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When this honeybee gets back to its
hive, it will tell the other bees how to re-
turn to the food it has found. By moving
in a special, very precisely defined pat-
tern, the bee conveys to other workers
the information they need to find a flower
bed. Bees communicate by “speaking in
vectors.” What does the bee have to tell
the other bees in order to specify where
the flower bed is located relative to the
hive? (E. Webber/Visuals Unlimited)
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3.1 Coordinate Systems 59

e often need to work with physical quantities that have both numerical and
directional properties. As noted in Section 2.1, quantities of this nature are

represented by vectors. This chapter is primarily concerned with vector alge-
bra and with some general properties of vector quantities. We discuss the addition
and subtraction of vector quantities, together with some common applications to
physical situations.

Vector quantities are used throughout this text, and it is therefore imperative
that you master both their graphical and their algebraic properties.

COORDINATE SYSTEMS
Many aspects of physics deal in some form or other with locations in space. In
Chapter 2, for example, we saw that the mathematical description of an object’s
motion requires a method for describing the object’s position at various times.
This description is accomplished with the use of coordinates, and in Chapter 2 we
used the cartesian coordinate system, in which horizontal and vertical axes inter-
sect at a point taken to be the origin (Fig. 3.1). Cartesian coordinates are also
called rectangular coordinates.

Sometimes it is more convenient to represent a point in a plane by its plane po-
lar coordinates (r, �), as shown in Figure 3.2a. In this polar coordinate system, r is the
distance from the origin to the point having cartesian coordinates (x, y), and � is
the angle between r and a fixed axis. This fixed axis is usually the positive x axis,
and � is usually measured counterclockwise from it. From the right triangle in Fig-
ure 3.2b, we find that sin � � y/r and that cos � � x/r. (A review of trigonometric
functions is given in Appendix B.4.) Therefore, starting with the plane polar coor-
dinates of any point, we can obtain the cartesian coordinates, using the equations

(3.1)

(3.2)

Furthermore, the definitions of trigonometry tell us that

(3.3)

(3.4)

These four expressions relating the coordinates (x, y) to the coordinates (r, �)
apply only when � is defined, as shown in Figure 3.2a—in other words, when posi-
tive � is an angle measured counterclockwise from the positive x axis. (Some scientific
calculators perform conversions between cartesian and polar coordinates based on
these standard conventions.) If the reference axis for the polar angle � is chosen
to be one other than the positive x axis or if the sense of increasing � is chosen dif-
ferently, then the expressions relating the two sets of coordinates will change.

Would the honeybee at the beginning of the chapter use cartesian or polar coordinates
when specifying the location of the flower? Why? What is the honeybee using as an origin of
coordinates?
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Figure 3.1 Designation of points
in a cartesian coordinate system.
Every point is labeled with coordi-
nates (x, y).

Figure 3.2 (a) The plane polar
coordinates of a point are repre-
sented by the distance r and the an-
gle �, where � is measured counter-
clockwise from the positive x axis.
(b) The right triangle used to re-
late (x, y) to (r, �).

You may want to read Talking Apes
and Dancing Bees (1997) by Betsy
Wyckoff.
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VECTOR AND SCALAR QUANTITIES
As noted in Chapter 2, some physical quantities are scalar quantities whereas oth-
ers are vector quantities. When you want to know the temperature outside so that
you will know how to dress, the only information you need is a number and the
unit “degrees C” or “degrees F.” Temperature is therefore an example of a scalar
quantity, which is defined as a quantity that is completely specified by a number
and appropriate units. That is,

3.2

Polar CoordinatesEXAMPLE 3.1
The cartesian coordinates of a point in the xy plane are 
(x, y) � (� 3.50, � 2.50) m, as shown in Figure 3.3. Find the
polar coordinates of this point.

A scalar quantity is specified by a single value with an appropriate unit and has
no direction.

A vector quantity has both magnitude and direction.

Solution

Note that you must use the signs of x and y to find that the
point lies in the third quadrant of the coordinate system.
That is, � � 216° and not 35.5°.

216°    � �

tan � �
y

x
�

�2.50 m
�3.50 m

� 0.714 

4.30 m r � √x2 � y2 � √(�3.50 m)2 � (�2.50 m)2 �

Other examples of scalar quantities are volume, mass, and time intervals. The
rules of ordinary arithmetic are used to manipulate scalar quantities.

If you are getting ready to pilot a small plane and need to know the wind ve-
locity, you must know both the speed of the wind and its direction. Because direc-
tion is part of the information it gives, velocity is a vector quantity, which is de-
fined as a physical quantity that is completely specified by a number and
appropriate units plus a direction. That is,

2.3

Figure 3.4 As a particle moves
from � to � along an arbitrary
path represented by the broken
line, its displacement is a vector
quantity shown by the arrow drawn
from � to �.

Figure 3.3 Finding polar coordinates when cartesian coordinates
are given.

x(m)

y(m)

–3.50, –2.50

θ

r

Another example of a vector quantity is displacement, as you know from Chap-
ter 2. Suppose a particle moves from some point � to some point � along a
straight path, as shown in Figure 3.4. We represent this displacement by drawing
an arrow from � to �, with the tip of the arrow pointing away from the starting
point. The direction of the arrowhead represents the direction of the displace-
ment, and the length of the arrow represents the magnitude of the displacement.
If the particle travels along some other path from � to �, such as the broken line
in Figure 3.4, its displacement is still the arrow drawn from � to �.

�

�
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In this text, we use a boldface letter, such as A, to represent a vector quantity.
Another common method for vector notation that you should be aware of is the
use of an arrow over a letter, such as The magnitude of the vector A is written
either A or The magnitude of a vector has physical units, such as meters for
displacement or meters per second for velocity.

SOME PROPERTIES OF VECTORS

Equality of Two Vectors

For many purposes, two vectors A and B may be defined to be equal if they have
the same magnitude and point in the same direction. That is, A � B only if A � B
and if A and B point in the same direction along parallel lines. For example, all
the vectors in Figure 3.5 are equal even though they have different starting points.
This property allows us to move a vector to a position parallel to itself in a diagram
without affecting the vector.

Adding Vectors

The rules for adding vectors are conveniently described by geometric methods. To
add vector B to vector A, first draw vector A, with its magnitude represented by a
convenient scale, on graph paper and then draw vector B to the same scale with its
tail starting from the tip of A, as shown in Figure 3.6. The resultant vector R �
A � B is the vector drawn from the tail of A to the tip of B. This procedure is
known as the triangle method of addition.

For example, if you walked 3.0 m toward the east and then 4.0 m toward the
north, as shown in Figure 3.7, you would find yourself 5.0 m from where you

3.3

� A �.
A
:

.

Figure 3.5 These four vectors are
equal because they have equal
lengths and point in the same di-
rection.

Figure 3.6 When vector B is
added to vector A, the resultant R
is the vector that runs from the tail
of A to the tip of B.

(a) The number of apples in the basket is one example of a scalar quantity. Can you think of
other examples? (Superstock) (b) Jennifer pointing to the right. A vector quantity is one that must
be specified by both magnitude and direction. (Photo by Ray Serway) (c) An anemometer is a de-
vice meteorologists use in weather forecasting. The cups spin around and reveal the magnitude
of the wind velocity. The pointer indicates the direction. (Courtesy of Peet Bros.Company, 1308 Doris
Avenue, Ocean, NJ 07712)
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started, measured at an angle of 53° north of east. Your total displacement is the
vector sum of the individual displacements.

A geometric construction can also be used to add more than two vectors. This
is shown in Figure 3.8 for the case of four vectors. The resultant vector R � A �
B � C � D is the vector that completes the polygon. In other words, R is the 
vector drawn from the tail of the first vector to the tip of the last vector.

An alternative graphical procedure for adding two vectors, known as the par-
allelogram rule of addition, is shown in Figure 3.9a. In this construction, the
tails of the two vectors A and B are joined together and the resultant vector R is
the diagonal of a parallelogram formed with A and B as two of its four sides.

When two vectors are added, the sum is independent of the order of the addi-
tion. (This fact may seem trivial, but as you will see in Chapter 11, the order is im-
portant when vectors are multiplied). This can be seen from the geometric con-
struction in Figure 3.9b and is known as the commutative law of addition:

(3.5)

When three or more vectors are added, their sum is independent of the way in
which the individual vectors are grouped together. A geometric proof of this rule
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Figure 3.7 Vector addition. Walk-
ing first 3.0 m due east and then 
4.0 m due north leaves you 
5.0 m from your starting point.

� R � �

Figure 3.8 Geometric con-
struction for summing four vec-
tors. The resultant vector R is by
definition the one that completes
the polygon.

Figure 3.9 (a) In this construc-
tion, the resultant R is the diagonal
of a parallelogram having sides A
and B. (b) This construction shows
that A � B � B � A—in other
words, that vector addition is com-
mutative.
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for three vectors is given in Figure 3.10. This is called the associative law of addi-
tion:

(3.6)

In summary, a vector quantity has both magnitude and direction and also
obeys the laws of vector addition as described in Figures 3.6 to 3.10. When two
or more vectors are added together, all of them must have the same units. It would
be meaningless to add a velocity vector (for example, 60 km/h to the east) to a dis-
placement vector (for example, 200 km to the north) because they represent dif-
ferent physical quantities. The same rule also applies to scalars. For example, it
would be meaningless to add time intervals to temperatures.

Negative of a Vector

The negative of the vector A is defined as the vector that when added to A gives
zero for the vector sum. That is, A � (� A) � 0. The vectors A and � A have the
same magnitude but point in opposite directions.

Subtracting Vectors

The operation of vector subtraction makes use of the definition of the negative of
a vector. We define the operation A � B as vector � B added to vector A:

A � B � A � (� B) (3.7)

The geometric construction for subtracting two vectors in this way is illustrated in
Figure 3.11a.

Another way of looking at vector subtraction is to note that the difference 
A � B between two vectors A and B is what you have to add to the second vector
to obtain the first. In this case, the vector A � B points from the tip of the second
vector to the tip of the first, as Figure 3.11b shows.

A � (B � C) � (A � B) � C

Figure 3.10 Geometric construc-
tions for verifying the associative
law of addition.

Figure 3.11 (a) This construc-
tion shows how to subtract vector B
from vector A. The vector � B is
equal in magnitude to vector B and
points in the opposite direction. To
subtract B from A, apply the rule of
vector addition to the combination
of A and � B: Draw A along some
convenient axis, place the tail of
� B at the tip of A, and C is the dif-
ference A � B. (b) A second way
of looking at vector subtraction.
The difference vector C � A � B is
the vector that we must add to B to
obtain A.
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Multiplying a Vector by a Scalar

If vector A is multiplied by a positive scalar quantity m, then the product mA is 
a vector that has the same direction as A and magnitude mA. If vector A is 
multiplied by a negative scalar quantity � m, then the product � mA is directed op-
posite A. For example, the vector 5A is five times as long as A and points in the
same direction as A; the vector � A is one-third the length of A and points in the
direction opposite A.

If vector B is added to vector A, under what condition does the resultant vector A � B have
magnitude A � B? Under what conditions is the resultant vector equal to zero?

COMPONENTS OF A VECTOR AND UNIT VECTORS
The geometric method of adding vectors is not recommended whenever great ac-
curacy is required or in three-dimensional problems. In this section, we describe a
method of adding vectors that makes use of the projections of vectors along coordi-
nate axes. These projections are called the components of the vector. Any vector
can be completely described by its components.

Consider a vector A lying in the xy plane and making an arbitrary angle � with
the positive x axis, as shown in Figure 3.13. This vector can be expressed as the

3.4

Quick Quiz 3.2

1
3

2.5

A Vacation TripEXAMPLE 3.2
ing out a calculation, you should sketch the vectors to check
your results.) The displacement R is the resultant when the
two individual displacements A and B are added.

To solve the problem algebraically, we note that the magni-
tude of R can be obtained from the law of cosines as applied
to the triangle (see Appendix B.4). With � � 180° � 60° �
120° and cos �, we find that

�

The direction of R measured from the northerly direction
can be obtained from the law of sines (Appendix B.4):

The resultant displacement of the car is 48.2 km in a direc-
tion 38.9° west of north. This result matches what we found
graphically.

38.9°  � �

sin � �
B
R

 sin � �
35.0 km
48.2 km

 sin 120° � 0.629

 
sin �

B
�

sin �

R
 

48.2 km 

R � √A2 � B2 � 2AB cos� 

R2 � A2 � B2 � 2AB

A car travels 20.0 km due north and then 35.0 km in a direc-
tion 60.0° west of north, as shown in Figure 3.12. Find the
magnitude and direction of the car’s resultant displacement.

Solution In this example, we show two ways to find the re-
sultant of two vectors. We can solve the problem geometri-
cally, using graph paper and a protractor, as shown in Figure
3.12. (In fact, even when you know you are going to be carry-

� √(20.0 km)2 � (35.0 km)2 � 2(20.0 km)(35.0 km)cos 120°

Figure 3.13 Any vector A lying in
the xy plane can be represented by
a vector Ax lying along the x axis
and by a vector Ay lying along the y
axis, where A � Ax � Ay .

Figure 3.12 Graphical method for finding the resultant displace-
ment vector R � A � B.
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sum of two other vectors Ax and Ay . From Figure 3.13, we see that the three vec-
tors form a right triangle and that A � Ax � Ay . (If you cannot see why this equal-
ity holds, go back to Figure 3.9 and review the parallelogram rule.) We shall often
refer to the “components of a vector A,” written Ax and Ay (without the boldface
notation). The component Ax represents the projection of A along the x axis, and
the component Ay represents the projection of A along the y axis. These compo-
nents can be positive or negative. The component Ax is positive if Ax points in the
positive x direction and is negative if Ax points in the negative x direction. The
same is true for the component Ay .

From Figure 3.13 and the definition of sine and cosine, we see that cos � �
Ax/A and that sin � � Ay/A. Hence, the components of A are

(3.8)

(3.9)

These components form two sides of a right triangle with a hypotenuse of length
A. Thus, it follows that the magnitude and direction of A are related to its compo-
nents through the expressions

(3.10)

(3.11)

Note that the signs of the components Ax and Ay depend on the angle �.
For example, if � � 120°, then Ax is negative and Ay is positive. If � � 225°, then
both Ax and Ay are negative. Figure 3.14 summarizes the signs of the components
when A lies in the various quadrants.

When solving problems, you can specify a vector A either with its components
Ax and Ay or with its magnitude and direction A and �.

Can the component of a vector ever be greater than the magnitude of the vector?

Suppose you are working a physics problem that requires resolving a vector
into its components. In many applications it is convenient to express the compo-
nents in a coordinate system having axes that are not horizontal and vertical but are
still perpendicular to each other. If you choose reference axes or an angle other
than the axes and angle shown in Figure 3.13, the components must be modified
accordingly. Suppose a vector B makes an angle �� with the x� axis defined in Fig-
ure 3.15. The components of B along the x� and y� axes are Bx� � B cos �� and 
By� � B sin ��, as specified by Equations 3.8 and 3.9. The magnitude and direction
of B are obtained from expressions equivalent to Equations 3.10 and 3.11. Thus,
we can express the components of a vector in any coordinate system that is conve-
nient for a particular situation.

Unit Vectors

Vector quantities often are expressed in terms of unit vectors. A unit vector is a
dimensionless vector having a magnitude of exactly 1. Unit vectors are used
to specify a given direction and have no other physical significance. They are used
solely as a convenience in describing a direction in space. We shall use the symbols

Quick Quiz 3.3
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Figure 3.14 The signs of the
components of a vector A depend
on the quadrant in which the vec-
tor is located.
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Figure 3.15 The component vec-
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i, j, and k to represent unit vectors pointing in the positive x, y, and z directions,
respectively. The unit vectors i, j, and k form a set of mutually perpendicular vec-
tors in a right-handed coordinate system, as shown in Figure 3.16a. The magnitude
of each unit vector equals 1; that is, 

Consider a vector A lying in the xy plane, as shown in Figure 3.16b. The prod-
uct of the component Ax and the unit vector i is the vector Axi, which lies on the x
axis and has magnitude (The vector Ax i is an alternative representation of
vector Ax .) Likewise, Ay j is a vector of magnitude lying on the y axis. (Again, 
vector Ay j is an alternative representation of vector Ay .) Thus, the unit–vector no-
tation for the vector A is

(3.12)

For example, consider a point lying in the xy plane and having cartesian coordi-
nates (x, y), as in Figure 3.17. The point can be specified by the position vector r,
which in unit–vector form is given by

(3.13)

This notation tells us that the components of r are the lengths x and y.
Now let us see how to use components to add vectors when the geometric

method is not sufficiently accurate. Suppose we wish to add vector B to vector A,
where vector B has components Bx and By . All we do is add the x and y compo-
nents separately. The resultant vector R � A � B is therefore

or

(3.14)

Because R � Rx i � Ry j, we see that the components of the resultant vector are

(3.15)
R y � Ay � By

R x � Ax � Bx

R � (Ax � Bx)i � (Ay � By)j

R � (Ax i � Ay j) � (Bx i � By j)

r � x i � y j

A � Ax i � Ay j

� Ay �
� Ax �.

� i � � � j � � � k � � 1.

Position vector

Figure 3.18 This geometric construction
for the sum of two vectors shows the rela-
tionship between the components of the re-
sultant R and the components of the indi-
vidual vectors.

Figure 3.17 The point whose
cartesian coordinates are (x, y) can
be represented by the position vec-
tor r � xi � y j.

Figure 3.16 (a) The unit vectors
i, j, and k are directed along the x,
y, and z axes, respectively. (b) Vec-
tor A � Axi � Ay j lying in the xy
plane has components Ax and Ay .
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Problem-Solving Hints
Adding Vectors
When you need to add two or more vectors, use this step-by-step procedure:

• Select a coordinate system that is convenient. (Try to reduce the number of
components you need to find by choosing axes that line up with as many
vectors as possible.)

• Draw a labeled sketch of the vectors described in the problem.
• Find the x and y components of all vectors and the resultant components

(the algebraic sum of the components) in the x and y directions.
• If necessary, use the Pythagorean theorem to find the magnitude of the re-

sultant vector and select a suitable trigonometric function to find the angle
that the resultant vector makes with the x axis.

We obtain the magnitude of R and the angle it makes with the x axis from its com-
ponents, using the relationships

(3.16)

(3.17)

We can check this addition by components with a geometric construction, as
shown in Figure 3.18. Remember that you must note the signs of the components
when using either the algebraic or the geometric method.

At times, we need to consider situations involving motion in three compo-
nent directions. The extension of our methods to three-dimensional vectors is
straightforward. If A and B both have x, y, and z components, we express them in
the form

(3.18)

(3.19)

The sum of A and B is

(3.20)

Note that Equation 3.20 differs from Equation 3.14: in Equation 3.20, the resultant
vector also has a z component 

If one component of a vector is not zero, can the magnitude of the vector be zero? Explain.

If A � B � 0, what can you say about the components of the two vectors?

Quick Quiz 3.5

Quick Quiz 3.4

R z � Az � Bz .

R � (Ax � Bx)i � (Ay � By)j � (Az � Bz)k

B � Bxi � By j � Bzk

A � Axi � Ay j � Azk

 tan � �
R y

R x
�

Ay � By

Ax � Bx
 

R � √R x 

2 � R y 

2 � √(Ax � Bx)2 � (Ay � By)2

QuickLab
Write an expression for the vector de-
scribing the displacement of a fly that
moves from one corner of the floor
of the room that you are in to the op-
posite corner of the room, near the
ceiling.


