
is one that is not accelerating. Because Newton's first law deals only with objects that are not accelerating, it holds only in inertial frames. Any reference frame that moves with constant velocity relative to an inertial frame is itself an inertial frame. (The Galilean transformations given by Equations 4.20 and 4.21 relate positions and velocities between two inertial frames.)

A reference frame that moves with constant velocity relative to the distant stars is the best approximation of an inertial frame, and for our purposes we can consider planet Earth as being such a frame. The Earth is not really an inertial frame because of its orbital motion around the Sun and its rotational motion about its own axis. As the Earth travels in its nearly circular orbit around the Sun, it experiences an acceleration of about $4.4 \times 10^{-3} \mathrm{~m} / \mathrm{s}^{2}$ directed toward the Sun. In addition, because the Earth rotates about its own axis once every 24 h , a point on the equator experiences an additional acceleration of $3.37 \times 10^{-2} \mathrm{~m} / \mathrm{s}^{2}$ directed toward the center of the Earth. However, these accelerations are small compared with g and can often be neglected. For this reason, we assume that the Earth is an inertial frame, as is any other frame attached to it.

If an object is moving with constant velocity, an observer in one inertial frame (say, one at rest relative to the object) claims that the acceleration of the object and the resultant force acting on it are zero. An observer in any other inertial frame also finds that $\mathbf{a}=0$ and $\Sigma \mathbf{F}=0$ for the object. According to the first law, a body at rest and one moving with constant velocity are equivalent. A passenger in a car moving along a straight road at a constant speed of $100 \mathrm{~km} / \mathrm{h}$ can easily pour coffee into a cup. But if the driver steps on the gas or brake pedal or turns the steering wheel while the coffee is being poured, the car accelerates and it is no longer an inertial frame. The laws of motion do not work as expected, and the coffee ends up in the passenger's lap!

Figure 5.3 Unless a net external force acts on it, an object at rest remains at rest and an object in motion continues in motion with constant velocity. In this case, the wall of the building did not exert a force on the moving train that was large enough to stop it.

Quick Quiz 5.1

True or false: (a) It is possible to have motion in the absence of a force. (b) It is possible to have force in the absence of motion.

5.3 MASS

Imagine playing catch with either a basketball or a bowling ball. Which ball is . 3 more likely to keep moving when you try to catch it? Which ball has the greater tendency to remain motionless when you try to throw it? Because the bowling ball is more resistant to changes in its velocity, we say it has greater inertia than the basketball. As noted in the preceding section, inertia is a measure of how an object responds to an external force.

Mass is that property of an object that specifies how much inertia the object has, and as we learned in Section 1.1, the SI unit of mass is the kilogram. The greater the mass of an object, the less that object accelerates under the action of an applied force. For example, if a given force acting on a $3-\mathrm{kg}$ mass produces an acceleration of $4 \mathrm{~m} / \mathrm{s}^{2}$, then the same force applied to a $6-\mathrm{kg}$ mass produces an acceleration of $2 \mathrm{~m} / \mathrm{s}^{2}$.

To describe mass quantitatively, we begin by comparing the accelerations a given force produces on different objects. Suppose a force acting on an object of mass m_{1} produces an acceleration \mathbf{a}_{1}, and the same force acting on an object of mass m_{2} produces an acceleration \mathbf{a}_{2}. The ratio of the two masses is defined as the $i n$ verse ratio of the magnitudes of the accelerations produced by the force:

$$
\begin{equation*}
\frac{m_{1}}{m_{2}} \equiv \frac{a_{2}}{a_{1}} \tag{5.1}
\end{equation*}
$$

If one object has a known mass, the mass of the other object can be obtained from acceleration measurements.

Mass is an inherent property of an object and is independent of the object's surroundings and of the method used to measure it. Also, mass is a scalar quantity and thus obeys the rules of ordinary arithmetic. That is, several masses can be combined in simple numerical fashion. For example, if you combine a $3-\mathrm{kg}$ mass with a $5-\mathrm{kg}$ mass, their total mass is 8 kg . We can verify this result experimentally by comparing the acceleration that a known force gives to several objects separately with the acceleration that the same force gives to the same objects combined as one unit.

Mass should not be confused with weight. Mass and weight are two different quantities. As we see later in this chapter, the weight of an object is equal to the magnitude of the gravitational force exerted on the object and varies with location. For example, a person who weighs 180 lb on the Earth weighs only about 30 lb on the Moon. On the other hand, the mass of a body is the same everywhere: an object having a mass of 2 kg on the Earth also has a mass of 2 kg on the Moon.

5.4 NEWTON'S SECOND LAW

Newton's first law explains what happens to an object when no forces act on it. It
either remains at rest or moves in a straight line with constant speed. Newton's second law answers the question of what happens to an object that has a nonzero resultant force acting on it.

Imagine pushing a block of ice across a frictionless horizontal surface. When you exert some horizontal force \mathbf{F}, the block moves with some acceleration \mathbf{a}. If you apply a force twice as great, the acceleration doubles. If you increase the applied force to $3 \mathbf{F}$, the acceleration triples, and so on. From such observations, we conclude that the acceleration of an object is directly proportional to the resultant force acting on it.

The acceleration of an object also depends on its mass, as stated in the preceding section. We can understand this by considering the following experiment. If you apply a force \mathbf{F} to a block of ice on a frictionless surface, then the block undergoes some acceleration a. If the mass of the block is doubled, then the same applied force produces an acceleration $\mathbf{a} / 2$. If the mass is tripled, then the same applied force produces an acceleration $\mathbf{a} / 3$, and so on. According to this observation, we conclude that the magnitude of the acceleration of an object is inversely proportional to its mass.

These observations are summarized in Newton's second law:

The acceleration of an object is directly proportional to the net force acting on it and inversely proportional to its mass.

Thus, we can relate mass and force through the following mathematical statement of Newton's second law: ${ }^{1}$

$$
\begin{equation*}
\sum \mathbf{F}=m \mathbf{a} \tag{5.2}
\end{equation*}
$$

Note that this equation is a vector expression and hence is equivalent to three component equations:

$$
\begin{equation*}
\sum F_{x}=m a_{x} \quad \sum F_{y}=m a_{y} \quad \sum F_{z}=m a_{z} \tag{5.3}
\end{equation*}
$$

Quick Quiz 5.2

Is there any relationship between the net force acting on an object and the direction in which the object moves?

Unit of Force

The SI unit of force is the newton, which is defined as the force that, when acting on a $1-\mathrm{kg}$ mass, produces an acceleration of $1 \mathrm{~m} / \mathrm{s}^{2}$. From this definition and Newton's second law, we see that the newton can be expressed in terms of the following fundamental units of mass, length, and time:

$$
\begin{equation*}
1 \mathrm{~N} \equiv 1 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}^{2} \tag{5.4}
\end{equation*}
$$

In the British engineering system, the unit of force is the pound, which is defined as the force that, when acting on a 1 -slug mass, ${ }^{2}$ produces an acceleration of $1 \mathrm{ft} / \mathrm{s}^{2}$:

$$
\begin{equation*}
1 \mathrm{lb} \equiv 1 \mathrm{slug} \cdot \mathrm{ft} / \mathrm{s}^{2} \tag{5.5}
\end{equation*}
$$

A convenient approximation is that $1 \mathrm{~N} \approx \frac{1}{4} \mathrm{lb}$.

[^0]Newton's second law

Newton's second lawcomponent form

[^0]: ${ }^{1}$ Equation 5.2 is valid only when the speed of the object is much less than the speed of light. We treat the relativistic situation in Chapter 39.
 ${ }^{2}$ The slug is the unit of mass in the British engineering system and is that system's counterpart of the SI unit the kilogram. Because most of the calculations in our study of classical mechanics are in SI units, the slug is seldom used in this text.

