radial coordinate for an extremal BH. In the left panel aE � 0.7986107603 and in the right panel aE �
0.5872962339. Here M � 1

Fig. 8 The inner most stable circular orbits by varying a and l for various values of l and a. In the left-hand side, for the deviation parameter l � 0 (black),
l � 0.2 (blue) and l � 0.4 (red). In the right-hand side, for the spin parameter a � 0 (black), a � 0.2 (blue) and a � 0.4 (red). Here M � 1

In our discussion, the participating particles have the same intrinsic identities and are mainly distinguished by their angular momenta
L1 and L2. Here, for the sake of simplicity, we shall take the conserved energies E1/m0=E2/m0=1. Obviously as r → r EH , Eq. (15)
has indeterminate form when we choose numerical values of M, a, l and r EH . After applying l’Hospital’s rule twice, it can be seen
that if one of the particles has the critical angular momentum Lc, ECM become infinite as r → r EH . The expression of ECM is too
lengthy to write it here, but in general it is proportional to

E2
CM

2m2
0

(
r → r EH

)
∼ 1

(L1 − Lc)
3/2(L2 − Lc)

3/2 . (17)

It is worth to mention that an arbitrarily high amount of energy is obtained when the test particle approaching the black hole
has the critical angular momentum Lc. The limiting values of the angular momentum along with the corresponding spin of the
BH, deviation parameters l and radius of the event horizon for the extremal case are presented, as shown in the Table 2. The ECM

generated as a result of collision near the horizon of an extremal BH for different values of l is shown in Fig. 9. From the Table 2
and Fig. 9, we can conclude that for the smaller values of deviation parameter, the CM energy instantaneously diverges near the
horizon whenever the incoming particle is equipped with the critical parameters of the motion. And for the larger values of l (l > l∗),
particles, which has critical angular momentum cannot reach to the horizon and infinite amount of CM energy cannot be produced.
Additionally the particles admitting L < Lc contribute only a finite ECM too.
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Fig. 9 Plot shows dependence of the center-of-mass energy Ec.m to radial coordinate r for an extremal BH in different values of l. In the top left-hand corner,
for the deviation parameter l=0.2, spin aE=0.798610, angular momentum L1=2.00578 (black), 1.3 (blue), 1 (red) and L2=−4.52868. In the top right-hand
corner, for the deviation parameter l=0.4, spin aE=0.58729, angular momentum L1=2.06069 (black), 1.3 (blue), 1 (red) and L2=−4.17874. In the bottom
left-hand corner, for the deviation parameter l=0.6, spin aE=0.341805, angular momentum L1=2.40064 (black), 2.35355 (blue), 1 (red) and L2=−4.52868.
In the bottom right-hand corner, for the deviation parameter l=0.7, spin aE=0.165989, angular momentum L1=3.72407 (black which is stopped before 5
radial coordinate), 2.66542 (blue), 1 (red) and L2=−4.17874. Here M � 1

4.2 Near horizon collision in non-extremal SV BH

We also study the properties of ECM in the limit r → r+
H of non-extremal BH. Again after applying l’Hospital’s rule twice, the

expression of ECM is proportional to

E2
CM

2m2
0

(
r → r+

H

) ∼ 1
(
L1 − L ′

c

)(
L2 − L ′

c

) . (18)

The Eq. (18) tells us that ECM can be infinite if L1 or L2 is equal to L ′
c. But critical value of angular momentum is not in the

acceptable range in non-extremal BH case. For example in the case of l � 0.2, a � 0.6 and r+
H � 1.51505, the critical value of

angular momentum is calculated as L ′
c � 4.4256 which is not in the acceptable range. The limiting values of the angular momentum

along with the corresponding spin, deviation parameters and the horizons for the non-extremal are presented in the Table 3. From
the Table 3, one can conclude that angular momentum of free falling particle can never be equal to the critical value of it for
non-extremal BH, which means in non-extremal cases the center of mass energy is finite. Figure 10 shows a visualization of this
process. In general, if we consider a collision in a non-extremal space-time background, we attain a limited ECM irrespective of the
event’s location (see Fig. 10).
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Fig. 10 Plot showing the behavior of the center-of-mass energy Ec.m versus the radial coordinate r for a non-extremal BH. Here M � 1

5 Thermodynamics of SV BH

In this section, we analyze thermodynamics of this BH in SV BH. General form of metric can be written as

ds2 � gtt dt
2 + grr dr

2 + gθθdθ2 + gφφdφ2 + 2gtφdtdφ. (19)

The angular velocity of a test particle at the event horizon, with vanishing angular momentum, can be calculated using the formula
�H � −gtφ/gφφ for the rotating Kerr-like BH

�H � a

r2
h + a2

. (20)

We will use the expression (20) for our further calculations. Now we turn to calculate thermodynamical quantities of SV BH. The
BH mass (M, which is equal to enthalpy (H)) can be derived by making Eq. (3) equals to zero. As a result one may obtain

M �
(
a2 + r2

h

)
e

l
rh

2rh
. (21)

Figure 11 demonstrates the enthalpy as a function of rh . One may see that an increase in the parameters a and l corresponds to
greater mass (enthalpy) for fixed rh . And also using well-known formula T � κ

2π
, one can get Hawking temperature for this type

of BH, where κ is the surface gravity of rotating BH and we can calculate it with following expression [66, 67]

κ � 1

2

√
(grr )′(Gtt )′, (22)

where

Gtt � −gtt − 2gtφ�H − gφφ�2
H , (23)
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Fig. 11 Plot show the variation of enthalpy with respect to horizon radius. Here M � 1

and (grr )′, (Gtt )′ means derivative of grr , Gtt with respect to r, respectively. Eventually the final expression for temperature looks

T � (rh − l)r2
h − (l + rh)a2

4πr2
h

(
a2 + r2

h

) . (24)

It is easy to see that one can recover temperature formula for Kerr BH by taking l � 0, and also can recover temperature formula
for Schwarzschild BH by taking l � 0, & a � 0. With the help of Eq. (24), one can depict this result visually. Figure 12 shows
temperature dependency on the radius of event horizon for different values of l and a in Kerr-like spacetime. We can notice from
this picture that deviation parameter ’cools down’ BH. Precisely speaking, an increase of l causes temperature to decrease like spin
parameter a if keep radius of horizon unchanged. Now one calculates area and entropy of Ker-like BH using the following general
expression [67]

A �
∫ 2π

0

∫ π

0

√
gθθ gφφdθdφ � 4π

(
a2 + r2

h

)
, (25)

and obtain [68]

S � A

4
� π

(
a2 + r2

h

)
. (26)

Although area of outer event horizon and entropy does not depend on the deviation parameter explicitly, radius of event horizon
depends on it. It means that deviation parameter somehow reduces the area, as well as the entropy. We will use Eqs. (24)–(21) and
(26) to define the expression of Gibbs free energy as [68, 69]

G � M − T S

�
a2

[
rh

(
e

l
rh + 2

)
+ 2l

]
+ r2

h

[
rh

(
e

l
rh − 2

)
+ 2l

]

2r2
h

. (27)

From Eq. (27) one can observe that Gibbs energy is positive in the vicinity of rh � 0, i.e., for small black holes are stable but the
black holes are unstable at larger horizon radius. Furthermore, it is clear that both parameters (l an a) cause Gibbs energy to increase.

The phenomenon characterized by the creation and annihilation of an abundant quantity of particles in immediate proximity to
the black hole’s event horizon is denoted as emission energy. Quantum fluctuations transpiring within the internal regions of black
holes constitute the fundamental origin of this energy manifestation. The main reason for the BH evaporation within a certain period
is due to the positive-energy particles that tunnel out of the BH in the core area where Hawking radiation occurs. Now we consider
the energy emission rate BH with SV parameter. The absorption cross-section often oscillates around a limiting constant value σlim .
The limiting value of cross-section σlim is depended to the event horizon’s radius as following [65, 71]

σlim ≈ πr2
h . (28)

The expression of the emission energy rate from the BH as [65, 71]

d2E
dωdt

� 2π2σlim

e
ω
T − 1

ω3. (29)
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Fig. 12 Plot shows the variation of temperature with horizon radius. Here M � 1

Fig. 13 Plot shows the variation of temperature with horizon radius. Here M � 1

Where T is the Hawking temperature. The energy emission rate is represented in Fig. 13 as a function of ω for different values of
the deviation parameter (right panel) and spin parameter (left panel). From this figure, one can see that there exists a peak of the
energy emission rate for the black hole. When these parameters increase, the peak decreases and shifts to the low frequency. Also
one can notice that the variation of l has a stronger effect on the emission of particles around the black hole.

6 Conclusion

In this paper, we constructed an insightful discussion regarding the rotating BH’s structure, circular orbits, center-of-mass energy
and thermodynamics in rotating SV spacetime. So, we have obtained following results:

• First, we have obtained border between BH and naked singularity using their parameters in Fig. 1.
• If the value of parameters is lower than their extremal values, there exist Cauchy and event horizon in Figs. 2 and 3. When these

two parameters l and a of the spacetime reach to their extremal values, these two horizons merge, and also no horizon for a > aE
and l > lE .

• The growth of parameters l and a in SV gravity affects positively to the thickness of ergosphere of the BH, meaning that it becomes
thicker.

• Within this work the radius of ISCO is also discussed in SV spacetime with its parameters l and a. A rise in these parameters
make ISCO radius smaller, and it is represented in Fig. 8.

• Using massive particles orbits, we checked energy extraction from BH for extremal and non-extremal case through BSW effect.
Center-of-mass energy can be arbitrarily high for the extremal SV BH, which is not true for non-extremal SV BH.

• Properties of thermodynamics are studied for different cases: enthalpy, hawking temperature, entropy and Gibbs free energy.
To be more precise, an increase of BH’s parameters l and a also cause Gibbs free energy to increase. An opposite is true for
the temperature of this type of BH. Area and entropy of Kerr-like (or rotating SV) BH are also non-explicitly depend on these
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parameters and their effect make the entropy smaller. To get more information about them, we plotted several graphs of quantities
of thermodynamics.

• Plots of the energy emission rate with respect to frequency ω are drawn for different values of l and a parameters. An effect of
deviation parameter l is more noticeable.
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