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A B S T R A C T   

Chemical sensors could pioneer great utilities in point-of-care diagnostic medical devices. Therefore, the inter-
action of the B24N24 and Al24N24 nano-clusters with phenytoin was theoretically studied to explore a potential 
chemical sensor. All calculations were performed using the B3LYP-D method in the gas and solution phases. The 
absorption energies were − 12.54 and − 35.36 kcal mol− 1 for B24N24 and Al24N24, in the most stable orientations, 
respectively. Thermodynamic investigations were shown the interaction of PHT with the nano-clusters is 
spontaneous and exothermic. Electrical conductivity after the adsorption process was changed to –23.94 % and 
− 6.81 % in the B24N24 and Al24N24, respectively. Thus, it is clear that the B24N24 nano-cluster demonstrated a 
significant alteration in the electrical conductivity, and these changes could be considered the signal for the 
detection of PHT. Further, the B24N24 nano-cluster had a practical short recovery time of 1.52 × 10− 5 s. 
Furthermore, solvent calculations indicated that the nano-clusters also could be used in biological samples. 
UV–vis calculation showed after the interaction of PHT with the B24N24 spectrum shifted significantly to the 
higher wavelength region (red shift). The concentration calculations showed a concentration-independent sensor 
response in the B24N24 nano-cluster. Thus, it can be concluded that the B24N24 nano-cluster is an appropriate 
candidate for PHT detection and this nano-cluster can be used in sensor devices.   

1. Introduction 

Phenytoin (PHT) is widely utilized to treat partial and generalized 
seizures [1]. PHT tends to attach to the main albumin as a plasma 
protein. It also exhibits a metabolism of concentration-dependent in the 
therapeutic range in cerebrospinal fluid, which corresponds to the 

plasma unbound concentration [2]. Further, there is a relation between 
the plasma unbound level of PTH and its toxicity [3]. However, despite 
its practical applications, some side effects and toxicities limit its clinical 
application. Swollen or sore gums, feeling unsteady, nervous, shaky, 
sleepy, dizzy, and headaches are potentially relevant problems [4]. 
Therefore, to prevent its adverse effect, it is critical to detect the 
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presence of PHT in human bodies; consequently, its administration can 
be careful. 

Several studies have studied detection methods for PHT through 
high-performance liquid chromatography [5], gas chromatography- 
thermionic specific detection [6], capillary electrophoresis [7], and 
gas chromatography-mass spectrometry [8]. These techniques require 
expensive equipment, materials, and expert staff; also, they are time- 
consuming. So emerging rapid and reliable methods are highly 
demanded in these fields. Recently chemical sensors have attracted 
increasing attention because of facile fabrication, highly selective, 
highly sensitive, fast, and cost-effective application, portable platform, 
and recovery facilities [9–11]. Therefore, it is worth mentioning that 
chemical sensors have certainly had a very positive impact on the 
expansion of point-of-care strategies that can be easily adapted to real- 
world applications [12–14]. Nanomaterials play a significant role in 
this development. They take advantage of unique features such as high 
specific surface area, tunable structural and chemical properties, also 
enhanced diffusivity [15–22]. 

Several works have reported the excellent performance of aluminum 
nitride (AlN) and boron nitride (BN) nano-clusters as chemical sensors 
[23–28]. These nano-structured sensors profit from the benefits of 
groups III–V compounds in the Periodic Table, so their chemical bonding 
and structure attract great focus [15,29,30]. They have indicated 
appropriate performances due to their high oxidation resistance, high 
conductivity [31,32], chemical and thermal stability [33,34], and wide 
band gap [35]. Computational methods significantly help the experi-
mentalist to understand different compounds’ behavior [36–43]. 

Therefore, in this work, the detection properties of Al24N24 and 
B24N24 nano-clusters have been systematically evaluated through a 
density functional theory (DFT) study for PHT, extensively adminis-
trated for epilepsy treatment and other chronic diseases. Thus the study 
could pave the way for these nanostructures applications as suitable 
sensor candidates for PHT detection. 

2. Computational method 

Computations were conducted by the GAMESS software [44]. B24N24 
and Al24N24 nano-clusters and their complexes were studied throughout 
the B3LYP-D technique and 6-31G(d) basis set [45–48]. Preceding 
studies reported the method as a dependable procedure because of its 
locating of weak interactions in the complexes [49,50]. Adsorption en-
ergies (Ead) of PHT on the adsorbents’ surface were calculated by 
applying the following equation:  

Ead = E(complex) – E(PHT) – E(adsorbent)(1).                                          

where E(complex) refers to the total energy of PHT-interacted nano- 
structures. E(PHT) and E(adsorbent) are the total energy of lone PHT 
and nanostructures. Thermodynamic values (Gibbs free energy (ΔG), 
entropy (ΔS), and enthalpy (ΔH)) were also calculated to check the 
reliability of the optimized structure. The HOMO and LUMO, energy gap 
(Eg), and energy gap variation (ΔEg) were considered to compare the 
sensitivities. After the optimization, the time-dependent DFT approach 
(TD-DFT) from the ground state at B3LYP-D/6-31G(d) level was 
employed to obtain excited states to accomplish the UV–vis spectrum. 
Moreover, the influence of the solvent phase on the interaction of PHT 
with AlN and BN nanoclusters has been investigated using the polariz-
able continuum model (PCM) method at the B3LYP-D/6-31G(d) level 
[51]. The stability of pure nano-structures and PHT-interacted com-
plexes in water was evaluated using solvent energy (ΔEsolv),  

ΔEsolv = Esolv - Egas(2).                                                                          

Esolv is the compound’s total energy in the solution phase, and Egas is 
the total energy of the compound in the gaseous status. The same theory 
level was applied to compute the density of states (DOS), molecular 
electrostatic potential (MEP), and all energy computations. For 

providing the DOS plots GaussSam software was used, and for MEP plots 
GaussView software was utilized. 

3. Results and discussion 

3.1. PHT adsorption on B24N24 nano-cluster 

Fig. 1 demonstrates the optimized structure and MEP plot of the PHT 
molecule. The MEP plot of PHT shows remarkable negative charges on 
its O atoms (red-colored) can interact with the electron-withdrawing 
sites in the nano-cluster. Fig. 2 demonstrates the optimized structure 
of the B24N24 nano-cluster and PHT/B24N24 complex. The most stable 
structure of the nano-cluster, as it can be seen, consists of eight- 
membered (8 M), six-membered (6 M), and four-membered (4 M) 
rings. The structural evaluation indicates that the bond length of B-N 
bonds in 8 M− 6 M, 8 M− 4 M, and 6 M− 4 M mutual bonds at the 
structure were calculated at 1.42, 1.47, and 1.49 Å, respectively, which 
confirms previous findings [52,53]. Different PHT orientations were 
examined to investigate the best B24N24 nano-cluster interaction loca-
tions. Following the complex relaxation study, the two sites of O atoms 
of PHT, named states A and B, were selected (Fig. 2) as the two main 
orientations of PHT for interaction with the B atom of nano-cluster 
rendering to the Ead values. These values for PHT adsorption were 
− 12.54 and − 3.61 kcal mol− 1 in states A and B (Table 1). 
Hoseininezhad-Namin et al. calculated the adsorption energies of 
Zn12O12, Mg12O12, and Be12O12 nanoclusters at − 60.17, − 45.57, and 
–32.75 kcal mol− 1, respectively [54]. In addition to the 6-31G(d) basis 
set, we used the 6-311G(d, p) basis set. The result indicated another 
basis set has no significant influence on the results. The equilibrium 
distances between PHT and the nano-structure are 1.61 and 2.60 Å, 
respectively. Therefore, because of the higher adsorption energy and 
short equilibrium distance, interacted complex in state A is more stable. 
The result indicated another basis set has no significant influence on the 
results. The natural bond orbital (NBO) charge transfers from the PHT to 
the B24N24 in states A and B were investigated at 0.179 and 0.089 e, 
respectively. Positive values of NBO charge transfers illustrated that the 
charge transferred from PHT to B24N24 nanocluster. 

3.2. PHT adsorption on Al24N24 nano-cluster 

To investigate the effect of another nano-cluster, the adsorption 
properties of the Al24N24 nano-cluster with PHT were investigated. The 
Al24N24 nano-cluster is shown in Fig. 3. The bond length of B-N bonds in 
8 M− 6 M, 8 M− 4 M, and 6 M− 4 M mutual bonds at the structure were 
calculated at 1.78, 1.83, and 1.86 Å, respectively, which confirms other 
studies in this field [55,56]. Al24N24 nano-cluster with different orien-
tations toward the PHT drug were examined to identify the optimized 
interaction sites. Similar to the adsorption on the B24N24 nano-cluster, 
PHT interacted appropriately with Al24N24 nano-cluster by its O atoms 
(Fig. 3). Considering the Ead values of the most stable complexes, − 35.36 
and –32.76 kcal mol− 1 for states A and B (see Table1), confirm these 
adsorptions are around 181 % and 807 % stronger than PHT/B24N24 
complex. The equilibrium distances after the interaction were calculated 
at 1.61 and 2.60 Å for states A and B, respectively. 

The dipole moment (DM), which varies following adsorption, is a 
vital indicator of the charge distribution throughout that process. 
Table 1 lists the DM values of PHT, B24N24, and Al24N24, as well as their 
most stable configurations. The B24N24 and Al24N24 nano-structures 
computed DM were 0.00 and 0.01, respectively. The DM of the nano- 
structure was considerably elevated to 9.19 and 6.52 Debye in their 
most stable state after PHT adsorption. The high polarization degree of 
the PHT interacting complexes, which results in polar interactions be-
tween PHT and nano-structures, causes the rise in DM values following 
adsorption. 
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3.3. Thermodynamic analysis 

The thermodynamic parameters at 298.15 K were investigated to 
check the optimized structures’ reliability. Table 1 demonstrates the 
adsorption process’s ΔG, ΔH, and ΔS values. The ΔH (ΔG) values for the 
B24N24 nano-cluster were obtained at − 11.29 (− 4.25) and − 2.72 (3.68) 
kcal mol− 1 for states A and B, respectively. These values corroborated 
that the adsorption of PHT from state A is stronger since the ΔH value 
was indicated to be more negative in state A. The ΔH and ΔG values in 
the Al24N24 nano-cluster, similar to the B24N24, indicated negative 
values in the most stable complexes. Thus, negative values indicated 
interaction of PHT with B24N24 and Al24N24 nano-clusters is exothermic 

and spontaneous. The calculated Ead is more negative compared with the 
ΔG, indicating ΔS reduction. Furthermore, the ΔH values showed that 
the adsorption of PHT with Al24N24 was stronger than in the B24N24, 
which confirms the Ead values. 

3.4. Electrical properties of nano-clusters throughout the adsorption 

The species’ HOMO and LUMO energy levels were computed to 
evaluate the nano-clusters and the adsorption performances (see 
Table 1). The HUMO and LUMO energy levels of B24N24 are − 7.41 and 
− 0.93 eV, respectively. In the Al24N24, these values are calculated at 
− 7.41 and − 2.51 eV. Abdalkareem Jasim et al. calculated the HOMO 

Fig. 1. Optimized structures and MEP plots of PHT.  

Fig. 2. Optimized structure of B24N24 and interaction of PHT molecule with B24N24 nano-cluster.  

Table 1 
Calculated adsorption energy (Ead/kcal mol− 1), bond distance between PHT and nanocluster (D/Å), HOMO energies (E(HOMO)/eV), LUMO energies (E(LUMO)/eV), 
energy gap (Eg/eV), %ΔEg change in electrical conductivity after the PHT adsorption, dipole moment (DM, Debye), enthalpy (ΔH/kJ mol− 1), Gibbs free energy (ΔG/kJ 
mol− 1) and entropy (ΔS/kJ K− 1 mol− 1), in gas phase.  

Name Ead D E(HOMO) E(LUMO) Eg %ΔEg DM ΔH ΔG ΔS 

PHT  –  –  − 6.66  − 0.69  5.97  –  2.69  –  –  – 
B24N24  –  –  − 7.41  − 0.93  6.48  –  0.00  –  –  – 
B24N24 (State A)  − 12.54  1.61  − 6.67  − 1.74  4.93  –23.94  9.19  − 11.29  − 4.25  − 0.024 
B24N24 (State B)  − 3.61  2.60  − 6.63  − 0.94  5.69  − 12.19  2.44  − 2.72  3.68  − 0.021 
Al24N24  –  –  − 6.48  − 2.39  4.09  –  0.01  –  –  – 
Al24N24 (State A)  − 35.36  1.92  − 5.95  − 2.14  3.81  − 6.81  6.52  − 34.16  − 21.69  − 0.042 
Al24N24 (State B)  –32.76  1.94  − 6.01  − 2.13  3.87  − 5.38  7.76  − 31.19  − 19.39  − 0.040  
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and LUMO of B24N24 at − 7.15 and − 2.30 eV, respectively, and the 
Al24N24 nano-cluster was calculated at − 6.50 and − 2.30 eV, which 
confirmed obtained results [15]. 

On the other hand, PHT adsorption on nano-clusters causes signifi-
cant changes in HUMO and LUMO energy levels and, consequently, their 
differences. The energy gap (Eg) is a good indicator of a sensor’s elec-
trical conductivity (sensitivity) for a specific molecule and is calculated 
by the (LUMO-HOMO) energy levels. Equation 3 described the rela-
tionship between the electrical conductivity (σ) and Eg [44]:  

σ ∝ exp (-Eg/2kBT)(3).                                                                           

In which T and KB are the temperatures and Boltzmann constant, 
respectively. According to equation 3, variations in the Eg cause changes 
in electrical conductivity. The energy gap and its variation are given in 
Table 1. PHT adsorption causes –23.94 % and − 6.81 % variations in the 
Eg of the B24N24 and Al22N24 nano-clusters, respectively. The results 
show higher sensitivity of B24N24 nano-cluster for PHT adsorption and 
its detection. 

As shown in Fig. 4, the density of states (DOS) diagram, in 
conjunction with the molecular electrostatic potential plot (MEP), il-
lustrates more details of PHT molecules’ adsorption on nano-structures 
in the most stable complexes (states A). The interaction characteristics of 

Fig. 3. Optimized structure of Al24N24 and interaction of PHT molecule with Al24N24 nano-cluster.  

Fig. 4. MEP and DOS plots of PHT/B24N24 (state A) and PHT/Al24N24 (state A).  
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PHT adsorption on B24N24 and Al24N24 are described in the DOS dia-
grams. It can be seen that PHT adsorption changes the DOS spectrum 
and HUMO and LUMO energy levels in the nano-structures. The 
adsorption changes energy levels in all B24N24 and Al24N24 nano-
structures, confirming the values shown in Table 1. Furthermore, the 
movement of the location of the peaks demonstrates that interaction 
between the PHT molecules and nano-structure is because of electron 
transfer between them. 

In addition, compared with the bare nano-structures, MEP plots of 
the most stable complexes in Fig. 4 show remarkable changes after PHT 
adsorption in their electrostatic potential. The plots indicate that the 
PHT drug in the complexes is more positive (blue color), and the nano- 
structures are more negative (red color). Therefore, these findings 
confirm charge transferring from PHT molecules to the nano-clusters, 
which corroborates the outcome of values charge transfers. 

3.5. Solution phase influence on PHT drug interaction with the nano- 
structures 

Water was chosen as a similar medium to assess the PHT interaction 
with the nano-structures in the body’s physiological fluid. The pure 
PHT, nano-clusters, and most stable complexes were optimized by 
applying the B3LYP-D/6-31G(d) level of theory. The calculated solva-
tion energies (Esol) from Eq. (2) were − 8.58 and − 27.19 kcal mol− 1 for 
pure B24N24 and Al24N24 nano-structures, respectively; these negative 
values show that they are soluble in the aqueous phase [57]. The 
matching values for PHT interacted complexes were − 17.09 and –33.70 
kcal mol− 1 (Table 2), respectively. The more negative solvation energies 
display superior solubility and stability, representing all nanostructure’s 
possible applications for PHT well detection in the water phase. 

Furthermore, the adsorption energies of PHT on the nano-structures 
in the water are given in the same Table. The values are − 12.54 and 
− 35.36 kcal mol− 1 for B24N24 and Al24N24. Therefore, adsorption en-
ergies indicated no significant alteration compared with the gas phase. 
In addition, comparing the DM values of PHT-interacted nanostructures 
in the gaseous and aqueous phases (Tables 1 and 2) reveals higher values 
in the water phase, which indicates that nano-structures have more 
conductivity and reactivity toward the PHT molecules in this phase. 
Also, the %ΔEg variations in the water phase represent the developed 
sensitivity of B24N24 nano-structure for PHT detection, which confirms 
the similar result in the gas phase. 

3.6. UV–Vis spectra 

UV–vis spectra of pure and PHT-interacted nanostructures were 
investigated by applying TD-DFT calculations. The highest oscillator 
strengths (f) for the current studied system are presented in Table 3. The 
maximum absorption wavelength (λmax) in the spectra of B24N24 and 
Al24N24 is located at 218 and 350 nm, respectively. PHT adsorption 
causes replacement of the λmax towards 263 and 381 nm in PHT/B24N24 
and PHT/Al24N24 complexes, respectively. Therefore, after interaction 
with PHT molecules, the λmax shifted to the higher wavelengths (red- 
shift) with lower energies. More significant movements to the other 
wavelengths are attributed to the adsorbent’s increased conductivity 
due to the changes in orbitals energy after PHT adsorption [58]. The 

results explicitly confirm the energy gap variation in Table 1, and this 
movement to the higher wavelength region (red-shift) is significant for 
B24N24. The Table also presents the main transition contributions of the 
PHT molecule interaction with the nano-clusters. 

3.7. Recovery time of nano-structures 

As suitable interaction is essential for a detector, its recovery time is 
another critical factor for its development. From this point of view, 
strong adsorption may lead to a considerable desorption time, which is 
not practical for detection. Experimentally the recovery time is inves-
tigated under UV light exposure or heating to high temperatures. The 
recovery time can be calculated through the following question of 
transition theory:  

τ = υ− 1 exp (-Ead / kT)(4).                                                                     

where T, k, and ν0 are temperature, Boltzmann’s constant, and try 
frequency, respectively. Here, recovery time was calculated by consid-
ering the frequency of 1014 s− 1 (ν ~ 1014 s− 1) at room temperature 
(298.15 K). The needed time for desorption of the PHT molecules from 
the PHT/B24N24 and PHT/Al24N24 nano-clusters was about 1.52 × 10− 5 

and 7.86 × 1011 s. Findings show that the recovery time of the B24N24 is 
short and feasible, whereas the Al24N24 nano-structure suffers from a 
long recovery time, and PHT adsorption is almost irreversible on them. 
Therefore, pristine B24N24 nano-structure comprises a supreme recovery 
time and is a suitable detector of PHT molecules. 

3.8. Effect of concentration 

For the investigation of concentration effects, different numbers of 
PHT drugs were adsorbed on the BN nano-cluster (Fig. 5). The Ead of 
PHT on the B24N24 nano-cluster with 2, 3, and 4 molecules was calcu-
lated at − 11.57, − 10.45, and − 9.45 Kcal.mol− 1, respectively, which was 
− 12.54 Kcal.mol− 1 for one molecule of it (Table 4). Due to steric re-
pulsions between the molecules with increasing the concentration of 
PHT, the Ead indicates less negative. The increase in concentration has a 
lesser influence on electronic properties, with an alteration of Eg in the 
confine of 4.21–4.74 eV, which was 4.93 eV considering one PHT 
molecule. Considering the %ΔEg after adsorption of more than one 
number of PHT molecule on the nano-cluster, it is obvious that the most 
considerable variation happens after the one-molecule interaction and 
the interaction of more than one molecule has a more negligible effect. 

Table 2 
Calculated solvent energy (ΔEsolv/kcal mol− 1), adsorption energy (Ead/ kcal mol− 1), bond distance between PHT and nanocluster (D/Å), HOMO energies (E(HOMO)/eV), 
LUMO energies (E(LUMO)/eV), energy gap (Eg/eV), %ΔEg change in electrical conductivity after the PHT adsorption, and dipole moment (DM, Debye), in solvent phase.  

Name ΔEsolv Ead D E(HOMO) E(LUMO) Eg %ΔEg DM 

PHT  − 8.82  –   − 6.70  − 0.78  5.92  –  3.35 
B24N24  − 8.58  –  –  − 7.27  − 0.73  6.54  –  0.02 
PHT/B24N24  − 17.09  − 12.54  1.58  − 6.78  − 1.41  5.36  − 18.04  11.20 
Al24N24  − 27.19  –  –  − 6.47  − 2.23  4.24  –  0.03 
PHT/Al24N24  –33.70  − 35.36  1.91  − 6.13  − 2.13  4.00  − 5.66  8.06  

Table 3 
Maximum absorption wavelength (λmax), oscillator strength (f), and main con-
tributions of the pure and interacted nano-structures in their UV spectra.  

Molecule λmax 

(nm) 
f Major contribution 

B24N24 218  0.00001 H-1 → LUMO (24 %), HOMO → LUMO (27 
%), HOMO → L + 1 (20 %) 

PHT/ 
B24N24 

263  0.0267 H-5 → LUMO (44 %), H-4 → LUMO (18 %), 
H-6 → LUMO (18 %) 

Al24N24 350  0.0001 H-2 → LUMO (95 %) 
PHT/ 

Al24N24 

381  0.0006 HOMO → LUMO (96 %)  
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Thus, these values indicated a concentration-independent sensor 
response. 

4. Conclusions 

Current work investigated the interactions of B24N24 and Al24N24 
nano-structures with PHT drug using DFT calculations to evaluate their 
detecting potential. The computed Ead was − 12.54 and − 35.36 kcal 
mol− 1 for PHT adsorption on the nano-structures in their most stable 
configuration, respectively. The energy gap variations and DOS plots 
confirmed B24N24 nano-structure has higher sensitivity toward the PHT 
drug. On the other hand, recovery time calculations revealed B24N24 
nano-structures has a short recovery time of 1.52 × 10− 5 s for desorption 
of the adsorbed PHT. The solvent energy values showed that the pure 
and PHT interacted nano-structures are stable in the water solution and 
can be applied as aqueous phase detectors. Consequently, these out-
comes firmed that the B24N24 nano-structure can be a promising sensor 
for PHT detection. 
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