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atter is normally classified as being in one of three states: solid, liquid, or
gas. From everyday experience, we know that a solid has a definite volume
and shape. A brick maintains its familiar shape and size day in and day out.

We also know that a liquid has a definite volume but no definite shape. Finally, we
know that an unconfined gas has neither a definite volume nor a definite shape.
These definitions help us picture the states of matter, but they are somewhat artifi-
cial. For example, asphalt and plastics are normally considered solids, but over
long periods of time they tend to flow like liquids. Likewise, most substances can
be a solid, a liquid, or a gas (or a combination of any of these), depending on the
temperature and pressure. In general, the time it takes a particular substance to
change its shape in response to an external force determines whether we treat the
substance as a solid, as a liquid, or as a gas.

A fluid is a collection of molecules that are randomly arranged and held to-
gether by weak cohesive forces and by forces exerted by the walls of a container.
Both liquids and gases are fluids.

In our treatment of the mechanics of fluids, we shall see that we do not need
to learn any new physical principles to explain such effects as the buoyant force
acting on a submerged object and the dynamic lift acting on an airplane wing.
First, we consider the mechanics of a fluid at rest—that is, fluid statics—and derive
an expression for the pressure exerted by a fluid as a function of its density and
depth. We then treat the mechanics of fluids in motion—that is, fluid dynamics.
We can describe a fluid in motion by using a model in which we make certain sim-
plifying assumptions. We use this model to analyze some situations of practical im-
portance. An analysis leading to Bernoulli’s equation enables us to determine rela-
tionships between the pressure, density, and velocity at every point in a fluid.

PRESSURE
Fluids do not sustain shearing stresses or tensile stresses; thus, the only stress that
can be exerted on an object submerged in a fluid is one that tends to compress
the object. In other words, the force exerted by a fluid on an object is always per-
pendicular to the surfaces of the object, as shown in Figure 15.1.

The pressure in a fluid can be measured with the device pictured in Figure
15.2. The device consists of an evacuated cylinder that encloses a light piston con-
nected to a spring. As the device is submerged in a fluid, the fluid presses on the
top of the piston and compresses the spring until the inward force exerted by the
fluid is balanced by the outward force exerted by the spring. The fluid pressure
can be measured directly if the spring is calibrated in advance. If F is the magni-
tude of the force exerted on the piston and A is the surface area of the piston,
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Figure 15.1 At any point on the
surface of a submerged object, the
force exerted by the fluid is per-
pendicular to the surface of the ob-
ject. The force exerted by the fluid
on the walls of the container is per-
pendicular to the walls at all points.

Figure 15.2 A simple device for measuring the pressure exerted
by a fluid.
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then the pressure P of the fluid at the level to which the device has been sub-
merged is defined as the ratio F/A:

(15.1)

Note that pressure is a scalar quantity because it is proportional to the magnitude
of the force on the piston.

To define the pressure at a specific point, we consider a fluid acting on the de-
vice shown in Figure 15.2. If the force exerted by the fluid over an infinitesimal
surface element of area dA containing the point in question is dF, then the pres-
sure at that point is

(15.2)

As we shall see in the next section, the pressure exerted by a fluid varies with
depth. Therefore, to calculate the total force exerted on a flat wall of a container,
we must integrate Equation 15.2 over the surface area of the wall.

Because pressure is force per unit area, it has units of newtons per square me-
ter (N/m2) in the SI system. Another name for the SI unit of pressure is pascal
(Pa):

(15.3)

Suppose you are standing directly behind someone who steps back and accidentally stomps
on your foot with the heel of one shoe. Would you be better off if that person were a profes-
sional basketball player wearing sneakers or a petite woman wearing spike-heeled shoes? Ex-
plain.

After a long lecture, the daring physics professor stretches out for a nap on a bed of nails, as
shown in Figure 15.3. How is this possible?

Quick Quiz 15.2

Quick Quiz 15.1

1 Pa � 1 N/m2

P �
dF
dA

P �
F
A

Snowshoes keep you from sinking
into soft snow because they spread
the downward force you exert on
the snow over a large area, reduc-
ing the pressure on the snow’s sur-
face.

Figure 15.3

Definition of pressure

QuickLab
Place a tack between your thumb and
index finger, as shown in the figure.
Now very gently squeeze the tack and
note the sensation. The pointed end
of the tack causes pain, and the blunt
end does not. According to Newton’s
third law, the force exerted by the
tack on the thumb is equal in magni-
tude and opposite in direction to the
force exerted by the tack on the in-
dex finger. However, the pressure at
the pointed end of the tack is much
greater than the pressure at the blunt
end. (Remember that pressure is
force per unit area.)

Tack
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VARIATION OF PRESSURE WITH DEPTH
As divers well know, water pressure increases with depth. Likewise, atmospheric
pressure decreases with increasing altitude; it is for this reason that aircraft flying
at high altitudes must have pressurized cabins.

We now show how the pressure in a liquid increases linearly with depth. As
Equation 1.1 describes, the density of a substance is defined as its mass per unit vol-
ume: Table 15.1 lists the densities of various substances. These values
vary slightly with temperature because the volume of a substance is temperature
dependent (as we shall see in Chapter 19). Note that under standard conditions
(at 0°C and at atmospheric pressure) the densities of gases are about 1/1 000 the
densities of solids and liquids. This difference implies that the average molecular
spacing in a gas under these conditions is about ten times greater than that in a
solid or liquid.

Now let us consider a fluid of density � at rest and open to the atmosphere, as
shown in Figure 15.4. We assume that � is constant; this means that the fluid is in-
compressible. Let us select a sample of the liquid contained within an imaginary
cylinder of cross-sectional area A extending from the surface to a depth h. The

� � m/V.

15.2

The Water BedEXAMPLE 15.1
imately 300 lb.) Because this load is so great, such a water
bed is best placed in the basement or on a sturdy, well-
supported floor.

(b) Find the pressure exerted by the water on the floor
when the bed rests in its normal position. Assume that the en-
tire lower surface of the bed makes contact with the floor.

Solution When the bed is in its normal position, the cross-
sectional area is 4.00 m2 ; thus, from Equation 15.1, we find
that

2.95 � 103 PaP �
1.18 � 104 N

4.00 m2 �

The mattress of a water bed is 2.00 m long by 2.00 m wide
and 30.0 cm deep. (a) Find the weight of the water in the
mattress.

Solution The density of water is 1 000 kg/m3 (Table
15.1), and so the mass of the water is

and its weight is

This is approximately 2 650 lb. (A regular bed weighs approx-

1.18 � 104 NMg � (1.20 � 103 kg)(9.80 m/s2) �

M � �V � (1 000 kg/m3)(1.20 m3) � 1.20 � 103 kg

TABLE 15.1 Densities of Some Common Substances at Standard
Temperature (0°C) and Pressure (Atmospheric)

Substance � (kg/m3) Substance � (kg/m3)

Air 1.29 Ice 0.917 � 103

Aluminum 2.70 � 103 Iron 7.86 � 103

Benzene 0.879 � 103 Lead 11.3 � 103

Copper 8.92 � 103 Mercury 13.6 � 103

Ethyl alcohol 0.806 � 103 Oak 0.710 � 103

Fresh water 1.00 � 103 Oxygen gas 1.43
Glycerine 1.26 � 103 Pine 0.373 � 103

Gold 19.3 � 103 Platinum 21.4 � 103

Helium gas 1.79 � 10�1 Seawater 1.03 � 103

Hydrogen gas 8.99 � 10�2 Silver 10.5 � 103

Mg

PAj

h

P0Aj

Figure 15.4 How pressure varies
with depth in a fluid. The net force
exerted on the volume of water
within the darker region must be
zero.
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pressure exerted by the outside liquid on the bottom face of the cylinder is P, and
the pressure exerted on the top face of the cylinder is the atmospheric pressure P0 .
Therefore, the upward force exerted by the outside fluid on the bottom of the cylin-
der is PA, and the downward force exerted by the atmosphere on the top is P0A. The
mass of liquid in the cylinder is M � �V � �Ah; therefore, the weight of the liquid in
the cylinder is Because the cylinder is in equilibrium, the net force act-
ing on it must be zero. Choosing upward to be the positive y direction, we see that

or

(15.4)

That is, the pressure P at a depth h below the surface of a liquid open to the
atmosphere is greater than atmospheric pressure by an amount �gh. In our
calculations and working of end-of-chapter problems, we usually take atmospheric
pressure to be

Equation 15.4 implies that the pressure is the same at all points having the same
depth, independent of the shape of the container.

In the derivation of Equation 15.4, why were we able to ignore the pressure that the liquid
exerts on the sides of the cylinder?

In view of the fact that the pressure in a fluid depends on depth and on the
value of P0 , any increase in pressure at the surface must be transmitted to every
other point in the fluid. This concept was first recognized by the French scientist
Blaise Pascal (1623–1662) and is called Pascal’s law: A change in the pressure
applied to a fluid is transmitted undiminished to every point of the fluid
and to the walls of the container.

An important application of Pascal’s law is the hydraulic press illustrated in
Figure 15.5a. A force of magnitude F1 is applied to a small piston of surface area
A1 . The pressure is transmitted through a liquid to a larger piston of surface area
A2 . Because the pressure must be the same on both sides, 
Therefore, the force F2 is greater than the force F1 by a factor A2/A1 , which is
called the force-multiplying factor. Because liquid is neither added nor removed, the
volume pushed down on the left as the piston moves down a distance d1 equals the
volume pushed up on the right as the right piston moves up a distance d2 . That is,

thus, the force-multiplying factor can also be written as d1/d2 . Note
that Hydraulic brakes, car lifts, hydraulic jacks, and forklifts all make
use of this principle (Fig. 15.5b).

A grain silo has many bands wrapped around its perimeter (Fig. 15.6). Why is the spacing
between successive bands smaller at the lower portions of the silo, as shown in the photo-
graph?

Quick Quiz 15.4

F1d1 � F2d2 .
A1d1 � A2d2 ;

P � F1/A1 � F2/A2 .

Quick Quiz 15.3

P0 � 1.00 atm � 1.013 � 105 Pa

 P � P0 � �gh

 PA � P0A � �Ahg 

PA � P0A � �Ahg � 0 

�Fy � PA � P0A � Mg � 0

Mg � �Ahg.

Variation of pressure with depth

B C DA

This arrangement of intercon-
nected tubes demonstrates that the
pressure in a liquid is the same at
all points having the same eleva-
tion. For example, the pressure is
the same at points A, B, C, and D.

QuickLab
Poke two holes in the side of a paper
or polystyrene cup—one near the
top and the other near the bottom.
Fill the cup with water and watch the
water flow out of the holes. Why does
water exit from the bottom hole at a
higher speed than it does from the
top hole?



15.2 Variation of Pressure with Depth 463

The Car LiftEXAMPLE 15.2
The air pressure that produces this force is

This pressure is approximately twice atmospheric pressure.
The input work (the work done by F1) is equal to the out-

put work (the work done by F2), in accordance with the prin-
ciple of conservation of energy.

1.88 � 105 PaP �
F1

A1
�

1.48 � 103 N
�(5.00 � 10�2 m)2 �

In a car lift used in a service station, compressed air exerts a
force on a small piston that has a circular cross section and a
radius of 5.00 cm. This pressure is transmitted by a liquid to a
piston that has a radius of 15.0 cm. What force must the com-
pressed air exert to lift a car weighing 13 300 N? What air
pressure produces this force?

Solution Because the pressure exerted by the compressed
air is transmitted undiminished throughout the liquid, we have

 � 1.48 � 103 N 

F1 � � A1

A2
� F2 �

�(5.00 � 10�2 m)2

�(15.0 � 10�2 m)2
 (1.33 � 104 N)

F1

F2

A2A1
d1

d2

(a)

Figure 15.5 (a) Diagram of a hydraulic press. Because the increase in pressure is the same on
the two sides, a small force Fl at the left produces a much greater force F2 at the right. (b) A ve-
hicle undergoing repair is supported by a hydraulic lift in a garage.

Figure 15.6

(b)

A Pain in the EarEXAMPLE 15.3
the eardrum; then, after estimating the eardrum’s surface
area, we can determine the force that the water exerts on it.

The air inside the middle ear is normally at atmospheric
pressure P0 . Therefore, to find the net force on the eardrum,
we must consider the difference between the total pressure at

Estimate the force exerted on your eardrum due to the water
above when you are swimming at the bottom of a pool that is
5.0 m deep.

Solution First, we must find the unbalanced pressure on
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PRESSURE MEASUREMENTS
One simple device for measuring pressure is the open-tube manometer illustrated
in Figure 15.8a. One end of a U-shaped tube containing a liquid is open to the at-
mosphere, and the other end is connected to a system of unknown pressure P.
The difference in pressure is equal to �gh; hence, The pres-
sure P is called the absolute pressure, and the difference is called the
gauge pressure. The latter is the value that normally appears on a pressure
gauge. For example, the pressure you measure in your bicycle tire is the gauge
pressure.

Another instrument used to measure pressure is the common barometer, which
was invented by Evangelista Torricelli (1608–1647). The barometer consists of a

P � P0

P � P0 � �gh.P � P0

15.3

The Force on a DamEXAMPLE 15.4
erted on a narrow horizontal strip at depth h and then inte-
grating the expression to find the total force. Let us imagine
a vertical y axis, with y � 0 at the bottom of the dam and our
strip a distance y above the bottom.

We can use Equation 15.4 to calculate the pressure at the
depth h; we omit atmospheric pressure because it acts on
both sides of the dam:

Using Equation 15.2, we find that the force exerted on the
shaded strip of area is

Therefore, the total force on the dam is

Note that the thickness of the dam shown in Figure 15.7 in-
creases with depth. This design accounts for the greater and
greater pressure that the water exerts on the dam at greater
depths.

Exercise Find an expression for the average pressure on
the dam from the total force exerted by the water on the
dam.

Answer 1
2 �gH.

1
2�gwH 2F � � P dA � �H

0
 �g(H � y)w dy �

dF � P dA � �g(H � y)w dy

dA � w dy

P � �gh � �g(H � y)

Water is filled to a height H behind a dam of width w (Fig.
15.7). Determine the resultant force exerted by the water on
the dam.

Solution Because pressure varies with depth, we cannot
calculate the force simply by multiplying the area by the pres-
sure. We can solve the problem by finding the force dF ex-

the bottom of the pool and atmospheric pressure:

We estimate the surface area of the eardrum to be approxi-
mately 1 cm2 � 1 � 10�4 m2. This means that the force on it

 � 4.9 � 104 Pa 

 � (1.00 � 103 kg/m3)(9.80 m/s2)(5.0 m)

Pbot � P0 � �gh 

is Because a force on the eardrum
of this magnitude is extremely uncomfortable, swimmers of-
ten “pop their ears” while under water, an action that pushes
air from the lungs into the middle ear. Using this technique
equalizes the pressure on the two sides of the eardrum and
relieves the discomfort.

F � (Pbot � P0)A � 5 N.

H

dy

O

h

y
w

Figure 15.7 Because pressure varies with depth, the total force ex-
erted on a dam must be obtained from the expression 
where dA is the area of the dark strip.

F � � P dA,
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long, mercury-filled tube closed at one end and inverted into an open container of
mercury (Fig. 15.8b). The closed end of the tube is nearly a vacuum, and so its
pressure can be taken as zero. Therefore, it follows that where h is the
height of the mercury column.

One atmosphere atm) of pressure is defined as the pressure that
causes the column of mercury in a barometer tube to be exactly 0.760 0 m in
height at 0°C, with At this temperature, mercury has a density
of 13.595 � 103 kg/m3; therefore,

Other than the obvious problem that occurs with freezing, why don’t we use water in a
barometer in the place of mercury?

BUOYANT FORCES AND ARCHIMEDES’S PRINCIPLE
Have you ever tried to push a beach ball under water? This is extremely difficult to
do because of the large upward force exerted by the water on the ball. The upward
force exerted by water on any immersed object is called a buoyant force. We can
determine the magnitude of a buoyant force by applying some logic and Newton’s
second law. Imagine that, instead of air, the beach ball is filled with water. If you
were standing on land, it would be difficult to hold the water-filled ball in your
arms. If you held the ball while standing neck deep in a pool, however, the force
you would need to hold it would almost disappear. In fact, the required force
would be zero if we were to ignore the thin layer of plastic of which the beach ball
is made. Because the water-filled ball is in equilibrium while it is submerged, the
magnitude of the upward buoyant force must equal its weight.

If the submerged ball were filled with air rather than water, then the upward
buoyant force exerted by the surrounding water would still be present. However,
because the weight of the water is now replaced by the much smaller weight of that
volume of air, the net force is upward and quite great; as a result, the ball is
pushed to the surface.

15.4

Quick Quiz 15.5

 � 1.013 � 105 Pa � 1 atm

P0 � �gh � (13.595 � 103 kg/m3)(9.806 65 m/s2)(0.760 0 m)

g � 9.806 65 m/s2.

(P0 � 1

P0 � �gh,

(a)

P

A B

P0

h

P = 0

P0h

(b)

Figure 15.8 Two devices for measuring pressure: (a) an open-tube manometer and (b) a mer-
cury barometer.
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The manner in which buoyant forces act is summarized by Archimedes’s
principle, which states that the magnitude of the buoyant force always equals
the weight of the fluid displaced by the object. The buoyant force acts verti-
cally upward through the point that was the center of gravity of the displaced fluid.

Note that Archimedes’s principle does not refer to the makeup of the object
experiencing the buoyant force. The object’s composition is not a factor in the
buoyant force. We can verify this in the following manner: Suppose we focus our
attention on the indicated cube of liquid in the container illustrated in Figure
15.9. This cube is in equilibrium as it is acted on by two forces. One of these forces
is the gravitational force Fg . What cancels this downward force? Apparently, the
rest of the liquid in the container is holding the cube in equilibrium. Thus, the
magnitude of the buoyant force B exerted on the cube is exactly equal to the mag-
nitude of Fg , which is the weight of the liquid inside the cube:

Now imagine that the cube of liquid is replaced by a cube of steel of the same
dimensions. What is the buoyant force acting on the steel? The liquid surrounding
a cube behaves in the same way no matter what the cube is made of. Therefore,
the buoyant force acting on the steel cube is the same as the buoyant force
acting on a cube of liquid of the same dimensions. In other words, the magni-
tude of the buoyant force is the same as the weight of the liquid cube, not the steel
cube. Although mathematically more complicated, this same principle applies to
submerged objects of any shape, size, or density.

Although we have described the magnitude and direction of the buoyant
force, we still do not know its origin. Why would a fluid exert such a strange force,
almost as if the fluid were trying to expel a foreign body? To understand why, look
again at Figure 15.9. The pressure at the bottom of the cube is greater than the
pressure at the top by an amount �gh, where h is the length of any side of the cube.
The pressure difference �P between the bottom and top faces of the cube is equal
to the buoyant force per unit area of those faces—that is, Therefore,

where V is the volume of the cube. Because the mass
of the fluid in the cube is we see that

(15.5)

where Mg is the weight of the fluid in the cube. Thus, the buoyant force is a result
of the pressure differential on a submerged or partly submerged object.

Before we proceed with a few examples, it is instructive for us to compare the
forces acting on a totally submerged object with those acting on a floating (partly
submerged) object.

Case 1: Totally Submerged Object When an object is totally submerged in a
fluid of density �f , the magnitude of the upward buoyant force is where
Vo is the volume of the object. If the object has a mass M and density �o , its weight
is equal to and the net force on it is 
Hence, if the density of the object is less than the density of the fluid, then the
downward force of gravity is less than the buoyant force, and the unconstrained
object accelerates upward (Fig. 15.10a). If the density of the object is greater than
the density of the fluid, then the upward buoyant force is less than the downward
force of gravity, and the unsupported object sinks (Fig. 15.10b).

Case 2: Floating Object Now consider an object of volume Vo in static equilib-
rium floating on a fluid—that is, an object that is only partially submerged. In this

B � Fg � (�f � �o)Vog.Fg � Mg � �oVog,

B � �fVog,

B � Fg � �Vg � Mg

M � �V,
B � (�P)A � (�gh)A � �gV,

�P � B/A.

B � Fg

Archimedes (c. 287 – 212 B.C.)
Archimedes, a Greek mathematician,
physicist, and engineer, was perhaps
the greatest scientist of antiquity. He
was the first to compute accurately
the ratio of a circle’s circumference
to its diameter, and he showed how to
calculate the volume and surface
area of spheres, cylinders, and other
geometric shapes. He is well known
for discovering the nature of the
buoyant force. 

Archimedes was also a gifted in-
ventor. One of his practical inven-
tions, still in use today, is
Archimedes’s screw – an inclined, ro-
tating, coiled tube originally used to
lift water from the holds of ships. He
also invented the catapult and de-
vised systems of levers, pulleys, and
weights for raising heavy loads. Such
inventions were successfully used to
defend his native city Syracuse dur-
ing a two-year siege by the Romans.

Archimedes’s principle

Fg B

h

Figure 15.9 The external forces
acting on the cube of liquid are the
force of gravity Fg and the buoyant
force B. Under equilibrium condi-
tions, B � F g .
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case, the upward buoyant force is balanced by the downward gravitational force
acting on the object. If Vf is the volume of the fluid displaced by the object (this
volume is the same as the volume of that part of the object that is beneath the
fluid level), the buoyant force has a magnitude Because the weight of
the object is and because we see that or

(15.6)

Under normal conditions, the average density of a fish is slightly greater than
the density of water. It follows that the fish would sink if it did not have some
mechanism for adjusting its density. The fish accomplishes this by internally regu-
lating the size of its air-filled swim bladder to balance the change in the magnitude
of the buoyant force acting on it. In this manner, fish are able to swim to various
depths. Unlike a fish, a scuba diver cannot achieve neutral buoyancy (at which the
buoyant force just balances the weight) by adjusting the magnitude of the buoyant
force B. Instead, the diver adjusts Fg by manipulating lead weights.

Steel is much denser than water. In view of this fact, how do steel ships float?

A glass of water contains a single floating ice cube (Fig. 15.11). When the ice melts, does
the water level go up, go down, or remain the same?

When a person in a rowboat in a small pond throws an anchor overboard, does the water
level of the pond go up, go down, or remain the same?

Quick Quiz 15.8

Quick Quiz 15.7

Quick Quiz 15.6

�o

�f
�

Vf

Vo

�fVf g � �oVog,Fg � B,Fg � Mg � �oVog,
B � �fVf g.

Hot-air balloons. Because hot air is
less dense than cold air, a net up-
ward force acts on the balloons.

B

Fg

(a)

B

(b)

Fg

a
a

Figure 15.10 (a) A totally submerged
object that is less dense than the fluid in
which it is submerged experiences a net
upward force. (b) A totally submerged ob-
ject that is denser than the fluid sinks.

Figure 15.11

Eureka!EXAMPLE 15.5
scale read 7.84 N in air and 6.86 N in water. What should
Archimedes have told the king?

Solution When the crown is suspended in air, the scale

Archimedes supposedly was asked to determine whether a
crown made for the king consisted of pure gold. Legend has
it that he solved this problem by weighing the crown first in
air and then in water, as shown in Figure 15.12. Suppose the
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A Titanic SurpriseEXAMPLE 15.6
ward buoyant force equals the weight of the displaced water:

where Vw , the volume of the displaced water, is
equal to the volume of the ice beneath the water (the shaded
region in Fig. 15.13b) and �w is the density of seawater,

kg/m3. Because the fraction of ice
beneath the water’s surface is

89.0%f �
Vw

Vi
�

�i

�w
�

917 kg/m3

1 030 kg/m3 � 0.890  or  

�iVi g � �wVwg,�w � 1 030

B � �wVwg,
An iceberg floating in seawater, as shown in Figure 15.13a, is
extremely dangerous because much of the ice is below the
surface. This hidden ice can damage a ship that is still a con-
siderable distance from the visible ice. What fraction of the
iceberg lies below the water level?

Solution This problem corresponds to Case 2. The weight
of the iceberg is where kg/m3 and Vi is
the volume of the whole iceberg. The magnitude of the up-

�i � 917Fg i � �iVi g,

Figure 15.12 (a) When the crown is suspended in air, the scale
reads its true weight (the buoyancy of air is negligible). 
(b) When the crown is immersed in water, the buoyant force B
reduces the scale reading to the apparent weight T2 � Fg � B.

T1 � Fg

reads the true weight (neglecting the buoyancy of
air). When it is immersed in water, the buoyant force B
reduces the scale reading to an apparent weight of

Hence, the buoyant force exerted on the crown
is the difference between its weight in air and its weight in
water:

Because this buoyant force is equal in magnitude to the
weight of the displaced water, we have where
Vw is the volume of the displaced water and �w is its density.
Also, the volume of the crown Vc is equal to the volume of the
displaced water because the crown is completely submerged.
Therefore,

Finally, the density of the crown is

From Table 15.1 we see that the density of gold is 19.3 �
103 kg/m3. Thus, Archimedes should have told the king that

 � 8.0 � 103 kg/m3 

�c �
mc

Vc
�

mc g
Vc g

�
7.84 N

(1.0 � 10�4 m3)(9.8 m/s2)

 � 1.0 � 10�4 m3

Vc � Vw �
0.98 N

g�w
�

0.98 N
(9.8 m/s2)(1 000 kg/m3)

�wgVw � 0.98 N,

B � Fg � T2 � 7.84 N � 6.86 N � 0.98 N

T2 � Fg � B.

T1 � Fg he had been cheated. Either the crown was hollow, or it was
not made of pure gold.

T1

T2

(b)(a)

B

Fg

Fg

(a) (b)

Figure 15.13 (a) Much of the vol-
ume of this iceberg is beneath the wa-
ter.
(b) A ship can be damaged even when
it is not near the exposed ice.
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FLUID DYNAMICS
Thus far, our study of fluids has been restricted to fluids at rest. We now turn our
attention to fluids in motion. Instead of trying to study the motion of each particle
of the fluid as a function of time, we describe the properties of a moving fluid at
each point as a function of time.

Flow Characteristics

When fluid is in motion, its flow can be characterized as being one of two main
types. The flow is said to be steady, or laminar, if each particle of the fluid follows
a smooth path, such that the paths of different particles never cross each other, as
shown in Figure 15.14. In steady flow, the velocity of the fluid at any point remains
constant in time.

Above a certain critical speed, fluid flow becomes turbulent; turbulent flow is ir-
regular flow characterized by small whirlpool-like regions, as shown in Figure 15.15.

The term viscosity is commonly used in the description of fluid flow to char-
acterize the degree of internal friction in the fluid. This internal friction, or viscous
force, is associated with the resistance that two adjacent layers of fluid have to mov-
ing relative to each other. Viscosity causes part of the kinetic energy of a fluid to be
converted to internal energy. This mechanism is similar to the one by which an ob-
ject sliding on a rough horizontal surface loses kinetic energy.

Because the motion of real fluids is very complex and not fully understood, we
make some simplifying assumptions in our approach. In our model of an ideal
fluid, we make the following four assumptions:

1. The fluid is nonviscous. In a nonviscous fluid, internal friction is neglected.
An object moving through the fluid experiences no viscous force.

2. The flow is steady. In steady (laminar) flow, the velocity of the fluid at each
point remains constant.

15.5

Figure 15.14 Laminar flow around an automobile in a test wind tunnel.

Figure 15.15 Hot gases from a
cigarette made visible by smoke
particles. The smoke first moves in
laminar flow at the bottom and
then in turbulent flow above.

Properties of an ideal fluid
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3. The fluid is incompressible. The density of an incompressible fluid is constant.
4. The flow is irrotational. In irrotational flow, the fluid has no angular momen-

tum about any point. If a small paddle wheel placed anywhere in the fluid does
not rotate about the wheel’s center of mass, then the flow is irrotational.

STREAMLINES AND THE EQUATION OF CONTINUITY
The path taken by a fluid particle under steady flow is called a streamline. The ve-
locity of the particle is always tangent to the streamline, as shown in Figure 15.16.
A set of streamlines like the ones shown in Figure 15.16 form a tube of flow. Note
that fluid particles cannot flow into or out of the sides of this tube; if they could,
then the streamlines would cross each other.

Consider an ideal fluid flowing through a pipe of nonuniform size, as illus-
trated in Figure 15.17. The particles in the fluid move along streamlines in steady
flow. In a time t, the fluid at the bottom end of the pipe moves a distance

If A1 is the cross-sectional area in this region, then the mass of fluid
contained in the left shaded region in Figure 15.17 is 
where � is the (nonchanging) density of the ideal fluid. Similarly, the fluid that
moves through the upper end of the pipe in the time t has a mass 
However, because mass is conserved and because the flow is steady, the mass that
crosses A1 in a time t must equal the mass that crosses A2 in the time t. That is,

or this means that

(15.7)

This expression is called the equation of continuity. It states that

A1v1 � A2v2 � constant

�A1v1t � �A2v2t ;m1 � m2,

m2 � �A2v2t.

m1 � �A1 �x1 � �A1v1t,
�x1 � v1t.

15.6

the product of the area and the fluid speed at all points along the pipe is a con-
stant for an incompressible fluid.

Equation of continuity

v

P

v1

A1

∆x1

∆x2

A2

v2

Figure 15.17 A fluid moving with steady flow through a
pipe of varying cross-sectional area. The volume of fluid
flowing through area A1 in a time interval t must equal
the volume flowing through area A2 in the same time in-
terval. Therefore, A1v 1 � A2v 2 .

Figure 15.16 A particle in lami-
nar flow follows a streamline, and
at each point along its path the par-
ticle’s velocity is tangent to the
streamline.

This equation tells us that the speed is high where the tube is constricted (small A)
and low where the tube is wide (large A). The product Av, which has the dimen-
sions of volume per unit time, is called either the volume flux or the flow rate. The
condition is equivalent to the statement that the volume of fluid
that enters one end of a tube in a given time interval equals the volume leaving
the other end of the tube in the same time interval if no leaks are present.

Av � constant

As water flows from a faucet, as shown in Figure 15.18, why does the stream of water be-
come narrower as it descends?

Quick Quiz 15.9

Figure 15.18
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BERNOULLI’S EQUATION
When you press your thumb over the end of a garden hose so that the opening be-
comes a small slit, the water comes out at high speed, as shown in Figure 15.19. Is
the water under greater pressure when it is inside the hose or when it is out in the
air? You can answer this question by noting how hard you have to push your
thumb against the water inside the end of the hose. The pressure inside the hose
is definitely greater than atmospheric pressure.

The relationship between fluid speed, pressure, and elevation was first derived
in 1738 by the Swiss physicist Daniel Bernoulli. Consider the flow of an ideal fluid
through a nonuniform pipe in a time t, as illustrated in Figure 15.20. Let us call
the lower shaded part section 1 and the upper shaded part section 2. The force ex-
erted by the fluid in section 1 has a magnitude P1A1 . The work done by this force
in a time t is where V is the volume of section 1. In
a similar manner, the work done by the fluid in section 2 in the same time t is

(The volume that passes through section 1 in a time t
equals the volume that passes through section 2 in the same time.) This work is
negative because the fluid force opposes the displacement. Thus, the net work
done by these forces in the time t is

W � (P1 � P2)V

W2 � �P2A2�x2 � �P2V.

W1 � F1�x1 � P1A1�x1 � P1V,

15.7

Niagara FallsEXAMPLE 15.7
Note that we have kept only one significant figure because
our value for the depth has only one significant figure.

Exercise A barrel floating along in the river plunges over
the Falls. How far from the base of the cliff is the barrel when
it reaches the water 49 m below?

Answer 13 m � 10 m.

Each second, 5 525 m3 of water flows over the 670-m-wide
cliff of the Horseshoe Falls portion of Niagara Falls. The wa-
ter is approximately 2 m deep as it reaches the cliff. What is
its speed at that instant?

Solution The cross-sectional area of the water as it reaches
the edge of the cliff is The
flow rate of 5 525 m3/s is equal to Av. This gives

4 m/sv �
5 525 m3/s

A
�

5 525 m3/s
1 340 m2 �

A � (670 m)(2 m) � 1 340 m2.

∆x1

∆x2

A2

v2

P2

y2

y1

A1P1

v1

Figure 15.19 The speed of water spraying
from the end of a hose increases as the size of
the opening is decreased with the thumb.

Figure 15.20 A fluid in laminar
flow through a constricted pipe.
The volume of the shaded section
on the left is equal to the volume of
the shaded section on the right.

Daniel Bernoulli (1700 – 1782)
Daniel Bernoulli, a Swiss physicist
and mathematician, made important
discoveries in fluid dynamics. Born
into a family of mathematicians, he
was the only member of the family to
make a mark in physics.

Bernoulli’s most famous work, Hy-
drodynamica, was published in 1738;
it is both a theoretical and a practical
study of equilibrium, pressure, and
speed in fluids. He showed that as the
speed of a fluid increases, its pres-
sure decreases.

In Hydrodynamica Bernoulli also
attempted the first explanation of the
behavior of gases with changing
pressure and temperature; this was
the beginning of the kinetic theory of
gases, a topic we study in Chapter 21.
(Corbis – Bettmann)
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Part of this work goes into changing the kinetic energy of the fluid, and part goes
into changing the gravitational potential energy. If m is the mass that enters one
end and leaves the other in a time t, then the change in the kinetic energy of this
mass is

The change in gravitational potential energy is

We can apply Equation 8.13,  , to this volume of fluid to obtain

If we divide each term by V and recall that this expression reduces to

Rearranging terms, we obtain

(15.8)

This is Bernoulli’s equation as applied to an ideal fluid. It is often expressed as

(15.9)

This expression specifies that, in laminar flow, the sum of the pressure (P), kinetic
energy per unit volume and gravitational potential energy per unit volume
(�gy) has the same value at all points along a streamline.

When the fluid is at rest, and Equation 15.8 becomes

This is in agreement with Equation 15.4.

P1 � P2 � �g(y2 � y1) � �gh

v1 � v2 � 0

(1
2�v2),

P � 1
2 �v2 � �g y � constant

P1 � 1
2 �v1 

2 � �g y1 � P2 � 1
2 �v2 

2 � �g y2

P1 � P2 � 1
2 �v2 

2 � 1
2�v1 

2 � �g y2 � �g y1

� � m/V,

(P1 � P2)V � 1
2mv2 

2 � 1
2mv1 

2 � mg y2 � mg y1

W � �K � �U

�U � mg y2 � mg y1

�K � 1
2mv2 

2 � 1
2mv1 

2

The Venturi TubeEXAMPLE 15.8
The horizontal constricted pipe illustrated in Figure 15.21,
known as a Venturi tube, can be used to measure the flow
speed of an incompressible fluid. Let us determine the flow
speed at point 2 if the pressure difference is known.

Solution Because the pipe is horizontal, and ap-
plying Equation 15.8 to points 1 and 2 gives

(1) P1 � 1
2 �v1 

2 � P2 � 1
2 �v2 

2

y1 � y2 ,

P1 � P2

QuickLab
Place two soda cans on their sides ap-
proximately 2 cm apart on a table.
Align your mouth at table level and
with the space between the cans.
Blow a horizontal stream of air
through this space. What do the cans
do? Is this what you expected? Com-
pare this with the force acting on a
car parked close to the edge of a road
when a big truck goes by. How does
the outcome relate to Equation 15.9?

Bernoulli’s equation

P1 P2

A2

A1

�

(a)

v1 v2
�

Figure 15.21 (a) Pressure P1 is greater
than pressure P2 because This de-
vice can be used to measure the speed of
fluid flow. (b) A Venturi tube.

v1 	 v2 .

(b)



15.7 Bernoulli’s Equation 473

A Good TrickEXAMPLE 15.9
mass of a dime is and its surface area is

How hard are you blowing when the
dime rises and travels into the tumbler?

Solution Figure 15.22b indicates we must calculate the up-
ward force acting on the dime. First, note that a thin station-
ary layer of air is present between the dime and the table.
When you blow across the dime, it deflects most of the mov-
ing air from your breath across its top, so that the air above
the dime has a greater speed than the air beneath it. This
fact, together with Bernoulli’s equation, demonstrates that
the air moving across the top of the dime is at a lower pres-
sure than the air beneath the dime. If we neglect the small
thickness of the dime, we can apply Equation 15.8 to obtain

Because the air beneath the dime is almost stationary, we can
neglect the last term in this expression and write the differ-
ence as If we multiply this pres-
sure difference by the surface area of the dime, we obtain the
upward force acting on the dime. At the very least, this up-
ward force must balance the gravitational force acting on the
dime, and so, taking the density of air from Table 15.1, we
can state that

The air you blow must be moving faster than this if the up-
ward force is to exceed the weight of the dime. Practice this
trick a few times and then impress all your friends!

vabove � 11.7 m/s  

vabove �! 2mg
�A

�! 2(2.24 � 10�3 kg)(9.80 m/s2)
(1.29 kg/m3)(2.50 � 10�4 m2)

Fg � mg � (Pbeneath � Pabove)A � (1
2 �v2

above)A  

Pbeneath � Pabove � 1
2 �v2

above .

Pabove � 1
2 �v2

above � Pbeneath � 1
2 �v2

beneath

A � 2.50 � 10�4 m2.
m � 2.24 g,It is possible to blow a dime off a table and into a tumbler.

Place the dime about 2 cm from the edge of the table. Place
the tumbler on the table horizontally with its open edge
about 2 cm from the dime, as shown in Figure 15.22a. If you
blow forcefully across the top of the dime, it will rise, be
caught in the airstream, and end up in the tumbler. The 

From the equation of continuity, we find that 

(2)

Substituting this expression into equation (1) gives

A1 ! 2(P1 � P2)
�(A1 

2 � A2 

2)
  v2 �

P1 � 1
2 � � A2

A1
�

2
 v2 

2 � P2 � 1
2 �v2 

2

v1 �
A2

A1
 v2

A1v1 � A2v2 , We can use this result and the continuity equation to ob-
tain an expression for v1 . Because Equation (2)
shows us that This result, together with equation
(1), indicates that In other words, the pressure is re-
duced in the constricted part of the pipe. This result is some-
what analogous to the following situation: Consider a very
crowded room in which people are squeezed together. As
soon as a door is opened and people begin to exit, the
squeezing (pressure) is least near the door, where the motion
(flow) is greatest.

P1 
 P2 .
v2 
 v1 .

A2 	 A1 ,

(a)

Fg

(b)

2 cm2 cm

FBernoulli

Figure 15.22


