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Describe a situation in which � � 0 and � and � are antiparallel.

ROTATIONAL KINEMATICS: ROTATIONAL MOTION
WITH CONSTANT ANGULAR ACCELERATION

In our study of linear motion, we found that the simplest form of accelerated mo-
tion to analyze is motion under constant linear acceleration. Likewise, for rota-
tional motion about a fixed axis, the simplest accelerated motion to analyze is mo-
tion under constant angular acceleration. Therefore, we next develop kinematic
relationships for this type of motion. If we write Equation 10.6 in the form d� �
� dt, and let ti � 0 and tf � t, we can integrate this expression directly:

(for constant �) (10.7)

Substituting Equation 10.7 into Equation 10.4 and integrating once more we
obtain

(for constant �) (10.8)

If we eliminate t from Equations 10.7 and 10.8, we obtain

(for constant �) (10.9)

Notice that these kinematic expressions for rotational motion under constant an-
gular acceleration are of the same form as those for linear motion under constant
linear acceleration with the substitutions x : �, v : �, and a : �. Table 10.1
compares the kinematic equations for rotational and linear motion.
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Quick Quiz 10.1

Rotating WheelEXAMPLE 10.1
Solution Because the angular acceleration and the angu-
lar speed are both positive, we can be sure our answer must
be greater than 2.00 rad/s.

We could also obtain this result using Equation 10.9 and the
results of part (a). Try it! You also may want to see if you can
formulate the linear motion analog to this problem.

Exercise Find the angle through which the wheel rotates
between t � 2.00 s and t � 3.00 s.

Answer 10.8 rad.

9.00 rad/s�

�f � �i 	 �t � 2.00 rad/s 	 (3.50 rad/s2)(2.00 s)

A wheel rotates with a constant angular acceleration of 
3.50 rad/s2. If the angular speed of the wheel is 2.00 rad/s at
ti � 0, (a) through what angle does the wheel rotate in 2.00 s?

Solution We can use Figure 10.2 to represent the wheel,
and so we do not need a new drawing. This is a straightfor-
ward application of an equation from Table 10.1:

(b) What is the angular speed at t � 2.00 s?

1.75 rev    �
630°

360°/rev
�

630°   � 11.0 rad � (11.0 rad)(57.3°/rad) �

	 1
2 (3.50 rad/s2)(2.00 s)2

�f � �i � �it 	 1
2�t2 � (2.00 rad/s)(2.00 s)

Rotational kinematic equations

7.2
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ANGULAR AND LINEAR QUANTITIES
In this section we derive some useful relationships between the angular speed and
acceleration of a rotating rigid object and the linear speed and acceleration of an
arbitrary point in the object. To do so, we must keep in mind that when a rigid ob-
ject rotates about a fixed axis, as in Figure 10.4, every particle of the object moves
in a circle whose center is the axis of rotation.

We can relate the angular speed of the rotating object to the tangential speed
of a point P on the object. Because point P moves in a circle, the linear velocity
vector v is always tangent to the circular path and hence is called tangential velocity.
The magnitude of the tangential velocity of the point P is by definition the tangen-
tial speed v � ds/dt, where s is the distance traveled by this point measured along
the circular path. Recalling that s � r� (Eq. 10.1a) and noting that r is constant,
we obtain

Because d�/dt � � (see Eq. 10.4), we can say

(10.10)

That is, the tangential speed of a point on a rotating rigid object equals the per-
pendicular distance of that point from the axis of rotation multiplied by the angu-
lar speed. Therefore, although every point on the rigid object has the same angu-
lar speed, not every point has the same linear speed because r is not the same for
all points on the object. Equation 10.10 shows that the linear speed of a point on
the rotating object increases as one moves outward from the center of rotation, as
we would intuitively expect. The outer end of a swinging baseball bat moves much
faster than the handle.

We can relate the angular acceleration of the rotating rigid object to the tan-
gential acceleration of the point P by taking the time derivative of v:

(10.11)

That is, the tangential component of the linear acceleration of a point on a rotat-
ing rigid object equals the point’s distance from the axis of rotation multiplied by
the angular acceleration.

at � r�

at �
dv
dt

� r  
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10.3

Relationship between linear and
angular speed

TABLE 10.1 Kinematic Equations for Rotational and Linear Motion
Under Constant Acceleration

Rotational Motion About a Fixed Axis Linear Motion

�f � �i 	 �t vf � vi 	 at
�f � �i 	 �it 	 �t2 xf � xi 	 vit 	 at2

�f
2 � �i

2 	 2�(�f � �i) vf
2 � vi

2 	 2a(xf � xi)

1
2

1
2

Relationship between linear and
angular acceleration
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O

Figure 10.4 As a rigid object ro-
tates about the fixed axis through
O, the point P has a linear velocity
v that is always tangent to the circu-
lar path of radius r.

QuickLab
Spin a tennis ball or basketball and
watch it gradually slow down and
stop. Estimate � and at as accurately
as you can.
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In Section 4.4 we found that a point rotating in a circular path undergoes a
centripetal, or radial, acceleration ar of magnitude v2/r directed toward the center
of rotation (Fig. 10.5). Because v � r� for a point P on a rotating object, we can
express the radial acceleration of that point as

(10.12)

The total linear acceleration vector of the point is a � at 	 ar . (at describes
the change in how fast the point is moving, and ar represents the change in its di-
rection of travel.) Because a is a vector having a radial and a tangential compo-
nent, the magnitude of a for the point P on the rotating rigid object is

(10.13)

When a wheel of radius R rotates about a fixed axis, do all points on the wheel have (a) the
same angular speed and (b) the same linear speed? If the angular speed is constant and
equal to �, describe the linear speeds and linear accelerations of the points located at 
(c) r � 0, (d) r � R/2, and (e) r � R, all measured from the center of the wheel.

Quick Quiz 10.2

a � √at 2 	 ar 

2 � √r 2�2 	 r 2�4 � r √�2 	 �4

ar �
v2

r
� r�2

CD PlayerEXAMPLE 10.2

�  5.4 
 102 rev/min

  � (56.5 rad/s)� 1
2�  rev/rad�(60 s/min)

On a compact disc, audio information is stored in a series of
pits and flat areas on the surface of the disc. The information
is stored digitally, and the alternations between pits and flat
areas on the surface represent binary ones and zeroes to be
read by the compact disc player and converted back to sound
waves. The pits and flat areas are detected by a system consist-
ing of a laser and lenses. The length of a certain number of
ones and zeroes is the same everywhere on the disc, whether
the information is near the center of the disc or near its
outer edge. In order that this length of ones and zeroes al-
ways passes by the laser– lens system in the same time period,
the linear speed of the disc surface at the location of the lens
must be constant. This requires, according to Equation 10.10,
that the angular speed vary as the laser– lens system moves ra-
dially along the disc. In a typical compact disc player, the disc
spins counterclockwise (Fig. 10.6), and the constant speed of
the surface at the point of the laser– lens system is 1.3 m/s.
(a) Find the angular speed of the disc in revolutions per
minute when information is being read from the innermost
first track (r � 23 mm) and the outermost final track (r �
58 mm).

Solution Using Equation 10.10, we can find the angular
speed; this will give us the required linear speed at the posi-
tion of the inner track,

�i �
v
ri

�
1.3 m/s

2.3 
 10�2 m
� 56.5 rad/s  

x

y

O

ar

at

P
a

Figure 10.5 As a rigid object ro-
tates about a fixed axis through O,
the point P experiences a tangen-
tial component of linear accelera-
tion at and a radial component of
linear acceleration ar . The total lin-
ear acceleration of this point is a �
at 	 ar .

23 mm

58 mm

Figure 10.6 A compact disc.
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For the outer track,

The player adjusts the angular speed � of the disc within this
range so that information moves past the objective lens at a
constant rate. These angular velocity values are positive be-
cause the direction of rotation is counterclockwise.

(b) The maximum playing time of a standard music CD
is 74 minutes and 33 seconds. How many revolutions does the
disc make during that time?

Solution We know that the angular speed is always de-
creasing, and we assume that it is decreasing steadily, with �
constant. The time interval t is (74 min)(60 s/min) 	
33 s � 4 473 s. We are looking for the angular position �f ,
where we set the initial angular position �i � 0. We can use
Equation 10.3, replacing the average angular speed with its
mathematical equivalent (�i 	 � f )/2:

2.8 
 104 rev  �

    (1 min/60 s)(4 473 s)  

  � 0 	 1
2 (540 rev/min 	 210 rev/min)

�f � �i 	 1
2 (�i 	 �f)t  

�

�  2.1 
 102 rev/min

�f �
v
rf

�
1.3 m/s

5.8 
 10�2 m
� 22.4 rad/s

(c) What total length of track moves past the objective
lens during this time?

Solution Because we know the (constant) linear velocity
and the time interval, this is a straightforward calculation:

More than 3.6 miles of track spins past the objective lens!

(d) What is the angular acceleration of the CD over the 
4 473-s time interval? Assume that � is constant.

Solution We have several choices for approaching this
problem. Let us use the most direct approach by utilizing
Equation 10.5, which is based on the definition of the term
we are seeking. We should obtain a negative number for the
angular acceleration because the disc spins more and more
slowly in the positive direction as time goes on. Our answer
should also be fairly small because it takes such a long time—
more than an hour—for the change in angular speed to be
accomplished:

The disc experiences a very gradual decrease in its rotation
rate, as expected.

�7.6 
 10�3 rad/s2�

� �
�f � �i

t
�

22.4 rad/s � 56.5 rad/s
4 473 s

5.8 
 103 mx f � vit � (1.3 m/s)(4 473 s) �

ROTATIONAL ENERGY
Let us now look at the kinetic energy of a rotating rigid object, considering the ob-
ject as a collection of particles and assuming it rotates about a fixed z axis with an
angular speed � (Fig. 10.7). Each particle has kinetic energy determined by its
mass and linear speed. If the mass of the ith particle is mi and its linear speed is vi ,
its kinetic energy is

To proceed further, we must recall that although every particle in the rigid object
has the same angular speed �, the individual linear speeds depend on the distance
ri from the axis of rotation according to the expression vi � ri� (see Eq. 10.10).
The total kinetic energy of the rotating rigid object is the sum of the kinetic ener-
gies of the individual particles:

We can write this expression in the form

(10.14)

where we have factored �2 from the sum because it is common to every particle.

KR � 1
2��

i
miri 2��2

K R � �
i

K i � �
i

1
2mivi 

2 � 1
2 �

i
miri 

2�2

Ki � 1
2mivi 

2

10.4

7.3

web
If you want to learn more about the physics
of CD players, visit the Special Interest
Group on CD Applications and Technology
at www.sigcat.org

y

x

vi

mi

ri

θ
O

Figure 10.7 A rigid object rotat-
ing about a z axis with angular
speed �. The kinetic energy of 
the particle of mass mi is 
The total kinetic energy of the ob-
ject is called its rotational 
kinetic energy.

1
2m iv i  

2.
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We simplify this expression by defining the quantity in parentheses as the moment
of inertia I:

(10.15)

From the definition of moment of inertia, we see that it has dimensions of ML2

(kg� m2 in SI units).1 With this notation, Equation 10.14 becomes

(10.16)

Although we commonly refer to the quantity I�2 as rotational kinetic energy,
it is not a new form of energy. It is ordinary kinetic energy because it is derived
from a sum over individual kinetic energies of the particles contained in the rigid
object. However, the mathematical form of the kinetic energy given by Equation
10.16 is a convenient one when we are dealing with rotational motion, provided
we know how to calculate I. 

It is important that you recognize the analogy between kinetic energy associ-
ated with linear motion and rotational kinetic energy The quantities I
and � in rotational motion are analogous to m and v in linear motion, respectively.
(In fact, I takes the place of m every time we compare a linear-motion equation
with its rotational counterpart.) The moment of inertia is a measure of the resis-
tance of an object to changes in its rotational motion, just as mass is a measure of
the tendency of an object to resist changes in its linear motion. Note, however,
that mass is an intrinsic property of an object, whereas I depends on the physical
arrangement of that mass. Can you think of a situation in which an object’s mo-
ment of inertia changes even though its mass does not?

1
2 I�2.1

2mv2

1
2

KR � 1
2I�2

I � �
i

miri 2

1 Civil engineers use moment of inertia to characterize the elastic properties (rigidity) of such struc-
tures as loaded beams. Hence, it is often useful even in a nonrotational context.

Rotational kinetic energy

Moment of inertia

The Oxygen MoleculeEXAMPLE 10.3

This is a very small number, consistent with the minuscule
masses and distances involved.

(b) If the angular speed of the molecule about the z axis is
4.60 
 1012 rad/s, what is its rotational kinetic energy?

Solution We apply the result we just calculated for the mo-
ment of inertia in the formula for KR :

2.06 
 10�21 J �

  � 1
2(1.95 
 10�46 kg�m2)(4.60 
 1012 rad/s)2

KR � 1
2 I�2  

1.95 
 10�46 kg�m2 �
Consider an oxygen molecule (O2) rotating in the xy plane
about the z axis. The axis passes through the center of the
molecule, perpendicular to its length. The mass of each oxy-
gen atom is 2.66 
 10�26 kg, and at room temperature the
average separation between the two atoms is d � 1.21 

10�10 m (the atoms are treated as point masses). (a) Calcu-
late the moment of inertia of the molecule about the z axis.

Solution This is a straightforward application of the def-
inition of I. Because each atom is a distance d/2 from the z
axis, the moment of inertia about the axis is

  � 1
2(2.66 
 10�26 kg)(1.21 
 10�10 m)2

I � �
i

mi ri 

2 � m � d
2 �

2
	 m � d

2 �
2

� 1
2md 2
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CALCULATION OF MOMENTS OF INERTIA
We can evaluate the moment of inertia of an extended rigid object by imagining
the object divided into many small volume elements, each of which has mass �m. 
We use the definition and take the limit of this sum as �m : 0. In 

this limit, the sum becomes an integral over the whole object:

(10.17)

It is usually easier to calculate moments of inertia in terms of the volume of
the elements rather than their mass, and we can easily make that change by using
Equation 1.1,  � m/V, where  is the density of the object and V is its volume. We
want this expression in its differential form  � dm/dV because the volumes we
are dealing with are very small. Solving for dm �  dV and substituting the result

I � lim
�mi :0

 �
i

ri 

2 �mi � �r 2 dm

I � �
i

r i 

2 �mi

10.5

Four Rotating MassesEXAMPLE 10.4
Therefore, the rotational kinetic energy about the y axis is

The fact that the two spheres of mass m do not enter into this
result makes sense because they have no motion about the
axis of rotation; hence, they have no rotational kinetic en-
ergy. By similar logic, we expect the moment of inertia about
the x axis to be Ix � 2mb2 with a rotational kinetic energy
about that axis of KR � mb2�2.

(b) Suppose the system rotates in the xy plane about an
axis through O (the z axis). Calculate the moment of inertia
and rotational kinetic energy about this axis.

Solution Because ri in Equation 10.15 is the perpendicular
distance to the axis of rotation, we obtain

Comparing the results for parts (a) and (b), we conclude
that the moment of inertia and therefore the rotational ki-
netic energy associated with a given angular speed depend on
the axis of rotation. In part (b), we expect the result to in-
clude all four spheres and distances because all four spheres
are rotating in the xy plane. Furthermore, the fact that the ro-
tational kinetic energy in part (a) is smaller than that in part
(b) indicates that it would take less effort (work) to set the
system into rotation about the y axis than about the z axis.

(Ma2 	 mb2)�2  KR � 1
2Iz�

2 � 1
2(2Ma2 	 2mb2)� 2 �

2Ma2 	 2mb 2I z � �
i
mi ri 

2 � Ma2 	 Ma2 	 mb2 	 mb2 �

Ma2�2KR � 1
2Iy�

2 � 1
2(2Ma2)�2 �

Four tiny spheres are fastened to the corners of a frame of
negligible mass lying in the xy plane (Fig. 10.8). We shall as-
sume that the spheres’ radii are small compared with the di-
mensions of the frame. (a) If the system rotates about the y
axis with an angular speed �, find the moment of inertia and
the rotational kinetic energy about this axis.

Solution First, note that the two spheres of mass m, which
lie on the y axis, do not contribute to Iy (that is, ri � 0 for
these spheres about this axis). Applying Equation 10.15, we
obtain

2Ma2Iy � �
i

mi ri
2 � Ma2 	 Ma2 �

O

a a

b

b

m

m

M
x

y

M

Figure 10.8 The four spheres are at a fixed separation as shown.
The moment of inertia of the system depends on the axis about
which it is evaluated.

7.5
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into Equation 10.17 gives

If the object is homogeneous, then  is constant and the integral can be evaluated
for a known geometry. If  is not constant, then its variation with position must be
known to complete the integration.

The density given by  � m/V sometimes is referred to as volume density for the
obvious reason that it relates to volume. Often we use other ways of expressing
density. For instance, when dealing with a sheet of uniform thickness t, we can de-
fine a surface density � � t, which signifies mass per unit area. Finally, when mass is
distributed along a uniform rod of cross-sectional area A, we sometimes use linear
density � � M/L � A, which is the mass per unit length.

I � �r 2 dV

Uniform HoopEXAMPLE 10.5
Find the moment of inertia of a uniform hoop of mass M and
radius R about an axis perpendicular to the plane of the
hoop and passing through its center (Fig. 10.9).

Solution All mass elements dm are the same distance r �
R from the axis, and so, applying Equation 10.17, we obtain
for the moment of inertia about the z axis through O:

Note that this moment of inertia is the same as that of a sin-
gle particle of mass M located a distance R from the axis of
rotation.

MR 2I z � � r 2 dm � R 2 � dm �

y

x

R
O

dm

Figure 10.9 The mass elements dm of a uniform hoop are all the
same distance from O.

Uniform Rigid RodEXAMPLE 10.6
Substituting this expression for dm into Equation 10.17, with
r � x, we obtain

1
12ML2   �

M
L

 � x3

3 �
L/2

�L/2
�

Iy � � r 2 dm � �L/2

�L/2
 x2 

M
L

 dx �
M
L

 �L/2

�L/2
 x2 dx

Calculate the moment of inertia of a uniform rigid rod of
length L and mass M (Fig. 10.10) about an axis perpendicu-
lar to the rod (the y axis) and passing through its center of
mass.

Solution The shaded length element dx has a mass dm
equal to the mass per unit length � multiplied by dx :

dm � � dx �
M
L

dx

(a) Based on what you have learned from Example 10.5, what do you expect to find for the
moment of inertia of two particles, each of mass M/2, located anywhere on a circle of ra-
dius R around the axis of rotation? (b) How about the moment of inertia of four particles,
each of mass M/4, again located a distance R from the rotation axis?

Quick Quiz 10.3
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Table 10.2 gives the moments of inertia for a number of bodies about specific
axes. The moments of inertia of rigid bodies with simple geometry (high symme-
try) are relatively easy to calculate provided the rotation axis coincides with an axis
of symmetry. The calculation of moments of inertia about an arbitrary axis can be
cumbersome, however, even for a highly symmetric object. Fortunately, use of an
important theorem, called the parallel-axis theorem, often simplifies the calcula-
tion. Suppose the moment of inertia about an axis through the center of mass of
an object is ICM . The parallel-axis theorem states that the moment of inertia about
any axis parallel to and a distance D away from this axis is

(10.18)I � ICM 	 MD2

Uniform Solid CylinderEXAMPLE 10.7
cylindrical shells, each of which has radius r, thickness dr, and
length L, as shown in Figure 10.11. The volume dV of each
shell is its cross-sectional area multiplied by its length: dV �
dA� L � (2�r dr)L. If the mass per unit volume is , then the
mass of this differential volume element is dm � dV �
2�rL dr. Substituting this expression for dm into Equation
10.17, we obtain

Because the total volume of the cylinder is �R 2L, we see that
 � M/V � M/�R 2L. Substituting this value for  into the
above result gives

(1)

Note that this result does not depend on L, the length of the
cylinder. In other words, it applies equally well to a long cylin-
der and a flat disc. Also note that this is exactly half the value
we would expect were all the mass concentrated at the outer
edge of the cylinder or disc. (See Example 10.5.)

1
2MR 2Iz �

I z � � r 2 dm � 2�L �R

0
 r 3 dr � 1

2�LR4

A uniform solid cylinder has a radius R, mass M, and length
L. Calculate its moment of inertia about its central axis (the z
axis in Fig. 10.11).

Solution It is convenient to divide the cylinder into many

L

x

O
x

dx

y′ y

Figure 10.10 A uniform rigid rod of length L. The moment of in-
ertia about the y axis is less than that about the y� axis. The latter axis
is examined in Example 10.8.

L

dr

z

r

R

Figure 10.11 Calculating I about the z axis for a uniform solid
cylinder.

Parallel-axis theorem


