УДК

УЛЬТРАЗВУКОВОЙ ОТЖИГ ПОВЕРХНОСТНЫХ СОСТОЯНИЙ В ГЕТЕРОПЕРЕХОДЕ ИНЖЕКЦИОННОГО ФОТОДИОДА *p*-Si/*n*-CdS/*n*⁺-CdS

© 2015 г. Ш. А. Мирсагатов*, И. Б. Сапаев*, Ж. Т. Назаров**

*Физико-технический институт, Научно-производственное объединение "Физика — Солнце" Академии наук Узбекистана, e-mail: mohim@inbox.ru **Навоийский государственный горный институт, Узбекистан

Поступила в редакцию 26.01.2014 г.

Исследовано влияние ультразвука на электрофизические и световые характеристики инжекционного фотодиода p-Si/n-CdS/ n^+ -CdS. Обнаружено, что ультразвуковая обработка таких фотодиодов приводит к уменьшению плотности поверхностных состояний на границе раздела гетероперехода, что объясняется отжигом дефектов. Это повышает спектральную и интегральную чувствительности фотодиодов.

DOI: 10.7868/S0002337X15010145

В настоящее время считается установленным фактом, что ультразвуковое облучение (УЗО) оказывает влияние на дефектную структуру и электрофизические характеристики полупроводников [1–6]. К преимуществам УЗО по сравнению с термическим отжигом и радиационным облучением можно отнести следующие особенности:

 поглощение ультразвуковых волн в твердом теле происходит преимущественно в областях нарушения периодичности его кристаллической решетки и поэтому ультразвуковое воздействие носит более локальный характер;
применение ультразвуковых волн различной поляризации и типа позволяет повысить избирательность влияния;
путем подбора частоты ультразвуковых колебаний можно достичь резонансных превращений в дефектной подсистеме.

Цель данной работы состоит в исследовании влияния УЗО на электрические и фотоэлектрические свойства инжекционного фотодиода $p-Si/n-CdS/n^+-CdS$. Такие фотоприемники созданы и исследованы в работах [7, 8]. Прямым направлением тока в структуре считается такое, когда к pSi-контакту прикладывается положительный потенциал, а обратным – отрицательный. Анализ ВАХ показывает, что структура обладает выпрямляющими свойствами и ее коэффициент выпрямления К (определяемый как отношение прямого и обратного тока при фиксированном напряжении U = 20 В) составляет $\simeq 10^5$. На рис. 1 приведена ВАХ структуры p-Si/n-CdS/n⁺-CdS в темноте и на свету до и после УЗО с мощностью 1 ВТ/см², частотой тестового сигнала f = 2.5 МГц в течение 15 мин. Проведенное исследование показывает, что УЗО не влияет на закономерность протекания тока в структуре в прямой и обратной ветвях ВАХ в темноте и на свету, а лишь увеличивает величины тока при одном и том же значении напряжения смещения (рис. 1).

Освещение структур проводилось лазером ЛГ-75 с мощностью излучения 10 мкВт/см²–0.75 мВт/см² и с длиной волны 0.625 мкм, а также лампой накаливания, которая по своим параметрам практически соответствует эталонной лампе, у которой в 1 люмене мощность электромагнитного излучения в видимой области спектра составляет 9.1 × $\times 10^{-3}$ Вт[9]. В прямой ветви ВАХ как в темноте, так и на свету ток увеличивается на $\approx 20\%$, а в обратной ветви возрастает примерно в 2 раза.

Рис. 1. Темновая ВАХ структуры p-Si/n-CdS/ n^+ -CdS в полулогарифмическом масштабе: 1 – прямая ветвь до УЗО, 2 – обратная ветвь до УЗО, 3 – прямая ветвь после УЗО, 4 – обратная ветвь после УЗО.

Таблица 1. Зависимости интегральной чувствительности (S_{int}), спектральной чувствительности (S_{λ}) от освещенности (E), мощности лазерного облучения (P) и напряжения смещения (U) до и после УЗО при прямом направлении тока

Ε	U	S_{int} , A/BT		P	$S_{\lambda}, A/B_{T}$	
		до	после	1	до	после
	на сі	зету	при лазерном облучении			
0.05	5	0.2×10^4	0.316×10^{4}	0.7	36	42.85
	10	4.2×10^4	5×10^4		550	660
	15	3.21×10^5	3.85×10^5		3057	3669
	20	$4.47 imes 10^6$	9.76×10^6		50358	60428
0.1	5	$0.2 imes 10^4$	$0.195 imes 10^4$	10	13.3	16
	10	$2.6 imes 10^4$	3.1×10^4		200	240
	15	1.87×10^5	2.24×10^5		1120	1344
	20	3×10^{6}	3.62×10^6		23356	28027.2
1	5	0.2×10^3	0.23×10^3	50	7.4	8.86
	10	3.32×10^3	3.98×10^{3}		121.5	145.8
	15	$1.98 imes 10^4$	2.37×10^4		778.7	934.5
	20	3.4×10^4	4.1×10^{5}		8326	9992
10	5	$0.2 imes 10^2$	0.24×10^2		4.56	5.47
	10	4×10^2	4.75×10^2	100	75.24	90.29
	15	2.31×10^3	2.77×10^{3}		440.25	528.3
	20	4.5×10^4	$5.4 imes 10^4$		4483.2	5379.84

В табл. 1 и 2 приведены значения спектральной (S_{λ}) и интегральной (S_{int}) чувствительности при различных интенсивностях белого света и лазерного облучения с $\lambda = 0.625$ мкм, при различных мощностях и при разных значениях напряжения смещения до и после УЗО в прямом и обратном направлениях тока. Как видно из табл. 1, значения S_{int} и S_{λ} в прямом направлении тока возрастают примерно на 20% после УЗО при всех интенсивностях белого света и мощностях лазерно-

Таблица 2. Зависимости интегральной чувствительности (S_{int}), спектральной чувствительности (S_{λ}) от освещенности (E_{lux}), мощности лазерного облучения (P) и напряжении смещения (U) до и после ультразвукового облучения при обратном напряжении смещения

Ε	U	S_{int} , A/BT		р	$S_{\lambda}, A/B_{T}$		
		до	после	1	до	после	
	на	свету		при лазерном облучении			
0.1	5	40.1	80.2	10	1.31	2.62	
	10	47.36	94.72		1.883	3.766	
	60	76	152		7	13.8	

го облучения, а также напряжениях смещения. В обратном направлении тока спектральная и интегральная чувствительности фотоприемника более чем в 2 раза увеличиваются после УЗО (табл. 2). Кроме этого, абсолютные значения S_{int} и S_{λ} в обратном направлении на ≃4 порядка меньше, чем их величины в прямом направлении тока. В то же время спектральная чувствительность существенно больше, чем S_{λ} идеального фотоприемника: у идеального фотоприемника $S_{\lambda} = 0.5 \text{ A/Bt} [10]$ при $\lambda = 0.625$ мкм. В исследуемой структуре при этой длине волны спектральная чувствительность равна 1.31 А/Вт при мощности излучении $P = 10 \text{ мкBt/см}^2$ и U = 5 B, а при больших значениях напряжения смещения S_{λ} еще больше. В обратной ветви ВАХ сравнительно малые значения S_{int} и S_{λ} связаны с физическими процессами в базе структуры и появлением сублинейного участка. В работах [11, 12] подробно проанализировано появление сублинейного участка ВАХ, суть которого заключается в наличии встречных диффузионных и дрейфовых токов в высокоомной базе структуры. Появление протяженного сублинейного участка в обратной ВАХ структуры $p-Si/n-CdS/n^+-CdS$ показывает, что из гетероперехода p-Si/n-CdS инжектируются электроны в высокоомную базу (n-CdS) и изо-

НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ том 51 № 1 2015

Рис. 2. ВФХ структуры *p*-Si/*n*-CdS/ n^+ -CdS при f = 10 кГц, T = 300 К: 1 –экспериментальная, 2 – расчетная кривые.

типный переход *n*-CdS/*n*⁺-CdS является идеальным, его высота потенциального барьера повышается с увеличением приложенного обратного напряжения смещения (положительное напряжение на слой n^+ -CdS) [9], в результате чего возле изотипного перехода n-CdS/ n^+ -CdS аккумулируются неосновные неравновесные носители (дырки) и создаются диффузионные токи, направленные навстречу дрейфовым и диффузионным токам, идущим от гетероперехода p-Si/n-CdS. B [11, 12] впервые было показано, что встречные диффузионные и дрейфовые токи приводят к "инжекционному обеднению" базы и происходит их взаимная компенсация. Появление сублинейного участка ВАХ в широком диапазоне напряжения смещения $(U \simeq 10-60 \text{ B})$ показывает, что область взаимной компенсации дрейфовых и диффузионных потоков неравновесных носителей расширяется и сопротивление базы, а также напряженность электрического поля в ней увеличиваются, что вызывает повышение скорости амбиполярного дрейфа. Вышеизложенные экспериментальные результаты объясняются тем, что прямые токи в исследуемой структуре в основном лимитируются рекомбинационными процессами, за которые ответственны поверхностные состояния в нижней половине запрещенной зоны, а обратные токи определяются поверхностными состояниями, находящимися в верхней половине запрещенной зоны кремния на границе раздела гетероперехода *p*-Si/*n*-CdS. Если плотность поверхностных состояний (N_{ss}) намного больше в верхней запрещенной зоне, чем в нижней, то поверхностные состояния отжигаются лучше при УЗО. Для подтверждения этой версии была исследована вольт-фарадная характеристика (ВФХ).

Рис. 3. Зависимости эффективной плотности поверхностных состояний от поверхностного потенциала до (*1*) и после (*2*) УЗО.

Частотные вольт-фарадные характеристики позволяют получить информацию о границе раздела, и они показали наличие МДП-структуры в образцах. Плотность поверхностных состояний МДП-структуры была стандартно определена по сдвигу экспериментальной C(U)-характеристики по отношению к расчетной кривой [13]. На рис. 2 приведена экспериментальная (1) и расчетная (2) вольт-фарадные характеристики типичного инжекционного фотоприемника на основе структуры p-Si/n-CdS/n⁺-CdS. Экспериментальная вольт-фарадная характеристика была снята на частоте тестового сигнала f = 10 кГц при комнатной температуре. Величина поверхностного потенциала (ψ_s) при заданном напряжении смещения определялась, как в работе [14]. Зависимость N_{ss} от ψ_{s} приведена на рис. 3. Зависимость $N_{ss}(\psi_s)$ имеет большую плотность поверхностных состояний при положительном поверхностном потенциале, она становится равной $\simeq 6 \times 10^{11}$ см⁻² при $\psi_s = -0.24$ эВ, что соответствует данным [15], где приводится значение только интегральной плотности поверхностных состояний. Величина N_{ss} в нижней половине запрещенной зоны намного меньше, чем в верхней: $N_{ss} \simeq 9.5 \times 10^9$ см⁻² при $\psi_s = 0.08$ эВ и $N_{ss} \simeq$ $\simeq 1.9 \times 10^{10} \,\mathrm{cm}^{-2}$ при $\psi_s = 0.48 \,\mathrm{B}$.

Отсюда следует, что эффективная плотность поверхностных состояний в нижней половине запрещенной зоны мала и слабо изменяется на энергетическом расстоянии ≈ 0.48 эВ от середины запрещенной зоны. Приведенные экспериментальные результаты подтверждают, что имеется гетеропереход *p*-Si/*n*-CdS с низкой N_{ss} , несмотря на то что постоянные кристаллических решеток сульфида кадмия и кремния отличаются друг от друга более чем на 7% [16]. Это объясняется тем, что при формировании гетероперехода образуется промежуточный слой, который сглаживает разницу постоянных решеток сульфида кадмия и кремния. Таким промежуточным слоем может быть твердый раствор полупроводников или SiO_x, CdO_x и SO_x, которые образуются в процессе получения гетеропары n-CdS/p-Si [8].

Проведенные емкостные измерения до и после УЗО подтверждают взаимосвязанность механизмов протекания токов в структуре с поверхностными состояниями гетероперехода *p*-Si/*n*-CdS.

Так как плотность поверхностных состояний в нижней половине запрещенной зоны после УЗО (см. рис. 3, кривая 2) уменьшается в пределах 18-20%, токи в прямом направлении примерно настолько увеличиваются в темноте и на свету. В результате зависимость $N_{ss}(\psi_{ss})$ в верхней половине запрещенной зоны в после УЗО изменяется по сложной закономерности. Динамика изменения N_{ss} от ψ_s после УЗО показывает (рис. 3, кривая 2), что для поверхностных состояний, находящихся вблизи середины запрещенной зоны, плотность уменьшается примерно в 2 раза, а для поверхностных состояний, расположенных вдали от нее (точнее при $\psi_{ss} = -0.24$ эВ), плотность уменьшается всего на 17%. Отсюда следует, что дефекты, играющие роль рекомбинационных центров, отжигаются сильнее, поэтому темновые и световые токи в обратном направлении увеличиваются примерно в 2 раза. Таким образом, значения S_{int} и S_{λ} в прямом направлении тока возрастают примерно на 20% после УЗО при всех величинах интенсивностей белого света и мощностей лазерного облучения, а также напряжений смещения (табл. 1). При обратном же направлении тока спектральная и интегральная чувствительности фотоприемника после УЗО увеличиваются примерно в 2 раза (табл. 2).

В заключение можно отметить, что плотности поверхностных состояний в гетеропереходе p-Si/n-CdS являются основным фактором, влияющим на спектральную и интегральную чувствительности инжекционного фотоприемника на основе структуры p-Si/n-CdS/ n^+ -CdS.

УЗО приводит к уменьшению плотности поверхностных состояний на границе раздела гетероперехода *p*-Si/*n*-CdS и к возрастанию спектральной и интегральной чувствительностей инжекционных фотоприемников на основе структуры *p*-Si-*n*CdS-*n*⁺CdS, как в прямом так и в обратном направлении токов. При этом величины S_{int} и S_{λ} увеличиваются примерно в 2 раза в обратном направлении тока, а в прямом направлении они возрастают на ~20%.

СПИСОК ЛИТЕРАТУРЫ

- Баранский П.И., Беляев А.Е., Коширенко С.М. и др. Механизм изменения подвижности носителей заряда при ультразвуковой обработке полупроводниковых твердых растворов // ФТТ. 1990. Т. 32. № 7. С. 2159–2161.
- Островский И.В., Стобленко Л.П., Надточий А.Б. Образование поверхностного упрочненного слоя в бездислокационном кремнии при ультразвуковой обработки // ФТП. 2000. Т. 34. № 3. С. 257–260.
- 3. Заверюхина Е.Б., Заверюхина Н.Н., Лезилова Л.Н., Заверюхин Б.Н. и др. Акустостимулированное расширение коротковолнового диапазона спектральной чувствительности AlGaAs/GaAs солнечных элементов // Письма в ЖТФ. 2005. Т. 31. № 1. С. 54.
- Олих О. Я. Особенности динамических акустоиндуцированных изменений фотоэлектрических параметров кремниевых солнечных элементов// ФТП. 2011. Т. 45. № 6. С. 816.
- Davletova A., Karazhanov S.Zh. Open-Circuit Voltage Decay Transient in Dislocation-Engineered // J. Phys. D: Appl. Phys. 2008. V. 41. № 165. P. 107.
- Пашаев И.Г. Влияние различных обработок на свойства диодов Шоттки // ФТП. 2012. Т. 46. № 8. С. 1108.
- Сапаев И.Б. Особенности электрических и фотоэлектрических свойств Au-pSi-nCdS-n⁺CdS гетероструктур // ДАН. Узбекистан. 2013. Вып. 2. С. 27.
- Мирсагатов Ш.А., Сапаев И.Б.// Инжекционный фотодиод на основе фоточувствительной поликристаллической пленки CdS. IV Международная конференция по актуальным проблемам молекулярной спектроскопии конденсированных сред. Самарканд (29–31 мая) 2013. С. 157–158.
- 9. *Фриш Э*. Оптические методы измерений. Ч. І. Изд. Ленинградского университета, 1976. С. 126.
- Амброзяк А. Конструкция и технология полупроводниковых фотоэлектрических приборов. М.: Сов. радио, 1970. С. 392.
- Адирович Э.И., Карагеоргий-Алкалаев П.М., Лейдерман А.Ю. Токи двойной инжекции в полупроводниках. М.: Сов. радио, 1978. С. 126.
- Карагеоргий-Алкалаев П.М., Лейдерман А.Ю. // Фоточувствительность полупроводниковых структур с глубокими примесями. Ташкент: ФАН, 1981. С. 200.
- Зи С. Физика полупроводниковых приборов. Т. 1 / Под ред. Суриса Р.А. М.: Мир, 1984. С. 386.
- Мирсагатов Ш.А., Утениязов А.К. Инжекционный фотодиод на основе p-CdTe // Письма в ЖТФ. 2012. Т. 38. № 1. С. 70-76.
- 15. *Трегулов В.В.* Способ определения плотности поверхностных состояний CdS/Si(p) на основе анализа вольт-фарадных характеристик // Изв. вузов. Поволжский регион. 2012. Т. 23. № 3. С. 124–132.
- Милнс А., Фойхт Д. // Гетеропереходы и переходы металл-полупроводник / Под ред. Вавилова В.С. М.: Мир, 1975. С. 425.

НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ том 51 № 1 2015