## Quick Quiz 10.1

Describe a situation in which $\omega<0$ and $\boldsymbol{\omega}$ and $\boldsymbol{\alpha}$ are antiparallel.

### 10.2 ROTATIONAL KINEMATICS: ROTATIONAL MOTION WITH CONSTANT ANGULAR ACCELERATION

In our study of linear motion, we found that the simplest form of accelerated mo7.2 tion to analyze is motion under constant linear acceleration. Likewise, for rotational motion about a fixed axis, the simplest accelerated motion to analyze is motion under constant angular acceleration. Therefore, we next develop kinematic relationships for this type of motion. If we write Equation 10.6 in the form $d \omega=$ $\alpha d t$, and let $t_{i}=0$ and $t_{f}=t$, we can integrate this expression directly:

$$
\omega_{f}=\omega_{i}+\alpha t \quad(\text { for constant } \alpha)
$$

(10.7)

Substituting Equation 10.7 into Equation 10.4 and integrating once more we obtain

$$
\begin{equation*}
\theta_{f}=\theta_{i}+\omega_{i} t+\frac{1}{2} \alpha t^{2} \quad(\text { for constant } \alpha) \tag{10.8}
\end{equation*}
$$

If we eliminate $t$ from Equations 10.7 and 10.8, we obtain

$$
\begin{equation*}
\omega_{f}^{2}=\omega_{i}{ }^{2}+2 \alpha\left(\theta_{f}-\theta_{i}\right) \quad(\text { for constant } \alpha) \tag{10.9}
\end{equation*}
$$

Notice that these kinematic expressions for rotational motion under constant angular acceleration are of the same form as those for linear motion under constant linear acceleration with the substitutions $x \rightarrow \theta, v \rightarrow \omega$, and $a \rightarrow \alpha$. Table 10.1 compares the kinematic equations for rotational and linear motion.

## EXAMPLE 10.1 Rotating Wheel

A wheel rotates with a constant angular acceleration of $3.50 \mathrm{rad} / \mathrm{s}^{2}$. If the angular speed of the wheel is $2.00 \mathrm{rad} / \mathrm{s}$ at $t_{i}=0$, (a) through what angle does the wheel rotate in 2.00 s ?

Solution We can use Figure 10.2 to represent the wheel, and so we do not need a new drawing. This is a straightforward application of an equation from Table 10.1:

$$
\begin{aligned}
\theta_{f}-\theta_{i}= & \omega_{i} t+\frac{1}{2} \alpha t^{2}=(2.00 \mathrm{rad} / \mathrm{s})(2.00 \mathrm{~s}) \\
& +\frac{1}{2}\left(3.50 \mathrm{rad} / \mathrm{s}^{2}\right)(2.00 \mathrm{~s})^{2} \\
= & 11.0 \mathrm{rad}=(11.0 \mathrm{rad})\left(57.3^{\circ} / \mathrm{rad}\right)=630^{\circ} \\
= & \frac{630^{\circ}}{360^{\circ} / \mathrm{rev}}=1.75 \mathrm{rev}
\end{aligned}
$$

(b) What is the angular speed at $t=2.00 \mathrm{~s}$ ?

Solution Because the angular acceleration and the angular speed are both positive, we can be sure our answer must be greater than $2.00 \mathrm{rad} / \mathrm{s}$.

$$
\begin{aligned}
\omega_{f} & =\omega_{i}+\alpha t=2.00 \mathrm{rad} / \mathrm{s}+\left(3.50 \mathrm{rad} / \mathrm{s}^{2}\right)(2.00 \mathrm{~s}) \\
& =9.00 \mathrm{rad} / \mathrm{s}
\end{aligned}
$$

We could also obtain this result using Equation 10.9 and the results of part (a). Try it! You also may want to see if you can formulate the linear motion analog to this problem.

Exercise Find the angle through which the wheel rotates between $t=2.00 \mathrm{~s}$ and $t=3.00 \mathrm{~s}$.

Answer 10.8 rad .

## TABLE 10. 1 Kinematic Equations for Rotational and Linear Motion Under Constant Acceleration

Rotational Motion About a Fixed Axis
Linear Motion

$$
\begin{aligned}
\omega_{f} & =\omega_{i}+\alpha t & v_{f} & =v_{i}+a t \\
\theta_{f} & =\theta_{i}+\omega_{i} t+\frac{1}{2} \alpha t^{2} & x_{f} & =x_{i}+v_{i} t+\frac{1}{2} a t^{2} \\
\omega_{f}{ }^{2} & =\omega_{i}{ }^{2}+2 \alpha\left(\theta_{f}-\theta_{i}\right) & v_{f}{ }^{2} & =v_{i}{ }^{2}+2 a\left(x_{f}-x_{i}\right)
\end{aligned}
$$

### 10.3 ANGULAR AND LINEAR QUANTITIES

In this section we derive some useful relationships between the angular speed and acceleration of a rotating rigid object and the linear speed and acceleration of an arbitrary point in the object. To do so, we must keep in mind that when a rigid object rotates about a fixed axis, as in Figure 10.4, every particle of the object moves in a circle whose center is the axis of rotation.

We can relate the angular speed of the rotating object to the tangential speed of a point $P$ on the object. Because point $P$ moves in a circle, the linear velocity vector $\mathbf{v}$ is always tangent to the circular path and hence is called tangential velocity. The magnitude of the tangential velocity of the point $P$ is by definition the tangential speed $v=d s / d t$, where $s$ is the distance traveled by this point measured along the circular path. Recalling that $s=r \theta$ (Eq. 10.1a) and noting that $r$ is constant, we obtain

$$
v=\frac{d s}{d t}=r \frac{d \theta}{d t}
$$

Because $d \theta / d t=\omega$ (see Eq. 10.4), we can say

$$
\begin{equation*}
v=r \omega \tag{10.10}
\end{equation*}
$$

That is, the tangential speed of a point on a rotating rigid object equals the perpendicular distance of that point from the axis of rotation multiplied by the angular speed. Therefore, although every point on the rigid object has the same angular speed, not every point has the same linear speed because $r$ is not the same for all points on the object. Equation 10.10 shows that the linear speed of a point on the rotating object increases as one moves outward from the center of rotation, as we would intuitively expect. The outer end of a swinging baseball bat moves much faster than the handle.

We can relate the angular acceleration of the rotating rigid object to the tangential acceleration of the point $P$ by taking the time derivative of $v$ :

$$
\begin{align*}
& a_{t}=\frac{d v}{d t}=r \frac{d \omega}{d t} \\
& a_{t}=r \alpha \tag{10.11}
\end{align*}
$$

That is, the tangential component of the linear acceleration of a point on a rotating rigid object equals the point's distance from the axis of rotation multiplied by the angular acceleration.


Figure 10.5 As a rigid object rotates about a fixed axis through $O$, the point $P$ experiences a tangential component of linear acceleration $a_{t}$ and a radial component of linear acceleration $a_{r}$. The total linear acceleration of this point is $\mathbf{a}=$ $\mathbf{a}_{t}+\mathbf{a}_{r}$.

In Section 4.4 we found that a point rotating in a circular path undergoes a centripetal, or radial, acceleration $\mathbf{a}_{r}$ of magnitude $v^{2} / r$ directed toward the center of rotation (Fig. 10.5). Because $v=r \omega$ for a point $P$ on a rotating object, we can express the radial acceleration of that point as

$$
\begin{equation*}
a_{r}=\frac{v^{2}}{r}=r \omega^{2} \tag{10.12}
\end{equation*}
$$

The total linear acceleration vector of the point is $\mathbf{a}=\mathbf{a}_{t}+\mathbf{a}_{r}$. ( $\mathbf{a}_{t}$ describes the change in how fast the point is moving, and $\mathbf{a}_{r}$ represents the change in its direction of travel.) Because $\mathbf{a}$ is a vector having a radial and a tangential component, the magnitude of $\mathbf{a}$ for the point $P$ on the rotating rigid object is

$$
\begin{equation*}
a=\sqrt{a_{t}{ }^{2}+a_{r}^{2}}=\sqrt{r^{2} \alpha^{2}+r^{2} \omega^{4}}=r \sqrt{\alpha^{2}+\omega^{4}} \tag{10.13}
\end{equation*}
$$

## Ouick Ouiz 10.2

When a wheel of radius $R$ rotates about a fixed axis, do all points on the wheel have (a) the same angular speed and (b) the same linear speed? If the angular speed is constant and equal to $\omega$, describe the linear speeds and linear accelerations of the points located at (c) $r=0$, (d) $r=R / 2$, and (e) $r=R$, all measured from the center of the wheel.

## EXAMPLE 10.2 CD Player

On a compact disc, audio information is stored in a series of pits and flat areas on the surface of the disc. The information is stored digitally, and the alternations between pits and flat areas on the surface represent binary ones and zeroes to be read by the compact disc player and converted back to sound waves. The pits and flat areas are detected by a system consisting of a laser and lenses. The length of a certain number of ones and zeroes is the same everywhere on the disc, whether the information is near the center of the disc or near its outer edge. In order that this length of ones and zeroes always passes by the laser-lens system in the same time period, the linear speed of the disc surface at the location of the lens must be constant. This requires, according to Equation 10.10, that the angular speed vary as the laser-lens system moves radially along the disc. In a typical compact disc player, the disc spins counterclockwise (Fig. 10.6), and the constant speed of the surface at the point of the laser-lens system is $1.3 \mathrm{~m} / \mathrm{s}$. (a) Find the angular speed of the disc in revolutions per minute when information is being read from the innermost first track ( $r=23 \mathrm{~mm}$ ) and the outermost final track ( $r=$ 58 mm ).

Solution Using Equation 10.10, we can find the angular speed; this will give us the required linear speed at the position of the inner track,

$$
\omega_{i}=\frac{v}{r_{i}}=\frac{1.3 \mathrm{~m} / \mathrm{s}}{2.3 \times 10^{-2} \mathrm{~m}}=56.5 \mathrm{rad} / \mathrm{s}
$$

$$
=(56.5 \mathrm{rad} / \mathrm{s})\left(\frac{1}{2 \pi} \mathrm{rev} / \mathrm{rad}\right)(60 \mathrm{~s} / \mathrm{min})
$$

$$
=5.4 \times 10^{2} \mathrm{rev} / \mathrm{min}
$$



Figure 10.6 A compact disc.

For the outer track,

$$
\begin{aligned}
\omega_{f} & =\frac{v}{r_{f}}=\frac{1.3 \mathrm{~m} / \mathrm{s}}{5.8 \times 10^{-2} \mathrm{~m}}=22.4 \mathrm{rad} / \mathrm{s} \\
& =2.1 \times 10^{2} \mathrm{rev} / \mathrm{min}
\end{aligned}
$$

The player adjusts the angular speed $\omega$ of the disc within this range so that information moves past the objective lens at a constant rate. These angular velocity values are positive because the direction of rotation is counterclockwise.
(b) The maximum playing time of a standard music CD is 74 minutes and 33 seconds. How many revolutions does the disc make during that time?

Solution We know that the angular speed is always decreasing, and we assume that it is decreasing steadily, with $\alpha$ constant. The time interval $t$ is $(74 \mathrm{~min})(60 \mathrm{~s} / \mathrm{min})+$ $33 \mathrm{~s}=4473 \mathrm{~s}$. We are looking for the angular position $\theta_{f}$, where we set the initial angular position $\theta_{i}=0$. We can use Equation 10.3, replacing the average angular speed $\bar{\omega}$ with its mathematical equivalent $\left(\omega_{i}+\omega_{f}\right) / 2$ :

$$
\begin{aligned}
\theta_{f}= & \theta_{i}+\frac{1}{2}\left(\omega_{i}+\omega_{f}\right) t \\
= & 0+\frac{1}{2}(540 \mathrm{rev} / \mathrm{min}+210 \mathrm{rev} / \mathrm{min}) \\
& (1 \mathrm{~min} / 60 \mathrm{~s})(4473 \mathrm{~s}) \\
= & 2.8 \times 10^{4} \mathrm{rev}
\end{aligned}
$$

(c) What total length of track moves past the objective lens during this time?

Solution Because we know the (constant) linear velocity and the time interval, this is a straightforward calculation:

$$
x_{f}=v_{i} t=(1.3 \mathrm{~m} / \mathrm{s})(4473 \mathrm{~s})=5.8 \times 10^{3} \mathrm{~m}
$$

More than 3.6 miles of track spins past the objective lens!
(d) What is the angular acceleration of the CD over the 4473 -s time interval? Assume that $\alpha$ is constant.

Solution We have several choices for approaching this problem. Let us use the most direct approach by utilizing Equation 10.5, which is based on the definition of the term we are seeking. We should obtain a negative number for the angular acceleration because the disc spins more and more slowly in the positive direction as time goes on. Our answer should also be fairly small because it takes such a long timemore than an hour-for the change in angular speed to be accomplished:

$$
\begin{aligned}
\alpha & =\frac{\omega_{f}-\omega_{i}}{t}=\frac{22.4 \mathrm{rad} / \mathrm{s}-56.5 \mathrm{rad} / \mathrm{s}}{4473 \mathrm{~s}} \\
& =-7.6 \times 10^{-3} \mathrm{rad} / \mathrm{s}^{2}
\end{aligned}
$$

The disc experiences a very gradual decrease in its rotation rate, as expected.

### 10.4 ROTATIONAL ENERGY

Let us now look at the kinetic energy of a rotating rigid object, considering the ob7.3 ject as a collection of particles and assuming it rotates about a fixed $z$ axis with an angular speed $\omega$ (Fig. 10.7). Each particle has kinetic energy determined by its mass and linear speed. If the mass of the $i$ th particle is $m_{i}$ and its linear speed is $v_{i}$, its kinetic energy is

$$
K_{i}=\frac{1}{2} m_{i} v_{i}^{2}
$$

To proceed further, we must recall that although every particle in the rigid object has the same angular speed $\omega$, the individual linear speeds depend on the distance $r_{i}$ from the axis of rotation according to the expression $v_{i}=r_{i} \omega$ (see Eq. 10.10). The total kinetic energy of the rotating rigid object is the sum of the kinetic energies of the individual particles:

$$
K_{\mathrm{R}}=\sum_{i} K_{i}=\sum_{i} \frac{1}{2} m_{i} v_{i}^{2}=\frac{1}{2} \sum_{i} m_{i} r_{i}{ }^{2} \omega^{2}
$$

We can write this expression in the form

$$
\begin{equation*}
K_{\mathrm{R}}=\frac{1}{2}\left(\sum_{i} m_{i} r_{i}{ }^{2}\right) \omega^{2} \tag{10.14}
\end{equation*}
$$

where we have factored $\omega^{2}$ from the sum because it is common to every particle.


Figure 10.7 A rigid object rotating about a $z$ axis with angular speed $\omega$. The kinetic energy of the particle of mass $m_{i}$ is $\frac{1}{2} m_{i} v_{i}{ }^{2}$. The total kinetic energy of the object is called its rotational kinetic energy.

Moment of inertia

Rotational kinetic energy

We simplify this expression by defining the quantity in parentheses as the moment of inertia $I$ :

$$
\begin{equation*}
I \equiv \sum_{i} m_{i} r_{i}{ }^{2} \tag{10.15}
\end{equation*}
$$

From the definition of moment of inertia, we see that it has dimensions of $\mathrm{ML}^{2}$ ( $\mathrm{kg} \cdot \mathrm{m}^{2}$ in SI units). ${ }^{1}$ With this notation, Equation 10.14 becomes

$$
\begin{equation*}
K_{\mathrm{R}}=\frac{1}{2} I \omega^{2} \tag{10.16}
\end{equation*}
$$

Although we commonly refer to the quantity $\frac{1}{2} I \omega^{2}$ as rotational kinetic energy, it is not a new form of energy. It is ordinary kinetic energy because it is derived from a sum over individual kinetic energies of the particles contained in the rigid object. However, the mathematical form of the kinetic energy given by Equation 10.16 is a convenient one when we are dealing with rotational motion, provided we know how to calculate $I$.

It is important that you recognize the analogy between kinetic energy associated with linear motion $\frac{1}{2} m v^{2}$ and rotational kinetic energy $\frac{1}{2} I \omega^{2}$. The quantities $I$ and $\omega$ in rotational motion are analogous to $m$ and $v$ in linear motion, respectively. (In fact, $I$ takes the place of $m$ every time we compare a linear-motion equation with its rotational counterpart.) The moment of inertia is a measure of the resistance of an object to changes in its rotational motion, just as mass is a measure of the tendency of an object to resist changes in its linear motion. Note, however, that mass is an intrinsic property of an object, whereas $I$ depends on the physical arrangement of that mass. Can you think of a situation in which an object's moment of inertia changes even though its mass does not?

## EXAMPLE 10.3 The Oxygen Molecule

Consider an oxygen molecule $\left(\mathrm{O}_{2}\right)$ rotating in the $x y$ plane about the $z$ axis. The axis passes through the center of the molecule, perpendicular to its length. The mass of each oxygen atom is $2.66 \times 10^{-26} \mathrm{~kg}$, and at room temperature the average separation between the two atoms is $d=1.21 \times$ $10^{-10} \mathrm{~m}$ (the atoms are treated as point masses). (a) Calculate the moment of inertia of the molecule about the $z$ axis.

Solution This is a straightforward application of the definition of $I$. Because each atom is a distance $d / 2$ from the $z$ axis, the moment of inertia about the axis is

$$
\begin{aligned}
I & =\sum_{i} m_{i} r_{i}{ }^{2}=m\left(\frac{d}{2}\right)^{2}+m\left(\frac{d}{2}\right)^{2}=\frac{1}{2} m d^{2} \\
& =\frac{1}{2}\left(2.66 \times 10^{-26} \mathrm{~kg}\right)\left(1.21 \times 10^{-10} \mathrm{~m}\right)^{2}
\end{aligned}
$$

$$
=1.95 \times 10^{-46} \mathrm{~kg} \cdot \mathrm{~m}^{2}
$$

This is a very small number, consistent with the minuscule masses and distances involved.
(b) If the angular speed of the molecule about the $z$ axis is $4.60 \times 10^{12} \mathrm{rad} / \mathrm{s}$, what is its rotational kinetic energy?

Solution We apply the result we just calculated for the moment of inertia in the formula for $K_{\mathrm{R}}$ :

$$
\begin{aligned}
K_{\mathrm{R}} & =\frac{1}{2} I \omega^{2} \\
& =\frac{1}{2}\left(1.95 \times 10^{-46} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)\left(4.60 \times 10^{12} \mathrm{rad} / \mathrm{s}\right)^{2} \\
& =2.06 \times 10^{-21} \mathrm{~J}
\end{aligned}
$$

[^0]
## EXAMPLE 10.4 Four Rotating Masses

Four tiny spheres are fastened to the corners of a frame of negligible mass lying in the $x y$ plane (Fig. 10.8). We shall assume that the spheres' radii are small compared with the dimensions of the frame. (a) If the system rotates about the $y$ axis with an angular speed $\omega$, find the moment of inertia and the rotational kinetic energy about this axis.

Solution First, note that the two spheres of mass $m$, which lie on the $y$ axis, do not contribute to $I_{y}$ (that is, $r_{i}=0$ for these spheres about this axis). Applying Equation 10.15, we obtain

$$
I_{y}=\sum_{i} m_{i} r_{i}^{2}=M a^{2}+M a^{2}=2 M a^{2}
$$



Figure 10.8 The four spheres are at a fixed separation as shown. The moment of inertia of the system depends on the axis about which it is evaluated.

Therefore, the rotational kinetic energy about the $y$ axis is

$$
K_{\mathrm{R}}=\frac{1}{2} I_{y} \omega^{2}=\frac{1}{2}\left(2 M a^{2}\right) \omega^{2}=M a^{2} \omega^{2}
$$

The fact that the two spheres of mass $m$ do not enter into this result makes sense because they have no motion about the axis of rotation; hence, they have no rotational kinetic energy. By similar logic, we expect the moment of inertia about the $x$ axis to be $I_{x}=2 m b^{2}$ with a rotational kinetic energy about that axis of $K_{\mathrm{R}}=m b^{2} \omega^{2}$.
(b) Suppose the system rotates in the $x y$ plane about an axis through $O$ (the $z$ axis). Calculate the moment of inertia and rotational kinetic energy about this axis.

Solution Because $r_{i}$ in Equation 10.15 is the perpendicular distance to the axis of rotation, we obtain

$$
\begin{aligned}
& I_{z}=\sum_{i} m_{i} r_{i}{ }^{2}=M a^{2}+M a^{2}+m b^{2}+m b^{2}=2 M a^{2}+2 m b^{2} \\
& K_{\mathrm{R}}=\frac{1}{2} I_{z} \omega^{2}=\frac{1}{2}\left(2 M a^{2}+2 m b^{2}\right) \omega^{2}=\left(M a^{2}+m b^{2}\right) \omega^{2}
\end{aligned}
$$

Comparing the results for parts (a) and (b), we conclude that the moment of inertia and therefore the rotational kinetic energy associated with a given angular speed depend on the axis of rotation. In part (b), we expect the result to include all four spheres and distances because all four spheres are rotating in the $x y$ plane. Furthermore, the fact that the rotational kinetic energy in part (a) is smaller than that in part (b) indicates that it would take less effort (work) to set the system into rotation about the $y$ axis than about the $z$ axis.

### 10.5 CALCULATION OF MOMENTS OF INERTIA

We can evaluate the moment of inertia of an extended rigid object by imagining
7.5 the object divided into many small volume elements, each of which has mass $\Delta m$. We use the definition $I=\sum_{i} r_{i}{ }^{2} \Delta m_{i}$ and take the limit of this sum as $\Delta m \rightarrow 0$. In this limit, the sum becomes an integral over the whole object:

$$
\begin{equation*}
I=\lim _{\Delta m_{i} \rightarrow 0} \sum_{i} r_{i}{ }^{2} \Delta m_{i}=\int r^{2} d m \tag{10.17}
\end{equation*}
$$

It is usually easier to calculate moments of inertia in terms of the volume of the elements rather than their mass, and we can easily make that change by using Equation 1.1, $\rho=m / V$, where $\rho$ is the density of the object and $V$ is its volume. We want this expression in its differential form $\rho=d m / d V$ because the volumes we are dealing with are very small. Solving for $d m=\rho d V$ and substituting the result
into Equation 10.17 gives

$$
I=\int \rho r^{2} d V
$$

If the object is homogeneous, then $\rho$ is constant and the integral can be evaluated for a known geometry. If $\rho$ is not constant, then its variation with position must be known to complete the integration.

The density given by $\rho=m / V$ sometimes is referred to as volume density for the obvious reason that it relates to volume. Often we use other ways of expressing density. For instance, when dealing with a sheet of uniform thickness $t$, we can define a surface density $\sigma=\rho t$, which signifies mass per unit area. Finally, when mass is distributed along a uniform rod of cross-sectional area $A$, we sometimes use linear density $\lambda=M / L=\rho A$, which is the mass per unit length.

## EXAMPLE 10.5 Uniform Hoop

Find the moment of inertia of a uniform hoop of mass $M$ and radius $R$ about an axis perpendicular to the plane of the hoop and passing through its center (Fig. 10.9).

Solution All mass elements $d m$ are the same distance $r=$ $R$ from the axis, and so, applying Equation 10.17, we obtain for the moment of inertia about the $z$ axis through $O$ :

$$
I_{z}=\int r^{2} d m=R^{2} \int d m=M R^{2}
$$

Note that this moment of inertia is the same as that of a single particle of mass $M$ located a distance $R$ from the axis of rotation.


Figure 10.9 The mass elements $d m$ of a uniform hoop are all the same distance from $O$.

## Quick Puiz 10.3

(a) Based on what you have learned from Example 10.5, what do you expect to find for the moment of inertia of two particles, each of mass $M / 2$, located anywhere on a circle of radius $R$ around the axis of rotation? (b) How about the moment of inertia of four particles, each of mass $M / 4$, again located a distance $R$ from the rotation axis?

## EXAMPLE 10.6 Uniform Rigid Rod

Calculate the moment of inertia of a uniform rigid rod of length $L$ and mass $M$ (Fig. 10.10) about an axis perpendicular to the rod (the $y$ axis) and passing through its center of mass.

Solution The shaded length element $d x$ has a mass $d m$ equal to the mass per unit length $\lambda$ multiplied by $d x$ :

$$
d m=\lambda d x=\frac{M}{L} d x
$$

Substituting this expression for $d m$ into Equation 10.17, with $r=x$, we obtain

$$
\begin{aligned}
I_{y} & =\int r^{2} d m=\int_{-L / 2}^{L / 2} x^{2} \frac{M}{L} d x=\frac{M}{L} \int_{-L / 2}^{L / 2} x^{2} d x \\
& =\frac{M}{L}\left[\frac{x^{3}}{3}\right]_{-L / 2}^{L / 2}=\frac{1}{12} M L^{2}
\end{aligned}
$$



Figure 10.10 A uniform rigid rod of length $L$. The moment of inertia about the $y$ axis is less than that about the $y^{\prime}$ axis. The latter axis is examined in Example 10.8.

## EXAMPLE 10.7 Uniform Solid Cylinder

A uniform solid cylinder has a radius $R$, mass $M$, and length $L$. Calculate its moment of inertia about its central axis (the $z$ axis in Fig. 10.11).

Solution It is convenient to divide the cylinder into many


Figure 10.11 Calculating $I$ about the $z$ axis for a uniform solid cylinder.
cylindrical shells, each of which has radius $r$, thickness $d r$, and length $L$, as shown in Figure 10.11. The volume $d V$ of each shell is its cross-sectional area multiplied by its length: $d V=$ $d A \cdot L=(2 \pi r d r) L$. If the mass per unit volume is $\rho$, then the mass of this differential volume element is $d m=\rho d V=$ $\rho 2 \pi r L d r$. Substituting this expression for $d m$ into Equation 10.17, we obtain

$$
I_{z}=\int r^{2} d m=2 \pi \rho L \int_{0}^{R} r^{3} d r=\frac{1}{2} \pi \rho L R^{4}
$$

Because the total volume of the cylinder is $\pi R^{2} L$, we see that $\rho=M / V=M / \pi R^{2} L$. Substituting this value for $\rho$ into the above result gives

$$
\begin{equation*}
I_{z}=\frac{1}{2} M R^{2} \tag{1}
\end{equation*}
$$

Note that this result does not depend on $L$, the length of the cylinder. In other words, it applies equally well to a long cylinder and a flat disc. Also note that this is exactly half the value we would expect were all the mass concentrated at the outer edge of the cylinder or disc. (See Example 10.5.)

Table 10.2 gives the moments of inertia for a number of bodies about specific axes. The moments of inertia of rigid bodies with simple geometry (high symmetry) are relatively easy to calculate provided the rotation axis coincides with an axis of symmetry. The calculation of moments of inertia about an arbitrary axis can be cumbersome, however, even for a highly symmetric object. Fortunately, use of an important theorem, called the parallel-axis theorem, often simplifies the calculation. Suppose the moment of inertia about an axis through the center of mass of an object is $I_{\mathrm{CM}}$. The parallel-axis theorem states that the moment of inertia about any axis parallel to and a distance $D$ away from this axis is

$$
\begin{equation*}
I=I_{\mathrm{CM}}+M D^{2} \tag{10.18}
\end{equation*}
$$


[^0]:    ${ }^{1}$ Civil engineers use moment of inertia to characterize the elastic properties (rigidity) of such structures as loaded beams. Hence, it is often useful even in a nonrotational context.

