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he first law of thermodynamics, which we studied in Chapter 20, is a state-
ment of conservation of energy, generalized to include internal energy. This
law states that a change in internal energy in a system can occur as a result of

energy transfer by heat or by work, or by both. As was stated in Chapter 20, the law
makes no distinction between the results of heat and the results of work—either
heat or work can cause a change in internal energy. However, an important distinc-
tion between the two is not evident from the first law. One manifestation of this
distinction is that it is impossible to convert internal energy completely to mechan-
ical energy by taking a substance through a thermodynamic cycle such as in a heat
engine, a device we study in this chapter.

Although the first law of thermodynamics is very important, it makes no dis-
tinction between processes that occur spontaneously and those that do not. How-
ever, we find that only certain types of energy-conversion and energy-transfer
processes actually take place. The second law of thermodynamics, which we study in
this chapter, establishes which processes do and which do not occur in nature. The
following are examples of processes that proceed in only one direction, governed
by the second law:

• When two objects at different temperatures are placed in thermal contact with
each other, energy always flows by heat from the warmer to the cooler, never
from the cooler to the warmer.

• A rubber ball dropped to the ground bounces several times and eventually
comes to rest, but a ball lying on the ground never begins bouncing on its own.

• An oscillating pendulum eventually comes to rest because of collisions with air
molecules and friction at the point of suspension. The mechanical energy of the
system is converted to internal energy in the air, the pendulum, and the suspen-
sion; the reverse conversion of energy never occurs.

All these processes are irreversible—that is, they are processes that occur natu-
rally in one direction only. No irreversible process has ever been observed to run
backward—if it were to do so, it would violate the second law of thermodynamics.1

From an engineering standpoint, perhaps the most important implication of
the second law is the limited efficiency of heat engines. The second law states that
a machine capable of continuously converting internal energy completely to other
forms of energy in a cyclic process cannot be constructed.

HEAT ENGINES AND THE SECOND LAW
OF THERMODYNAMICS

A heat engine is a device that converts internal energy to mechanical energy. For
instance, in a typical process by which a power plant produces electricity, coal or
some other fuel is burned, and the high-temperature gases produced are used to
convert liquid water to steam. This steam is directed at the blades of a turbine, set-
ting it into rotation. The mechanical energy associated with this rotation is used to
drive an electric generator. Another heat engine—the internal combustion en-
gine in an automobile—uses energy from a burning fuel to perform work that re-
sults in the motion of the automobile.
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1 Although we have never observed a process occurring in the time-reversed sense, it is possible for it to
occur. As we shall see later in the chapter, however, such a process is highly improbable. From this view-
point, we say that processes occur with a vastly greater probability in one direction than in the opposite
direction.
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A heat engine carries some working substance through a cyclic process during
which (1) the working substance absorbs energy from a high-temperature energy
reservoir, (2) work is done by the engine, and (3) energy is expelled by the engine
to a lower-temperature reservoir. As an example, consider the operation of a steam
engine (Fig. 22.1), in which the working substance is water. The water in a boiler
absorbs energy from burning fuel and evaporates to steam, which then does work
by expanding against a piston. After the steam cools and condenses, the liquid wa-
ter produced returns to the boiler and the cycle repeats.

It is useful to represent a heat engine schematically as in Figure 22.2. The en-
gine absorbs a quantity of energy Q h from the hot reservoir, does work W, and
then gives up a quantity of energy Q c to the cold reservoir. Because the working
substance goes through a cycle, its initial and final internal energies are equal, and
so Hence, from the first law of thermodynamics, and
with no change in internal energy, the net work W done by a heat engine is
equal to the net energy Q net flowing through it. As we can see from Figure
22.2, therefore,

(22.1)

In this expression and in many others throughout this chapter, to be consistent
with traditional treatments of heat engines, we take both Q h and Q c to be positive
quantities, even though Q c represents energy leaving the engine. In discussions of
heat engines, we shall describe energy leaving a system with an explicit minus sign,

W � Q h � Q c

Q net � Q h � Q c ;

�E int � Q � W,�E int � 0.

Lord Kelvin British physicist and
mathematician (1824 – 1907) Born
William Thomson in Belfast, Kelvin
was the first to propose the use of an
absolute scale of temperature. The
Kelvin temperature scale is named in
his honor. Kelvin’s work in thermo-
dynamics led to the idea that energy
cannot pass spontaneously from a
colder body to a hotter body. (J. L.
Charmet /SPL /Photo Researchers, Inc.)

Hot reservoir at Th

Q h

Q c

W

Cold reservoir at Tc

Engine

Figure 22.1 This steam-driven locomotive runs from Durango to Silverton, Colorado. It ob-
tains its energy by burning wood or coal. The generated energy vaporizes water into steam, which
powers the locomotive. (This locomotive must take on water from tanks located along the route
to replace steam lost through the funnel.) Modern locomotives use diesel fuel instead of wood or
coal. Whether old-fashioned or modern, such locomotives are heat engines, which extract energy
from a burning fuel and convert a fraction of it to mechanical energy.

Figure 22.2 Schematic represen-
tation of a heat engine. The engine
absorbs energy Q h from the hot
reservoir, expels energy Q c to the
cold reservoir, and does work W.
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as in Equation 22.1. Also note that we model the energy input and output for the
heat engine as heat, as it often is; however, the energy transfer could occur by an-
other mechanism.

The net work done in a cyclic process is the area enclosed by the curve
representing the process on a PV diagram. This is shown for an arbitrary cyclic
process in Figure 22.3.

The thermal efficiency e of a heat engine is defined as the ratio of the net
work done by the engine during one cycle to the energy absorbed at the higher
temperature during the cycle:

(22.2)e �
W
Q h

�
Q h � Q c

Q h
� 1 �

Q c

Q h

We can think of the efficiency as the ratio of what you get (mechanical work)
to what you give (energy transfer at the higher temperature). In practice, we find
that all heat engines expel only a fraction of the absorbed energy as mechanical
work and that consequently the efficiency is less than 100%. For example, a good
automobile engine has an efficiency of about 20%, and diesel engines have effi-
ciencies ranging from 35% to 40%.

Equation 22.2 shows that a heat engine has 100% efficiency (e � 1) only if 
Q c � 0—that is, if no energy is expelled to the cold reservoir. In other words, a
heat engine with perfect efficiency would have to expel all of the absorbed energy
as mechanical work. On the basis of the fact that efficiencies of real engines are
well below 100%, the Kelvin–Planck form of the second law of thermodynam-
ics states the following:

It is impossible to construct a heat engine that, operating in a cycle, produces
no effect other than the absorption of energy from a reservoir and the perfor-
mance of an equal amount of work.

Kelvin–Planck statement of the
second law of thermodynamics

P

V

Area = W

Figure 22.3 PV diagram for an
arbitrary cyclic process. The value
of the net work done equals the
area enclosed by the curve.

This statement of the second law means that, during the operation of a heat en-
gine, W can never be equal to Q h , or, alternatively, that some energy Q c must be

The impossible engine

Q h

Cold reservoir at Tc

Engine

W

Hot reservoir at Th

Figure 22.4 Schematic diagram of a heat engine
that absorbs energy Q h from a hot reservoir and does
an equivalent amount of work. It is impossible to con-
struct such a perfect engine.
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rejected to the environment. Figure 22.4 is a schematic diagram of the impossible
“perfect” heat engine.

The first and second laws of thermodynamics can be summarized as follows:
The first law specifies that we cannot get more energy out of a cyclic process
by work than the amount of energy we put in, and the second law states that
we cannot break even because we must put more energy in, at the higher
temperature, than the net amount of energy we get out by work.

The Efficiency of an EngineEXAMPLE 22.1
Equation 22.2:

or 25%e � 1 �
Q c

Q h
� 1 �

1 500 J
2 000 J

� 0.25,

Find the efficiency of a heat engine that absorbs 2 000 J of
energy from a hot reservoir and exhausts 1 500 J to a cold
reservoir.

Solution To calculate the efficiency of the engine, we use

Refrigerators and Heat Pumps

Refrigerators and heat pumps are heat engines running in reverse. Here, we in-
troduce them briefly for the purposes of developing an alternate statement of the
second law; we shall discuss them more fully in Section 22.5.

In a refrigerator or heat pump, the engine absorbs energy Q c from a cold
reservoir and expels energy Q h to a hot reservoir (Fig. 22.5). This can be accom-
plished only if work is done on the engine. From the first law, we know that the en-
ergy given up to the hot reservoir must equal the sum of the work done and the
energy absorbed from the cold reservoir. Therefore, the refrigerator or heat pump
transfers energy from a colder body (for example, the contents of a kitchen refrig-
erator or the winter air outside a building) to a hotter body (the air in the kitchen
or a room in the building). In practice, it is desirable to carry out this process with
a minimum of work. If it could be accomplished without doing any work, then the
refrigerator or heat pump would be “perfect” (Fig. 22.6). Again, the existence of

Refrigerator

Q h

Q c

Cold reservoir at Tc

Engine

W

Hot reservoir at Th

Impossible refrigerator

Cold reservoir at Tc

Engine

Hot reservoir at Th

Figure 22.5 Schematic diagram of a refrigerator,
which absorbs energy Q c from a cold reservoir and ex-
pels energy Q h to a hot reservoir. Work W is done on the
refrigerator. A heat pump, which can be used to heat or
cool a building, works the same way.

Figure 22.6 Schematic diagram
of an impossible refrigerator or
heat pump—that is, one that ab-
sorbs energy Q c from a cold reser-
voir and expels an equivalent
amount of energy to a hot reservoir
with W � 0.
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such a device would be in violation of the second law of thermodynamics, which in
the form of the Clausius statement2 states:

It is impossible to construct a cyclical machine whose sole effect is the continu-
ous transfer of energy from one object to another object at a higher tempera-
ture without the input of energy by work.

In simpler terms, energy does not flow spontaneously from a cold object to a
hot object. For example, we cool homes in summer using heat pumps called air
conditioners. The air conditioner pumps energy from the cool room in the home to
the warm air outside. This direction of energy transfer requires an input of energy
to the air conditioner, which is supplied by the electric power company.

The Clausius and Kelvin–Planck statements of the second law of thermody-
namics appear, at first sight, to be unrelated, but in fact they are equivalent in all
respects. Although we do not prove so here, if either statement is false, then so is
the other.3

REVERSIBLE AND IRREVERSIBLE PROCESSES
In the next section we discuss a theoretical heat engine that is the most efficient
possible. To understand its nature, we must first examine the meaning of re-
versible and irreversible processes. In a reversible process, the system undergoing
the process can be returned to its initial conditions along the same path shown on
a PV diagram, and every point along this path is an equilibrium state. A process
that does not satisfy these requirements is irreversible.

All natural processes are known to be irreversible. From the endless number
of examples that could be selected, let us examine the adiabatic free expansion of
a gas, which was already discussed in Section 20.6, and show that it cannot be re-
versible. The system that we consider is a gas in a thermally insulated container, as
shown in Figure 22.7. A membrane separates the gas from a vacuum. When the
membrane is punctured, the gas expands freely into the vacuum. As a result of
the puncture, the system has changed because it occupies a greater volume after
the expansion. Because the gas does not exert a force through a distance on the
surroundings, it does no work on the surroundings as it expands. In addition, no
energy is transferred to or from the gas by heat because the container is insulated
from its surroundings. Thus, in this adiabatic process, the system has changed but
the surroundings have not.

For this process to be reversible, we need to be able to return the gas to its
original volume and temperature without changing the surroundings. Imagine
that we try to reverse the process by compressing the gas to its original volume. To
do so, we fit the container with a piston and use an engine to force the piston in-
ward. During this process, the surroundings change because work is being done by
an outside agent on the system. In addition, the system changes because the com-
pression increases the temperature of the gas. We can lower the temperature of
the gas by allowing it to come into contact with an external energy reservoir. Al-
though this step returns the gas to its original conditions, the surroundings are

22.2

Clausius statement of the second
law of thermodynamics

2 First expressed by Rudolf Clausius (1822–1888).
3 See, for example, R. P. Bauman, Modern Thermodynamics and Statistical Mechanics, New York, Macmillan
Publishing Co., 1992.

Insulating
wall

Membrane

Vacuum

Gas at Ti

Figure 22.7 Adiabatic free ex-
pansion of a gas.
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again affected because energy is being added to the surroundings from the gas. If
this energy could somehow be used to drive the engine that we have used to com-
press the gas, then the net energy transfer to the surroundings would be zero. In
this way, the system and its surroundings could be returned to their initial condi-
tions, and we could identify the process as reversible. However, the Kelvin–Planck
statement of the second law specifies that the energy removed from the gas to re-
turn the temperature to its original value cannot be completely converted to me-
chanical energy in the form of the work done by the engine in compressing the
gas. Thus, we must conclude that the process is irreversible.

We could also argue that the adiabatic free expansion is irreversible by relying
on the portion of the definition of a reversible process that refers to equilibrium
states. For example, during the expansion, significant variations in pressure occur
throughout the gas. Thus, there is no well-defined value of the pressure for the en-
tire system at any time between the initial and final states. In fact, the process cannot
even be represented as a path on a PV diagram. The PV diagram for an adiabatic
free expansion would show the initial and final conditions as points, but these points
would not be connected by a path. Thus, because the intermediate conditions be-
tween the initial and final states are not equilibrium states, the process is irreversible.

Although all real processes are always irreversible, some are almost reversible.
If a real process occurs very slowly such that the system is always very nearly in an
equilibrium state, then the process can be approximated as reversible. For exam-
ple, let us imagine that we compress a gas very slowly by dropping some grains of
sand onto a frictionless piston, as shown in Figure 22.8. We make the process
isothermal by placing the gas in thermal contact with an energy reservoir, and we
transfer just enough energy from the gas to the reservoir during the process to
keep the temperature constant. The pressure, volume, and temperature of the gas
are all well defined during the isothermal compression, so each state during the
process is an equilibrium state. Each time we add a grain of sand to the piston, the
volume of the gas decreases slightly while the pressure increases slightly. Each
grain we add represents a change to a new equilibrium state. We can reverse the
process by slowly removing grains from the piston.

A general characteristic of a reversible process is that no dissipative effects
(such as turbulence or friction) that convert mechanical energy to internal energy
can be present. Such effects can be impossible to eliminate completely. Hence, it is
not surprising that real processes in nature are irreversible.

THE CARNOT ENGINE
In 1824 a French engineer named Sadi Carnot described a theoretical engine,
now called a Carnot engine, that is of great importance from both practical and
theoretical viewpoints. He showed that a heat engine operating in an ideal, re-
versible cycle—called a Carnot cycle—between two energy reservoirs is the most
efficient engine possible. Such an ideal engine establishes an upper limit on the
efficiencies of all other engines. That is, the net work done by a working substance
taken through the Carnot cycle is the greatest amount of work possible for a given
amount of energy supplied to the substance at the upper temperature. Carnot’s
theorem can be stated as follows:

22.3

Figure 22.8 A gas in thermal
contact with an energy reservoir is
compressed slowly as individual
grains of sand drop onto the pis-
ton. The compression is isothermal
and reversible.

Energy reservoir

Sand

No real heat engine operating between two energy reservoirs can be more effi-
cient than a Carnot engine operating between the same two reservoirs.

Sadi Carnot French physicist
(1796 – 1832) Carnot was the first to
show the quantitative relationship be-
tween work and heat. In 1824 he pub-
lished his only work — Reflections on
the Motive Power of Heat—which
reviewed the industrial, political, and
economic importance of the steam
engine. In it, he defined work as
“weight lifted through a height.”
(FPG)

10.9
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To argue the validity of this theorem, let us imagine two heat engines operating
between the same energy reservoirs. One is a Carnot engine with efficiency eC , and
the other is an engine with efficiency e, which is greater than eC . We use the more
efficient engine to drive the Carnot engine as a Carnot refrigerator. Thus, the out-
put by work of the more efficient engine is matched to the input by work of the

Cycle

D → A

Adiabatic
compression

Q = 0

(d)

B → C

Adiabatic
expansion

Q = 0

(b)

Energy reservoir at Th

(a)

A → B

Isothermal
expansion

(c)

Energy reservoir at Tc

C → D
Isothermal

compression

Q h

Q c

Figure 22.9 The Carnot cycle. In process A : B, the gas expands isothermally while in contact
with a reservoir at Th . In process B : C, the gas expands adiabatically (Q � 0). In process C : D,
the gas is compressed isothermally while in contact with a reservoir at In process D : A,
the gas is compressed adiabatically. The upward arrows on the piston indicate that weights are be-
ing removed during the expansions, and the downward arrows indicate that weights are being
added during the compressions.

Tc � Th .
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Carnot refrigerator. For the combination of the engine and refrigerator, then, no
exchange by work with the surroundings occurs. Because we have assumed that
the engine is more efficient than the refrigerator, the net result of the combina-
tion is a transfer of energy from the cold to the hot reservoir without work being
done on the combination. According to the Clausius statement of the second law,
this is impossible. Hence, the assumption that must be false. All real en-
gines are less efficient than the Carnot engine because they do not operate
through a reversible cycle. The efficiency of a real engine is further reduced by
such practical difficulties as friction and energy losses by conduction.

To describe the Carnot cycle taking place between temperatures Tc and Th , we
assume that the working substance is an ideal gas contained in a cylinder fitted
with a movable piston at one end. The cylinder’s walls and the piston are ther-
mally nonconducting. Four stages of the Carnot cycle are shown in Figure 22.9,
and the PV diagram for the cycle is shown in Figure 22.10. The Carnot cycle con-
sists of two adiabatic processes and two isothermal processes, all reversible:

1. Process A : B (Fig. 22.9a) is an isothermal expansion at temperature Th . The
gas is placed in thermal contact with an energy reservoir at temperature Th .
During the expansion, the gas absorbs energy Q h from the reservoir through
the base of the cylinder and does work WAB in raising the piston.

2. In process B : C (Fig. 22.9b), the base of the cylinder is replaced by a ther-
mally nonconducting wall, and the gas expands adiabatically —that is, no en-
ergy enters or leaves the system. During the expansion, the temperature of
the gas decreases from Th to Tc and the gas does work WBC in raising the 
piston.

3. In process C : D (Fig. 22.9c), the gas is placed in thermal contact with an en-
ergy reservoir at temperature Tc and is compressed isothermally at temperature
Tc . During this time, the gas expels energy Q c to the reservoir, and the work
done by the piston on the gas is WCD .

4. In the final process D : A (Fig. 22.9d), the base of the cylinder is replaced by a
nonconducting wall, and the gas is compressed adiabatically. The temperature
of the gas increases to Th , and the work done by the piston on the gas is WDA .

The net work done in this reversible, cyclic process is equal to the area en-
closed by the path ABCDA in Figure 22.10. As we demonstrated in Section 22.1,
because the change in internal energy is zero, the net work W done in one cycle
equals the net energy transferred into the system, Q h � Q c . The thermal efficiency
of the engine is given by Equation 22.2:

In Example 22.2, we show that for a Carnot cycle

(22.3)

Hence, the thermal efficiency of a Carnot engine is

(22.4)

This result indicates that all Carnot engines operating between the same two
temperatures have the same efficiency.

eC � 1 �
Tc

Th

Q c

Q h
�

Tc

Th

e �
W
Q h

�
Q h � Q c

Q h
� 1 �

Q c

Q h

e � eC

Ratio of energies for a Carnot
cycle

Efficiency of a Carnot engine

V

P

A

C

B

D

Q c

Q h

Th

Tc

W

Figure 22.10 PV diagram for the
Carnot cycle. The net work done,
W, equals the net energy received
in one cycle, Note that

for the cycle.�E int � 0
Q h � Q c .



678 C H A P T E R  2 2 Heat Engines, Entropy, and the Second Law of Thermodynamics

Efficiency of the Carnot EngineEXAMPLE 22.2
pression for P and substituting into (2), we obtain

which we can write as

where we have absorbed nR into the constant right-hand side.
Applying this result to the adiabatic processes B : C and 
D : A, we obtain

Dividing the first equation by the second, we obtain

(3)

Substituting (3) into (1), we find that the logarithmic terms
cancel, and we obtain the relationship

Using this result and Equation 22.2, we see that the thermal
efficiency of the Carnot engine is

which is Equation 22.4, the one we set out to prove.

eC � 1 �
Q c

Q h
� 1 �

Tc

Th

Q c

Q h
�

Tc

Th

VB

VA
�

VC

VD

(VB /VA)��1 � (VC /VD)��1

ThVA 

��1 � TcVD 

��1

ThVB 

��1 � TcVC 

��1

TV ��1 � constant

nRT
V

 V � � constant

Show that the efficiency of a heat engine operating in a
Carnot cycle using an ideal gas is given by Equation 22.4.

Solution During the isothermal expansion (process A : B
in Figure 22.9), the temperature does not change. Thus, the
internal energy remains constant. The work done by a gas
during an isothermal expansion is given by Equation 20.13.
According to the first law, this work is equal to Q h , the energy
absorbed, so that

In a similar manner, the energy transferred to the cold reser-
voir during the isothermal compression C : D is

We take the absolute value of the work because we are defin-
ing all values of Q for a heat engine as positive, as mentioned
earlier. Dividing the second expression by the first, we find
that

(1)

We now show that the ratio of the logarithmic quantities is
unity by establishing a relationship between the ratio of vol-
umes. For any quasi-static, adiabatic process, the pressure and
volume are related by Equation 21.18:

(2)

During any reversible, quasi-static process, the ideal gas must
also obey the equation of state, PV � nRT. Solving this ex-

PV � � constant

Q c

Q h
�

Tc

Th
 

ln(VC /VD)
ln(VB /VA)

Q c � � WCD � � nRTc ln 
VC

VD

Q h � WAB � nRTh ln 
VB

VA

The Steam EngineEXAMPLE 22.3
Solution Using Equation 22.4, we find that the maximum
thermal efficiency for any engine operating between these
temperatures is

or 40%eC � 1 �
Tc

Th
� 1 �

300 K
500 K

� 0.4,

A steam engine has a boiler that operates at 500 K. The en-
ergy from the burning fuel changes water to steam, and this
steam then drives a piston. The cold reservoir’s temperature
is that of the outside air, approximately 300 K. What is the
maximum thermal efficiency of this steam engine?

Equation 22.4 can be applied to any working substance operating in a Carnot
cycle between two energy reservoirs. According to this equation, the efficiency is
zero if as one would expect. The efficiency increases as Tc is lowered and
as Th is raised. However, the efficiency can be unity (100%) only if K. Such
reservoirs are not available; thus, the maximum efficiency is always less than 100%.
In most practical cases, Tc is near room temperature, which is about 300 K. There-
fore, one usually strives to increase the efficiency by raising Th .

Tc � 0
Tc � Th ,
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GASOLINE AND DIESEL ENGINES
In a gasoline engine, six processes occur in each cycle; five of these are illustrated
in Figure 22.11. In this discussion, we consider the interior of the cylinder above
the piston to be the system that is taken through repeated cycles in the operation
of the engine. For a given cycle, the piston moves up and down twice. This repre-
sents a four-stroke cycle consisting of two upstrokes and two downstrokes. The
processes in the cycle can be approximated by the Otto cycle, a PV diagram of
which is illustrated in Figure 22.12:

1. During the intake stroke O : A (Fig. 22.11a), the piston moves downward, and a
gaseous mixture of air and fuel is drawn into the cylinder at atmospheric pres-
sure. In this process, the volume increases from V2 to V1 . This is the energy in-
put part of the cycle, as energy enters the system (the interior of the cylinder)
as internal energy stored in the fuel. This is energy transfer by mass transfer—
that is, the energy is carried with a substance. It is similar to convection, which
we studied in Chapter 20.

2. During the compression stroke A : B (Fig. 22.11b), the piston moves upward, the
air– fuel mixture is compressed adiabatically from volume V1 to volume V2 , and
the temperature increases from TA to TB . The work done by the gas is negative,
and its value is equal to the area under the curve AB in Figure 22.12.

3. In process B : C, combustion occurs when the spark plug fires (Fig. 22.11c).
This is not one of the strokes of the cycle because it occurs in a very short 
period of time while the piston is at its highest position. The combustion repre-
sents a rapid transformation from internal energy stored in chemical bonds in
the fuel to internal energy associated with molecular motion, which is related
to temperature. During this time, the pressure and temperature in the cylinder
increase rapidly, with the temperature rising from TB to TC . The volume, how-
ever, remains approximately constant because of the short time interval. As a re-
sult, approximately no work is done by the gas. We can model this process in
the PV diagram (Fig. 22.12) as that process in which the energy Q h enters the
system. However, in reality this process is a transformation of energy already in
the cylinder (from process O : A) rather than a transfer.

4. In the power stroke C : D (Fig. 22.11d), the gas expands adiabatically from V2 to

22.4

The Carnot EfficiencyEXAMPLE 22.4

430 KTh �
Tc

1 � eC
�

300 K
1 � 0.30

�

eC � 1 �
Tc

Th
  

The highest theoretical efficiency of a certain engine is 30%.
If this engine uses the atmosphere, which has a temperature
of 300 K, as its cold reservoir, what is the temperature of its
hot reservoir?

Solution We use the Carnot efficiency to find Th :

You should note that this is the highest theoretical efficiency of
the engine. In practice, the efficiency is considerably lower.

Exercise Determine the maximum work that the engine

can perform in each cycle if it absorbs 200 J of energy from
the hot reservoir during each cycle.

Answer 80 J.
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V1 . This expansion causes the temperature to drop from TC to TD . Work is
done by the gas in pushing the piston downward, and the value of this work is
equal to the area under the curve CD.

5. In the process D : A (not shown in Fig. 22.11), an exhaust valve is opened as
the piston reaches the bottom of its travel, and the pressure suddenly drops for
a short time interval. During this interval, the piston is almost stationary and
the volume is approximately constant. Energy is expelled from the interior of
the cylinder and continues to be expelled during the next process.

6. In the final process, the exhaust stroke A : O (Fig. 22.11e), the piston moves up-
ward while the exhaust valve remains open. Residual gases are exhausted at at-
mospheric pressure, and the volume decreases from V1 to V2 . The cycle then 
repeats.

If the air– fuel mixture is assumed to be an ideal gas, then the efficiency of the
Otto cycle is

(22.5)

where � is the ratio of the molar specific heats CP/CV for the fuel–air mixture and
V1 /V2 is the compression ratio. Equation 22.5, which we derive in Example 22.5,
shows that the efficiency increases as the compression ratio increases. For a typical
compression ratio of 8 and with � � 1.4, we predict a theoretical efficiency of 56%
for an engine operating in the idealized Otto cycle. This value is much greater
than that achieved in real engines (15% to 20%) because of such effects as fric-
tion, energy transfer by conduction through the cylinder walls, and incomplete
combustion of the air– fuel mixture.

Diesel engines operate on a cycle similar to the Otto cycle but do not employ a
spark plug. The compression ratio for a diesel engine is much greater than that

e � 1 �
1

(V1 /V2)��1Efficiency of the Otto cycle

Air
and
fuel

Spark plug

Piston

Intake
(a)

Compression
(b)

Spark
(c)

Power
(d)

Exhaust

Exhaust
(e)

Figure 22.11 The four-stroke cycle of a conventional gasoline engine. (a) In the intake 
stroke, air is mixed with fuel. (b) The intake valve is then closed, and the air– fuel mixture is
compressed by the piston. (c) The mixture is ignited by the spark plug, with the result that the
temperature of the mixture increases. (d) In the power stroke, the gas expands against the pis-
ton. (e) Finally, the residual gases are expelled, and the cycle repeats.

P

V
V1V2

A

B
D

C

O

Q h

Q c

Adiabatic
processes

Figure 22.12 PV diagram for the
Otto cycle, which approximately
represents the processes occurring
in an internal combustion engine.
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Efficiency of the Otto CycleEXAMPLE 22.5
and we find that

(2)

(3)

Subtracting (2) from (3) and rearranging, we find that

(4)

Substituting (4) into (1), we obtain for the thermal efficiency

(5)

which is Equation 22.5.
We can also express this efficiency in terms of tempera-

tures by noting from (2) and (3) that

Therefore, (5) becomes

(6)

During the Otto cycle, the lowest temperature is TA and the
highest temperature is TC . Therefore, the efficiency of a
Carnot engine operating between reservoirs at these two
temperatures, which is given by the expression 

is greater than the efficiency of the Otto cycle
given by (6), as expected.
1 � (TA /TC),

eC �

e � 1 �
TA

TB
� 1 �

TD

TC

� V2

V1
�

��1
�

TA

TB
�

TD

TC

e � 1 �
1

(V1 /V2)��1

TD � TA

TC � TB
� � V2

V1
�

��1

TD � TC � V2

V1
�

��1

TDV1 

��1 � TCV2 

��1

TA � TB � V2

V1
�

��1

TAV1 

��1 � TBV2 

��1

VB � VC � V2,VA � VD � V1Show that the thermal efficiency of an engine operating in an
idealized Otto cycle (see Figs. 22.11 and 22.12) is given by
Equation 22.5. Treat the working substance as an ideal gas.

Solution First, let us calculate the work done by the gas
during each cycle. No work is done during processes B : C
and D : A. The work done by the gas during the adiabatic
compression A : B is negative, and the work done by the gas
during the adiabatic expansion C : D is positive. The value
of the net work done equals the area of the shaded region
bounded by the closed curve in Figure 22.12. Because the
change in internal energy for one cycle is zero, we see from
the first law that the net work done during one cycle equals
the net energy flow through the system:

W � Q h � Q c

Because processes B : C and D : A take place at constant
volume, and because the gas is ideal, we find from the defini-
tion of molar specific heat (Eq. 21.8) that

and

Using these expressions together with Equation 22.2, we ob-
tain for the thermal efficiency

(1)

We can simplify this expression by noting that processes 
A : B and C : D are adiabatic and hence obey the relation-
ship which we obtained in Example 22.2.
For the two adiabatic processes, then,

A : B :

C : D :

Using these equations and relying on the fact that

TCVC 

��1 � TDVD 

��1

TAVA 

��1 � TBVB 

��1

TV ��1 � constant,

e �
W
Q h

� 1 �
Q c

Q h
� 1 �

TD � TA

TC � TB

Q c � nCV (TD � TA)Q h � nCV (TC � TB)

for a gasoline engine. Air in the cylinder is compressed to a very small volume,
and, as a consequence, the cylinder temperature at the end of the compression
stroke is very high. At this point, fuel is injected into the cylinder. The temperature
is high enough for the fuel–air mixture to ignite without the assistance of a spark
plug. Diesel engines are more efficient than gasoline engines because of their
greater compression ratios and resulting higher combustion temperatures.

Models of Gasoline and Diesel EnginesAPPLICATION
mixture as the products of combustion expand in the cylinder.
The power of the engine is transferred from the piston to the
crankshaft by the connecting rod. 

Two important quantities of either engine are the displace-
ment volume, which is the volume displaced by the piston as it
moves from the bottom to the top of the cylinder, and the com-

We can use the thermodynamic principles discussed in this
and earlier chapters to model the performance of gasoline
and diesel engines. In both types of engine, a gas is first com-
pressed in the cylinders of the engine and then the fuel–air
mixture is ignited. Work is done on the gas during compres-
sion, but significantly more work is done on the piston by the
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We also know that the difference in volumes is the displace-
ment volume. The 3.00-L rating of the engine is the total 
displacement volume for all six cylinders. Thus, for one 
cylinder,

Solving these two equations simultaneously, we find the initial
and final volumes:

Using the ideal gas law (in the form PV � mRT, because we
are using the universal gas constant in terms of mass rather
than moles), we can find the mass of the air– fuel mixture:

Process A : B (see Fig. 22.12) is an adiabatic compression,
and this means that hence,

Using the ideal gas law, we find that the temperature after the
compression is

In process B : C, the combustion that transforms the in-
ternal energy in chemical bonds into internal energy of mo-
lecular motion occurs at constant volume; thus, VC � VB .
Combustion causes the temperature to increase to TC �
1 350°C � 1 623 K. Using this value and the ideal gas law, we
can calculate PC :

Process C : D is an adiabatic expansion; the pressure after
the expansion is

 � (5.14 � 103 kPa)� 1
9.50 �

1.40
� 220 kPa

PD � PC � VC

VD
�

�

� PC � VB

VA
�

�

� PC � 1
r �

�

 � 5.14 � 103 kPa

 �
(6.49 � 10�4 kg)(0.287 kPa �m3/kg�K)(1 623 K)

(0.588 � 10�4 m3)

PC �
mRTC

VC

 � 739 K

TB �
PBVB

mR
�

(2.34 � 103 kPa)(0.588 � 10�4 m3)
(6.49 � 10�4 kg)(0.287 kPa �m3/kg�K)

 � 2.34 � 103 kPa

  PB � PA� VA

VB
�

�

� PA(r)� � (100 kPa)(9.50)1.40

PBVB 

� � PAVA 

�  

PV � � constant;

 � 6.49 � 10�4 kg

m �
PAVA

RTA
�

(100 kPa)(0.559 � 10�3 m3)
(0.287 kPa �m3/kg�K)(300 K)

VA � 0.559 � 10�3 m3  VB � 0.588 � 10�4 m3

VA � VB �
3.00 L

6
�

3.00 � 10�3 m3

6
� 0.500 � 10�3 m3

VA

VB
� r � 9.50

pression ratio r, which is the ratio of the maximum and mini-
mum volumes of the cylinder (see p. 680). In our notation, 
r � VA/VB , or V1/V2 in Eq. 22.5. Most gasoline and diesel en-
gines operate with a four-cycle process (intake, compression,
power, exhaust), in which the net work of the intake and ex-
haust cycles can be considered negligible. Therefore, power
is developed only once for every two revolutions of the crank-
shaft.

In a diesel engine, only air (and no fuel) is present in the
cylinder at the beginning of the compression. In the ideal-
ized diesel cycle of Figure 22.13, air in the cylinder under-
goes an adiabatic compression from A to B. Starting at B, fuel
is injected into the cylinder in such a way that the fuel–air
mixture undergoes a constant-pressure expansion to an inter-
mediate volume VC(B : C ). The high temperature of the
mixture causes combustion, and the power stroke is an adia-
batic expansion back to VD � VA(C : D). The exhaust valve
is opened, and a constant-volume output of energy occurs 
(D : A) as the cylinder empties.

To simplify our calculations, we assume that the mixture
in the cylinder is air modeled as an ideal gas. We use specific
heats c instead of molar specific heats C and assume con-
stant values for air at 300 K. We express the specific heats 
and the universal gas constant in terms of unit masses rather
than moles. Thus, cV � 0.718 kJ/kg � K, cP � 1.005 kJ/kg � K,

and kJ/kg � K �
.

A 3.00-L Gasoline Engine
Let us calculate the power delivered by a six-cylinder gasoline
engine that has a displacement volume of 3.00 L operating at
4 000 rpm and having a compression ratio of r � 9.50. The
air– fuel mixture enters a cylinder at atmospheric pressure
and an ambient temperature of 27°C. During combustion,
the mixture reaches a temperature of 1 350°C.

First, let us calculate the work done by an individual cylin-
der. Using the initial pressure kPa and the initial
temperature K, we calculate the initial volume and
the mass of the air– fuel mixture. We know that the ratio of
the initial and final volumes is the compression ratio,

TA � 300
PA � 100

0.287 kPa�m3/kg�K
0.287R � cP � cV �� � cP/cV � 1.40,

Adiabatic
processes

A

B C

D

P

V

Qh

Qc

V2 = VB VC V1 = VA

Figure 22.13 PV diagram for an ideal diesel engine.
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Process A : B is an adiabatic compression, so con-
stant; thus,

Using the ideal gas law, we find that the temperature of the
air after the compression is

Process B : C is a constant-pressure expansion; thus,
We know from the cutoff ratio of 2.00 that the vol-

ume doubles in this process. According to the ideal gas law, a
doubling of volume in an isobaric process results in a dou-
bling of the temperature, so

Process C : D is an adiabatic expansion; therefore,

We find the temperature at D from the ideal gas law:

Now that we have the temperatures at the beginning and the
end of each process, we can calculate the net energy transfer
by heat and the net work done by each cylinder every two cy-
cles:

The efficiency is 
The net power for the four-cylinder engine operating at 

3 000 rpm is

(3 000 rev/min) (1 min/60 s) (0.396 kJ)

� 39.6 kW � 53 hp

Of course, modern engine design goes beyond this simple
thermodynamic treatment, which uses idealized cycles.

�net � 4� 1
2 rev �

e � Wnet /Q in � 66%.

Wnet � Q in � Q out � 0.396 kJ 

 Q c � Q out � mcV(TD � TA) � 0.205 kJ

 Q h � Q in � mcP(TC � TB) � 0.601 kJ

 � 792 K

TD �
PDVD

mR
�

(264 kPa)(0.500 � 10�3 m3)
(5.81 � 10�4 kg)(0.287 kPa �m3/kg�K)

 � (7.57 � 103 kPa)� 2.00
22.0 �

1.40
� 264 kPa

PD � PC � VC

VD
�

�

� PC � VC

VB
 

VB

VD
�

�

� PC �rc 
1
r �

�

TC � 2TB � 2.06 � 103 K

PC � PB .

 � 1.03 � 103 K

TB �
PBVB

mR
�

(7.57 � 103 kPa)(0.500 � 10�3 m3)� 1
22.0 �

(5.81 � 10�4 kg)(0.287 kPa �m3/kg�K)

 PB � PA� VA

VB
�

�

� (100 kPa)(22.0)1.40 � 7.57 � 103 kPa

PBVB 

� � PAVA 

� 

PV � �

Using the ideal gas law again, we find the final temperature:

Now that we have the temperatures at the beginning and
end of each process of the cycle, we can calculate the net en-
ergy transfer and net work done by each cylinder every two
cycles. From Equation 21.8, we can state

From Equation 22.2, the efficiency is 
(We can also use Equation 22.5 to calculate the efficiency di-
rectly from the compression ratio.)

Recalling that power is delivered every other revolution of
the crankshaft, we find that the net power for the six-cylinder
engine operating at 4 000 rpm is

(4 000 rev/min) (1 min/60 s) (0.244 kJ)

� 49 kW � 66 hp

A 2.00-L Diesel Engine
Let us calculate the power delivered by a four-cylinder diesel
engine that has a displacement volume of 2.00 L and is 
operating at 3 000 rpm. The compression ratio is

, and the cutoff ratio, which is the ratio 
of the volume change during the constant-pressure process

in Figure 22.13, is The air enters
each cylinder at the beginning of the compression cycle at at-
mospheric pressure and at an ambient temperature of 27°C.

Our model of the diesel engine is similar to our model of
the gasoline engine except that now the fuel is injected at
point B and the mixture self-ignites near the end of the com-
pression cycle , when the temperature reaches the igni-
tion temperature. We assume that the energy input occurs in
the constant-pressure process , and that the expansion
process continues from C to D with no further energy transfer
by heat.

Let us calculate the work done by an individual cylinder
that has an initial volume of 

Because the compression ratio is quite
high, we approximate the maximum cylinder volume to be
the displacement volume. Using the initial pressure PA �
100 kPa and initial temperature TA � 300 K, we can calculate
the mass of the air in the cylinder using the ideal gas law:

0.500 � 10�3 m3.
VA � (2.00 � 10�3 m3)/4 �

B : C

A : B

rc � VC /VB � 2.00.B : C

r � VA /VB � 22.0

�net � 6� 1
2 rev �

e � Wnet/Q in � 59%.

 Wnet � Q in � Q out � 0.244 kJ   

 � 0.168 kJ

  � (6.49 � 10�4 kg)(0.718 kJ/kg�K)(660 K � 300 K)

Q c � Q out � mcV(TD � TA)

 � 0.412 kJ

  � (6.49 � 10�4 kg)(0.718 kJ/kg�K)(1 623 K � 739 K)

Q h � Q in � mcV(TC � TB)

 � 660 K

TD �
PDVD

mR
�

(220 kPa)(0.559 � 10�3 m3)
(6.49 � 10�4 kg)(0.287 kPa �m3/kg�K)

m �
PAVA

RTA
�

(100 kPa)(0.500 � 10�3 m3)
(0.287 kPa �m3/kg�K)(300 K)

� 5.81 � 10�4 kg
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HEAT PUMPS AND REFRIGERATORS
In Section 22.1 we introduced a heat pump as a mechanical device that moves en-
ergy from a region at lower temperature to a region at higher temperature. Heat
pumps have long been used for cooling homes and buildings, and they are now
becoming increasingly popular for heating them as well. The heat pump contains
two sets of metal coils that can exchange energy by heat with the surroundings:
one set on the outside of the building, in contact with the air or buried in the
ground; and the other set in the interior of the building. In the heating mode, a
circulating fluid flowing through the coils absorbs energy from the outside and re-
leases it to the interior of the building from the interior coils. The fluid is cold and
at low pressure when it is in the external coils, where it absorbs energy by heat
from either the air or the ground. The resulting warm fluid is then compressed
and enters the interior coils as a hot, high-pressure fluid, where it releases its
stored energy to the interior air.

An air conditioner is simply a heat pump operating in the cooling mode, with
its exterior and interior coils interchanged. Energy is absorbed into the circulating
fluid in the interior coils; then, after the fluid is compressed, energy leaves the
fluid through the external coils. The air conditioner must have a way to release en-
ergy to the outside. Otherwise, the work done on the air conditioner would repre-
sent energy added to the air inside the house, and the temperature would in-
crease. In the same manner, a refrigerator cannot cool the kitchen if the
refrigerator door is left open. The amount of energy leaving the external coils
(Fig. 22.14) behind or underneath the refrigerator is greater than the amount of
energy removed from the food or from the air in the kitchen if the door is left
open. The difference between the energy out and the energy in is the work done
by the electricity supplied to the refrigerator.

Figure 22.15 is a schematic representation of a heat pump. The cold tempera-
ture is Tc , the hot temperature is Th , and the energy absorbed by the circulating
fluid is Q c . The heat pump does work W on the fluid, and the energy transferred
from the pump to the building in the heating mode is Q h .

The effectiveness of a heat pump is described in terms of a number called the
coefficient of performance (COP). In the heating mode, the COP is defined as
the ratio of the energy transferred to the hot reservoir to the work required to
transfer that energy:

(22.6)

Note that the COP is similar to the thermal efficiency for a heat engine in that it is
a ratio of what you get (energy delivered to the interior of the building) to what
you give (work input). Because Q h is generally greater than W, typical values for the
COP are greater than unity. It is desirable for the COP to be as high as possible, just
as it is desirable for the thermal efficiency of an engine to be as high as possible.

If the outside temperature is 25°F or higher, then the COP for a heat pump is
about 4. That is, the amount of energy transferred to the building is about four
times greater than the work done by the motor in the heat pump. However, as the
outside temperature decreases, it becomes more difficult for the heat pump to ex-
tract sufficient energy from the air, and so the COP decreases. In fact, the COP
can fall below unity for temperatures below the midteens. Thus, the use of heat
pumps that extract energy from the air, while satisfactory in moderate climates, is
not appropriate in areas where winter temperatures are very low. It is possible to

COP (heating mode) �
Energy transferred at high temperature

Work done by pump
�

Q h

W

22.5

Figure 22.14 The coils on the
back of a refrigerator transfer en-
ergy by heat to the air. The second
law of thermodynamics states that
this amount of energy must be
greater than the amount of energy
removed from the contents of the
refrigerator (or from the air in the
kitchen, if the refrigerator door is
left open).
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use heat pumps in colder areas by burying the external coils deep in the ground.
In this case, the energy is extracted from the ground, which tends to be warmer
than the air in the winter.

In an electric heater, electrical energy can be converted to internal energy with an effi-
ciency of 100%. By what percentage does the cost of heating your home change when you
replace your electric heating system with a heat pump that has a COP of 4? Assume that the
motor running the heat pump is 100% efficient.

Theoretically, a Carnot-cycle heat engine run in reverse constitutes the most
effective heat pump possible, and it determines the maximum COP for a given
combination of hot and cold reservoir temperatures. Using Equations 22.1 and
22.3, we see that the maximum COP for a heat pump in its heating mode is

For a heat pump operating in the cooling mode, “what you get” is energy re-
moved from the cold reservoir. The most effective refrigerator or air conditioner is
one that removes the greatest amount of energy from the cold reservoir in ex-
change for the least amount of work. Thus, for these devices we define the COP in
terms of Q c :

(22.7)

A good refrigerator should have a high COP, typically 5 or 6.
The greatest possible COP for a heat pump in the cooling mode is that of a

heat pump whose working substance is carried through a Carnot cycle in reverse:

As the difference between the temperatures of the two reservoirs approaches zero
in this expression, the theoretical COP approaches infinity. In practice, the low
temperature of the cooling coils and the high temperature at the compressor limit
the COP to values below 10.

ENTROPY
The zeroth law of thermodynamics involves the concept of temperature, and the
first law involves the concept of internal energy. Temperature and internal energy
are both state functions—that is, they can be used to describe the thermodynamic
state of a system. Another state function—this one related to the second law of
thermodynamics—is entropy S. In this section we define entropy on a macro-
scopic scale as it was first expressed by Clausius in 1865.

22.6

COPC (cooling mode) �  
Tc

Th � Tc

COP (cooling mode) �
Q c

W

  �
Q h

Q h � Q c
�

1

1 �
Q c

Q h

�
1

1 �
Tc

Th

�
Th

Th � Tc

COPC(heating mode) �
Q h

W
 

Quick Quiz 22.1

10.10 
&

10.11

QuickLab
Estimate the COP of your refrigerator
by making rough temperature mea-
surements of the stored food and of
the exhaust coils (found either on
the back of the unit or behind a
panel on the bottom). Use just your
hand if no thermometer is available.

Hot reservoir at Th

Heat
pump

Q h

Q c

Cold reservoir at Tc

W

Figure 22.15 Schematic diagram
of a heat pump, which absorbs en-
ergy Q c from a cold reservoir and
expels energy Q h to a hot reservoir.
Note that this diagram is the same
as that for the refrigerator shown
in Figure 22.5.
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Consider any infinitesimal process in which a system changes from one equi-
librium state to another. If dQ r is the amount of energy transferred by heat when
the system follows a reversible path between the states, then the change in entropy
dS is equal to this amount of energy for the reversible process divided by the ab-
solute temperature of the system:

(22.8)

We have assumed that the temperature is constant because the process is infinitesi-
mal. Since we have claimed that entropy is a state function, the change in en-
tropy during a process depends only on the end points and therefore is in-
dependent of the actual path followed.

The subscript r on the quantity dQ r is a reminder that the transferred energy is
to be measured along a reversible path, even though the system may actually have
followed some irreversible path. When energy is absorbed by the system, dQ r is
positive and the entropy of the system increases. When energy is expelled by the
system, dQ r is negative and the entropy of the system decreases. Note that Equa-
tion 22.8 defines not entropy but rather the change in entropy. Hence, the mean-
ingful quantity in describing a process is the change in entropy.

Entropy was originally formulated as a useful concept in thermodynamics;
however, its importance grew tremendously as the field of statistical mechanics de-
veloped because the analytical techniques of statistical mechanics provide an alter-
native means of interpreting entropy. In statistical mechanics, the behavior of a
substance is described in terms of the statistical behavior of its atoms and mole-
cules. One of the main results of this treatment is that isolated systems tend to-
ward disorder and that entropy is a measure of this disorder. For example,
consider the molecules of a gas in the air in your room. If half of the gas mole-
cules had velocity vectors of equal magnitude directed toward the left and the
other half had velocity vectors of the same magnitude directed toward the right,
the situation would be very ordered. However, such a situation is extremely un-
likely. If you could actually view the molecules, you would see that they move hap-
hazardly in all directions, bumping into one another, changing speed upon colli-
sion, some going fast and others going slowly. This situation is highly disordered.

The cause of the tendency of an isolated system toward disorder is easily ex-
plained. To do so, we distinguish between microstates and macrostates of a system. A
microstate is a particular description of the properties of the individual molecules
of the system. For example, the description we just gave of the velocity vectors of
the air molecules in your room being very ordered refers to a particular mi-
crostate, and the more likely likely haphazard motion is another microstate—one
that represents disorder. A macrostate is a description of the conditions of the sys-
tem from a macroscopic point of view and makes use of macroscopic variables
such as pressure, density, and temperature. For example, in both of the mi-
crostates described for the air molecules in your room, the air molecules are dis-
tributed uniformly throughout the volume of the room; this uniform density distri-
bution is a macrostate. We could not distinguish between our two microstates by
making a macroscopic measurement—both microstates would appear to be the
same macroscopically, and the two macrostates corresponding to these microstates
are equivalent.

For any given macrostate of the system, a number of microstates are possible,
or accessible. Among these microstates, it is assumed that all are equally probable.
However, when all possible microstates are examined, it is found that far more of
them are disordered than are ordered. Because all of the microstates are equally

dS �
dQ r

T
Clausius definition of change in
entropy
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probable, it is highly likely that the actual macrostate is one resulting from one of
the highly disordered microstates, simply because there are many more of them.
Similarly, the probability of a macrostate’s forming from disordered microstates is
greater than the probability of a macrostate’s forming from ordered microstates. 

All physical processes that take place in a system tend to cause the system and
its surroundings to move toward more probable macrostates. The more probable
macrostate is always one of greater disorder. If we consider a system and its sur-
roundings to include the entire Universe, then the Universe is always moving to-
ward a macrostate corresponding to greater disorder. Because entropy is a mea-
sure of disorder, an alternative way of stating this is the entropy of the Universe
increases in all real processes. This is yet another statement of the second law of
thermodynamics that can be shown to be equivalent to the Kelvin–Planck and
Clausius statements.

To calculate the change in entropy for a finite process, we must recognize that
T is generally not constant. If dQ r is the energy transferred by heat when the sys-
tem is at a temperature T, then the change in entropy in an arbitrary reversible
process between an initial state and a final state is

(reversible path) (22.9)

As with an infinitesimal process, the change in entropy �S of a system going from
one state to another has the same value for all paths connecting the two states.
That is, the finite change in entropy �S of a system depends only on the properties
of the initial and final equilibrium states. Thus, we are free to choose a particular
reversible path over which to evaluate the entropy in place of the actual path, as
long as the initial and final states are the same for both paths.

Which of the following is true for the entropy change of a system that undergoes a re-
versible, adiabatic process? (a) �S � 0. (b) �S � 0. (c) �S � 0.

Let us consider the changes in entropy that occur in a Carnot heat engine op-
erating between the temperatures Tc and Th . In one cycle, the engine absorbs en-
ergy Q h from the hot reservoir and expels energy Q c to the cold reservoir. These
energy transfers occur only during the isothermal portions of the Carnot cycle;
thus, the constant temperature can be brought out in front of the integral sign in
Equation 22.9. The integral then simply has the value of the total amount of en-
ergy transferred by heat. Thus, the total change in entropy for one cycle is

where the negative sign represents the fact that energy Q c is expelled by the sys-
tem, since we continue to define Q c as a positive quantity when referring to heat
engines. In Example 22.2 we showed that, for a Carnot engine,

Using this result in the previous expression for �S, we find that the total change in

Q c

Q h
�

Tc

Th

�S �
Q h

Th
�

Q c

Tc

Quick Quiz 22.2

�S � �f

i
 dS � �f

i
 
dQ r

T

In real processes, the disorder of
the Universe increases

Change in entropy for a finite
process
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entropy for a Carnot engine operating in a cycle is zero:

�S � 0

Now let us consider a system taken through an arbitrary (non-Carnot) re-
versible cycle. Because entropy is a state function—and hence depends only on
the properties of a given equilibrium state—we conclude that �S � 0 for any re-
versible cycle. In general, we can write this condition in the mathematical form

(22.10)

where the symbol indicates that the integration is over a closed path.

Quasi-Static, Reversible Process for an Ideal Gas

Let us suppose that an ideal gas undergoes a quasi-static, reversible process from
an initial state having temperature Ti and volume Vi to a final state described by Tf
and Vf . Let us calculate the change in entropy of the gas for this process.

Writing the first law of thermodynamics in differential form and rearranging
the terms, we have where dW � P dV. For an ideal gas, recall
that (Eq. 21.12), and from the ideal gas law, we have P � nRT/V.
Therefore, we can express the energy transferred by heat in the process as

We cannot integrate this expression as it stands because the last term contains two
variables, T and V. However, if we divide all terms by T, each of the terms on the
right-hand side depends on only one variable:

(22.11)

Assuming that CV is constant over the interval in question, and integrating Equa-
tion 22.11 from the initial state to the final state, we obtain

(22.12)

This expression demonstrates mathematically what we argued earlier—that �S de-
pends only on the initial and final states and is independent of the path between
the states. Also, note in Equation 22.12 that �S can be positive or negative, de-
pending on the values of the initial and final volumes and temperatures. Finally,
for a cyclic process and we see from Equation 22.12 that �S � 0.
This is evidence that entropy is a state function.

Vi � Vf),(Ti � Tf

�S � �f

i
 
dQ r

T
� nCV ln 

Tf

Ti

 nR ln 

Vf

Vi

dQ r

T
� nCV  

dT
T


 nR 
dV
V

dQ r � dE int 
 P dV � nCV dT 
 nRT 
dV
V

dE int � nCV dT
dQ r � dE int 
 dW,

�

� 
dQ r

T
� 0

Change in Entropy — MeltingEXAMPLE 22.6
Making use of Equations 22.9 and that for the latent heat of
fusion (Eq. 20.6), we find that

mLf

Tm
�S � � 

dQ r

T
�

1

Tm
 � dQ �

Q

Tm
�

Q � mLf

A solid that has a latent heat of fusion Lf melts at a tempera-
ture Tm . (a) Calculate the change in entropy of this sub-
stance when a mass m of the substance melts.

Solution Let us assume that the melting occurs so slowly
that it can be considered a reversible process. In this case the
temperature can be regarded as constant and equal to Tm .

The change in entropy for a
Carnot cycle is zero

�S � 0 for any reversible cycle
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ENTROPY CHANGES IN IRREVERSIBLE PROCESSES
By definition, calculation of the change in entropy requires information about a re-
versible path connecting the initial and final equilibrium states. To calculate
changes in entropy for real (irreversible) processes, we must remember that entropy
(like internal energy) depends only on the state of the system. That is, entropy is a
state function. Hence, the change in entropy when a system moves between any two
equilibrium states depends only on the initial and final states. We can show that if
this were not the case, the second law of thermodynamics would be violated.

We now calculate the entropy change in some irreversible process between two
equilibrium states by devising a reversible process (or series of reversible
processes) between the same two states and computing for the re-
versible process. In irreversible processes, it is critically important that we distin-
guish between Q , the actual energy transfer in the process, and Q r , the energy
that would have been transferred by heat along a reversible path. Only Q r is the
correct value to be used in calculating the entropy change.

As we shall see in the following examples, the change in entropy for a system
and its surroundings is always positive for an irreversible process. In general, the
total entropy—and therefore the disorder—always increase in an irreversible
process. Keeping these considerations in mind, we can state the second law of
thermodynamics as follows:

�S � � dQ r /T

22.7

The total entropy of an isolated system that undergoes a change can never de-
crease.

Note that we are able to remove Tm from the integral because
the process is isothermal. Note also that �S is positive. This
means that when a solid melts, its entropy increases because
the molecules are much more disordered in the liquid state
than they are in the solid state. The positive value for �S also
means that the substance in its liquid state does not sponta-
neously transfer energy from itself to the surroundings and
freeze because to do so would involve a spontaneous decrease
in entropy.

(b) Estimate the value of the change in entropy of an ice
cube when it melts.

Solution Let us assume an ice tray makes cubes that are 
about 3 cm on a side. The volume per cube is then (very
roughly) 30 cm3. This much liquid water has a mass of 30 g.
From Table 20.2 we find that the latent heat of fusion of ice is
3.33 � 105 J/kg. Substituting these values into our answer for
part (a), we find that

We retain only one significant figure, in keeping with the na-
ture of our estimations.

4 � 101 J/K�S �
mLf

Tm
�

(0.03 kg)(3.33 � 105 J/kg)

273 K
�

Furthermore, if the process is irreversible, then the total entropy of an iso-
lated system always increases. In a reversible process, the total entropy of
an isolated system remains constant.

When dealing with a system that is not isolated from its surroundings, remem-
ber that the increase in entropy described in the second law is that of the system
and its surroundings. When a system and its surroundings interact in an irre-
versible process, the increase in entropy of one is greater than the decrease in en-
tropy of the other. Hence, we conclude that the change in entropy of the Uni-
verse must be greater than zero for an irreversible process and equal to zero
for a reversible process. Ultimately, the entropy of the Universe should reach a
maximum value. At this value, the Universe will be in a state of uniform tempera-
ture and density. All physical, chemical, and biological processes will cease because
a state of perfect disorder implies that no energy is available for doing work. This
gloomy state of affairs is sometimes referred to as the heat death of the Universe.



690 C H A P T E R  2 2 Heat Engines, Entropy, and the Second Law of Thermodynamics

In the presence of sunlight, a tree rearranges an unorganized collection of carbon dioxide
and water molecules into the highly ordered collection of molecules we see as leaves and
branches. True or false: This reduction of entropy in the tree is a violation of the second law
of thermodynamics. Explain your response.

Entropy Change in Thermal Conduction

Let us now consider a system consisting of a hot reservoir and a cold reservoir in
thermal contact with each other and isolated from the rest of the Universe. A
process occurs during which energy Q is transferred by heat from the hot reservoir
at temperature Th to the cold reservoir at temperature Tc . Because the cold reser-
voir absorbs energy Q , its entropy increases by Q /Tc . At the same time, the hot
reservoir loses energy Q , and so its entropy change is � Q /Th . Because ,
the increase in entropy of the cold reservoir is greater than the decrease in en-
tropy of the hot reservoir. Therefore, the change in entropy of the system (and of
the Universe) is greater than zero:

�SU �
Q
Tc



�Q
Th

� 0

Th � Tc 

Quick Quiz 22.3

Which Way Does the Energy Flow?EXAMPLE 22.7
that of our two-object system, which is

This decrease in entropy of the Universe is in violation of the
second law. That is, the spontaneous transfer of energy
from a cold to a hot object cannot occur.

In terms of disorder, let us consider the violation of the
second law if energy were to continue to transfer sponta-
neously from a cold object to a hot object. Before the trans-
fer, a certain degree of order is associated with the different
temperatures of the objects. The hot object’s molecules have
a higher average energy than the cold object’s molecules. If
energy spontaneously flows from the cold object to the hot
object, then, over a period of time, the cold object will be-
come colder and the hot object will become hotter. The dif-
ference in average molecular energy will become even
greater; this would represent an increase in order for the sys-
tem and a violation of the second law.

In comparison, the process that does occur naturally is the
flow of energy from the hot object to the cold object. In this
process, the difference in average molecular energy de-
creases; this represents a more random distribution of energy
and an increase in disorder.

Exercise Suppose that 8.00 J of energy is transferred from a
hot object to a cold one. What is the net entropy change of
the Universe?

Answer 
 0.007 9 J/K.

�SU � �Sc 
 �Sh � �0.007 9 J/K

A large, cold object is at 273 K, and a large, hot object is at
373 K. Show that it is impossible for a small amount of
energy—for example, 8.00 J—to be transferred sponta-
neously from the cold object to the hot one without a de-
crease in the entropy of the Universe and therefore a viola-
tion of the second law.

Solution We assume that, during the energy transfer, the
two objects do not undergo a temperature change. This is
not a necessary assumption; we make it only to avoid using in-
tegral calculus in our calculations. The process as described is
irreversible, and so we must find an equivalent reversible
process. It is sufficient to assume that the objects are con-
nected by a poor thermal conductor whose temperature
spans the range from 273 K to 373 K. This conductor trans-
fers energy slowly, and its state does not change during the
process. Under this assumption, the energy transfer to or
from each object is reversible, and we may set The
entropy change of the hot object is

The cold object loses energy, and its entropy change is

We consider the two objects to be isolated from the rest of
the Universe. Thus, the entropy change of the Universe is just

�Sc �
Q r

Tc
�

�8.00 J
273 K

� �0.029 3 J/K

�Sh �
Q r

Th
�

8.00 J
373 K

� 0.021 4 J/K

Q � Q r .
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Entropy Change in a Free Expansion

Let us again consider the adiabatic free expansion of a gas occupying an initial vol-
ume Vi (Fig. 22.16). A membrane separating the gas from an evacuated region is
broken, and the gas expands (irreversibly) to a volume Vf . Let us find the changes
in entropy of the gas and of the Universe during this process.

The process is clearly neither reversible nor quasi-static. The work done by the
gas against the vacuum is zero, and because the walls are insulating, no energy is
transferred by heat during the expansion. That is, W � 0 and Q � 0. Using the
first law, we see that the change in internal energy is zero. Because the gas is ideal,
E int depends on temperature only, and we conclude that �T � 0 or Ti � Tf .

To apply Equation 22.9, we cannot use Q � 0, the value for the irreversible
process, but must instead find Q r ; that is, we must find an equivalent reversible
path that shares the same initial and final states. A simple choice is an isothermal,
reversible expansion in which the gas pushes slowly against a piston while energy
enters the gas by heat from a reservoir to hold the temperature constant. Because
T is constant in this process, Equation 22.9 gives

For an isothermal process, the first law of thermodynamics specifies that is 
equal to the work done by the gas during the expansion from Vi to Vf , which is given
by Equation 20.13. Using this result, we find that the entropy change for the gas is

(22.13)

Because we conclude that �S is positive. This positive result indicates that
both the entropy and the disorder of the gas increase as a result of the irreversible,
adiabatic expansion.

Because the free expansion takes place in an insulated container, no energy is
transferred by heat from the surroundings. (Remember that the isothermal, re-
versible expansion is only a replacement process that we use to calculate the entropy
change for the gas; it is not the actual process.) Thus, the free expansion has no ef-
fect on the surroundings, and the entropy change of the surroundings is zero. Thus,
the entropy change for the Universe is positive; this is consistent with the second law.

Vf � Vi ,

�S � nR ln 
Vf

Vi

�f
i dQ r

�S � �f

i
 
dQ r

T
�

1
T

 �f

i
 dQ r

Insulating
wall

Membrane

Vacuum

Gas at Ti

Figure 22.16 Adiabatic free ex-
pansion of a gas. When the mem-
brane separating the gas from the
evacuated region is ruptured, the
gas expands freely and irreversibly.
As a result, it occupies a greater fi-
nal volume. The container is ther-
mally insulated from its surround-
ings; thus, Q � 0.

Free Expansion of a GasEXAMPLE 22.8

It is easy to see that the gas is more disordered after the ex-
pansion. Instead of being concentrated in a relatively small
space, the molecules are scattered over a larger region.

18.3 J/K�
Calculate the change in entropy for a process in which 
2.00 mol of an ideal gas undergoes a free expansion to three
times its initial volume.

Solution Using Equation 22.13 with n � 2.00 mol and
we find that

�S � nR ln 
Vf

Vi
� (2.00 mol)(8.31 J/mol �K) (ln 3)

Vf � 3Vi ,

Entropy Change in Calorimetric Processes

A substance of mass m1 , specific heat c1 , and initial temperature T1 is placed in
thermal contact with a second substance of mass m2 , specific heat c2 , and initial
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temperature The two substances are contained in a calorimeter so that
no energy is lost to the surroundings. The system of the two substances is allowed
to reach thermal equilibrium. What is the total entropy change for the system?

First, let us calculate the final equilibrium temperature Tf . Using the tech-
niques of Section 20.2—namely, Equation 20.5, and Equation
20.4, we obtain

Solving for Tf , we have

(22.14)

The process is irreversible because the system goes through a series of non-
equilibrium states. During such a transformation, the temperature of the system at
any time is not well defined because different parts of the system have different
temperatures. However, we can imagine that the hot substance at the initial tem-
perature T2 is slowly cooled to the temperature Tf as it comes into contact with a
series of reservoirs differing infinitesimally in temperature, the first reservoir being
at T2 and the last being at Tf . Such a series of very small changes in temperature
would approximate a reversible process. We imagine doing the same thing for the
cold substance. Applying Equation 22.9 and noting that for an infini-
tesimal change, we have

where we have assumed that the specific heats remain constant. Integrating, we
find that

(22.15)

where Tf is given by Equation 22.14. If Equation 22.14 is substituted into Equation
22.15, we can show that one of the terms in Equation 22.15 is always positive and
the other is always negative. (You may want to verify this for yourself.) The positive
term is always greater than the negative term, and this results in a positive value for
�S. Thus, we conclude that the entropy of the Universe increases in this irre-
versible process.

Finally, you should note that Equation 22.15 is valid only when no mixing of
different substances occurs, because a further entropy increase is associated with
the increase in disorder during the mixing. If the substances are liquids or gases
and mixing occurs, the result applies only if the two fluids are identical, as in the
following example.

�S � m1c1 ln 
Tf

T1

 m2c2 ln 

Tf

T2

�S � �
1
 
dQ cold

T

 �

2
 
dQ hot

T
� m1c1 �Tf

T1

 
dT
T


 m2c2 �Tf

T2

 
dT
T

dQ � mc dT

Tf �
m1c1T1 
 m2c2T2

m1c1 
 m2c2

m1c1(Tf � T1) � �m2c2(Tf � T2)

 m1c1 �T1 � �m2c2 �T2

Q � mc �T,
Q cold � �Q hot ,

T2 � T1 .

Calculating �S for a Calorimetric ProcessEXAMPLE 22.9
Solution We can calculate the change in entropy from
Equation 22.15 using the values 

J/kg �K, K, K, and Tf � 323 K :T2 � 373T1 � 273c2 � 4 186
c1 �m1 � m2 � 1.00 kg,

Suppose that 1.00 kg of water at 0.00°C is mixed with an
equal mass of water at 100°C. After equilibrium is reached,
the mixture has a uniform temperature of 50.0°C. What is the
change in entropy of the system?

Change in entropy for a
calorimetric process


