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When a pulse traveling on a heavy string strikes the boundary between the
heavy string and a lighter one, as shown in Figure 16.16, again part is reflected and
part is transmitted. In this case, the reflected pulse is not inverted.

In either case, the relative heights of the reflected and transmitted pulses de-
pend on the relative densities of the two strings. If the strings are identical, there is
no discontinuity at the boundary and no reflection takes place.

According to Equation 16.4, the speed of a wave on a string increases as the
mass per unit length of the string decreases. In other words, a pulse travels more
slowly on a heavy string than on a light string if both are under the same tension.
The following general rules apply to reflected waves: When a wave pulse travels
from medium A to medium B and vA vB (that is, when B is denser than A),
the pulse is inverted upon reflection. When a wave pulse travels from
medium A to medium B and vA vB (that is, when A is denser than B), the
pulse is not inverted upon reflection.

SINUSOIDAL WAVES
In this section, we introduce an important wave function whose shape is shown in
Figure 16.17. The wave represented by this curve is called a sinusoidal wave be-
cause the curve is the same as that of the function sin � plotted against �. The si-
nusoidal wave is the simplest example of a periodic continuous wave and can be
used to build more complex waves, as we shall see in Section 18.8. The red curve
represents a snapshot of a traveling sinusoidal wave at and the blue curve
represents a snapshot of the wave at some later time t. At the function de-
scribing the positions of the particles of the medium through which the sinusoidal
wave is traveling can be written

(16.5)

where the constant A represents the wave amplitude and the constant � is the
wavelength. Thus, we see that the position of a particle of the medium is the same
whenever x is increased by an integral multiple of �. If the wave moves to the right
with a speed v, then the wave function at some later time t is

(16.6)

That is, the traveling sinusoidal wave moves to the right a distance vt in the time t,
as shown in Figure 16.17. Note that the wave function has the form andf(x � vt)
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Figure 16.16 (a) A pulse traveling
to the right on a heavy string attached
to a lighter string. (b) The incident
pulse is partially reflected and partially
transmitted, and the reflected pulse is
not inverted.
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Figure 16.17 A one-dimensional
sinusoidal wave traveling to the
right with a speed v. The red curve
represents a snapshot of the wave at

and the blue curve represents
a snapshot at some later time t.
t � 0,
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so represents a wave traveling to the right. If the wave were traveling to the left, the
quantity would be replaced by as we learned when we developed
Equations 16.1 and 16.2.

By definition, the wave travels a distance of one wavelength in one per-
iod T. Therefore, the wave speed, wavelength, and period are related by the ex-
pression

(16.7)

Substituting this expression for v into Equation 16.6, we find that

(16.8)

This form of the wave function clearly shows the periodic nature of y. At any given
time t (a snapshot of the wave), y has the same value at the positions x, x � �, 
x � 2�, and so on. Furthermore, at any given position x, the value of y is the same
at times t, t � T, t � 2T, and so on.

We can express the wave function in a convenient form by defining two other
quantities, the angular wave number k and the angular frequency �:

(16.9)

(16.10)

Using these definitions, we see that Equation 16.8 can be written in the more com-
pact form

(16.11)

The frequency of a sinusoidal wave is related to the period by the expression

(16.12)

The most common unit for frequency, as we learned in Chapter 13, is second�1, or
hertz (Hz). The corresponding unit for T is seconds.

Using Equations 16.9, 16.10, and 16.12, we can express the wave speed v origi-
nally given in Equation 16.7 in the alternative forms

(16.13)

(16.14)

The wave function given by Equation 16.11 assumes that the vertical displace-
ment y is zero at and This need not be the case. If it is not, we gener-
ally express the wave function in the form

(16.15)y � A sin(kx � �t � �)
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where � is the phase constant, just as we learned in our study of periodic motion
in Chapter 13. This constant can be determined from the initial conditions.

3 In this arrangement, we are assuming that a string segment always oscillates in a vertical line. The ten-
sion in the string would vary if a segment were allowed to move sideways. Such motion would make the
analysis very complex.

A Traveling Sinusoidal WaveEXAMPLE 16.3

(b) Determine the phase constant �, and write a general
expression for the wave function.

Solution Because cm and because cm
at and substitution into Equation 16.15 gives

or

We may take the principal value rad (or 90°).
Hence, the wave function is of the form

By inspection, we can see that the wave function must have
this form, noting that the cosine function has the same shape
as the sine function displaced by 90°. Substituting the values
for A, k, and � into this expression, we obtain

y � (15.0 cm) cos(0.157x � 50.3t)

y � A sin�kx � �t �



2 � � A cos(kx � �t)

� � 
/2

sin � � 115.0 � (15.0) sin �

t � 0,x � 0
y � 15.0A � 15.0

320 cm/sv � �f � (40.0 cm)(8.00 s�1) �

0.125 s T �
1
f

�
1

8.00 s�1 �

50.3 rad/s � � 2
f � 2
(8.00 s�1) �
A sinusoidal wave traveling in the positive x direction has an
amplitude of 15.0 cm, a wavelength of 40.0 cm, and a fre-
quency of 8.00 Hz. The vertical displacement of the medium
at and is also 15.0 cm, as shown in Figure 16.18.
(a) Find the angular wave number k, period T, angular fre-
quency �, and speed v of the wave.

Solution (a) Using Equations 16.9, 16.10, 16.12, and
16.14, we find the following:

0.157 rad/cm k �
2


�
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Figure 16.18 A sinusoidal wave of wavelength � � 40.0 cm and
amplitude A � 15.0 cm. The wave function can be written in the
form y � A cos(kx � �t).

Sinusoidal Waves on Strings

In Figure 16.2, we demonstrated how to create a pulse by jerking a taut string up
and down once. To create a train of such pulses, normally referred to as a wave train,
or just plain wave, we can replace the hand with an oscillating blade. If the wave con-
sists of a train of identical cycles, whatever their shape, the relationships f � 1/T and
v � f� among speed, frequency, period, and wavelength hold true. We can make
more definite statements about the wave function if the source of the waves vibrates
in simple harmonic motion. Figure 16.19 represents snapshots of the wave created
in this way at intervals of T/4. Note that because the end of the blade oscillates in
simple harmonic motion, each particle of the string, such as that at P, also os-
cillates vertically with simple harmonic motion. This must be the case because
each particle follows the simple harmonic motion of the blade. Therefore, every seg-
ment of the string can be treated as a simple harmonic oscillator vibrating with a fre-
quency equal to the frequency of oscillation of the blade.3 Note that although each
segment oscillates in the y direction, the wave travels in the x direction with a speed
v. Of course, this is the definition of a transverse wave.
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If the wave at is as described in Figure 16.19b, then the wave function
can be written as

We can use this expression to describe the motion of any point on the string. The
point P (or any other point on the string) moves only vertically, and so its x coordi-
nate remains constant. Therefore, the transverse speed vy (not to be confused
with the wave speed v) and the transverse acceleration ay are

(16.16)

(16.17)

In these expressions, we must use partial derivatives (see Section 8.6) because y de-
pends on both x and t. In the operation for example, we take a derivative
with respect to t while holding x constant. The maximum values of the transverse
speed and transverse acceleration are simply the absolute values of the coefficients
of the cosine and sine functions:

(16.18)

(16.19)

The transverse speed and transverse acceleration do not reach their maximum val-
ues simultaneously. The transverse speed reaches its maximum value (�A) when

whereas the transverse acceleration reaches its maximum value (�2A) when
Finally, Equations 16.18 and 16.19 are identical in mathematical form to

the corresponding equations for simple harmonic motion, Equations 13.10 and
13.11.
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Figure 16.19 One method for producing a train of sinusoidal wave pulses on a string. The left
end of the string is connected to a blade that is set into oscillation. Every segment of the string,
such as the point P, oscillates with simple harmonic motion in the vertical direction.
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A sinusoidal wave is moving on a string. If you increase the frequency f of the wave, how do
the transverse speed, wave speed, and wavelength change?

Quick Quiz 16.4

A Sinusoidally Driven StringEXAMPLE 16.4
Because cm � 0.120 m, we have

Exercise Calculate the maximum values for the transverse
speed and transverse acceleration of any point on the string.

Answer 3.77 m/s; 118 m/s2.

y � A sin(kx � �t) � (0.120 m) sin(1.57x � 31.4t)

A � 12.0The string shown in Figure 16.19 is driven at a frequency of
5.00 Hz. The amplitude of the motion is 12.0 cm, and the
wave speed is 20.0 m/s. Determine the angular frequency �
and angular wave number k for this wave, and write an ex-
pression for the wave function.

Solution Using Equations 16.10, 16.12, and 16.13, we find
that

1.57 rad/mk �
�

v
�

31.4 rad/s
20.0 m/s

�

31.4 rad/s� �
2


T
� 2
f � 2
(5.00 Hz) �

RATE OF ENERGY TRANSFER BY SINUSOIDAL
WAVES ON STRINGS

As waves propagate through a medium, they transport energy. We can easily
demonstrate this by hanging an object on a stretched string and then sending a
pulse down the string, as shown in Figure 16.20. When the pulse meets the sus-
pended object, the object is momentarily displaced, as illustrated in Figure 16.20b.
In the process, energy is transferred to the object because work must be done for
it to move upward. This section examines the rate at which energy is transported
along a string. We shall assume a one-dimensional sinusoidal wave in the calcula-
tion of the energy transferred.

Consider a sinusoidal wave traveling on a string (Fig. 16.21). The source of the
energy being transported by the wave is some external agent at the left end of the
string; this agent does work in producing the oscillations. As the external agent
performs work on the string, moving it up and down, energy enters the system of
the string and propagates along its length. Let us focus our attention on a segment
of the string of length �x and mass �m. Each such segment moves vertically with
simple harmonic motion. Furthermore, all segments have the same angular fre-
quency � and the same amplitude A. As we found in Chapter 13, the elastic poten-
tial energy U associated with a particle in simple harmonic motion is 
where the simple harmonic motion is in the y direction. Using the relationship 
�2 � k/m developed in Equations 13.16 and 13.17, we can write this as

U � 1
2ky2,
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Figure 16.20 (a) A pulse travel-
ing to the right on a stretched
string on which an object has been
suspended. (b) Energy is transmit-
ted to the suspended object when
the pulse arrives.

Figure 16.21 A sinusoidal wave
traveling along the x axis on a
stretched string. Every segment
moves vertically, and every segment
has the same total energy.

∆m
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If we apply this equation to the segment of mass �m, we see that the
potential energy of this segment is

Because the mass per unit length of the string is we can express the
potential energy of the segment as

As the length of the segment shrinks to zero, �x : dx, and this expression be-
comes a differential relationship:

We replace the general displacement y of the segment with the wave function for a
sinusoidal wave:

If we take a snapshot of the wave at time then the potential energy in a given
segment is

To obtain the total potential energy in one wavelength, we integrate this expres-
sion over all the string segments in one wavelength:

Because it is in motion, each segment of the string also has kinetic energy.
When we use this procedure to analyze the total kinetic energy in one wavelength
of the string, we obtain the same result:

The total energy in one wavelength of the wave is the sum of the potential and ki-
netic energies:

(16.20)

As the wave moves along the string, this amount of energy passes by a given point
on the string during one period of the oscillation. Thus, the power, or rate of en-
ergy transfer, associated with the wave is

(16.21)

This shows that the rate of energy transfer by a sinusoidal wave on a string is pro-
portional to (a) the wave speed, (b) the square of the frequency, and (c) the
square of the amplitude. In fact: the rate of energy transfer in any sinusoidal
wave is proportional to the square of the angular frequency and to the
square of the amplitude.
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Optional Section

THE LINEAR WAVE EQUATION
In Section 16.3 we introduced the concept of the wave function to represent waves
traveling on a string. All wave functions y(x, t) represent solutions of an equation
called the linear wave equation. This equation gives a complete description of the
wave motion, and from it one can derive an expression for the wave speed. Fur-
thermore, the linear wave equation is basic to many forms of wave motion. In this
section, we derive this equation as applied to waves on strings.

Suppose a traveling wave is propagating along a string that is under a tension
T. Let us consider one small string segment of length �x (Fig. 16.22). The ends of
the segment make small angles �A and �B with the x axis. The net force acting on
the segment in the vertical direction is

Because the angles are small, we can use the small-angle approximation sin � �
tan � to express the net force as

However, the tangents of the angles at A and B are defined as the slopes of the string
segment at these points. Because the slope of a curve is given by we have

(16.22)

We now apply Newton’s second law to the segment, with the mass of the seg-
ment given by 

(16.23)

Combining Equation 16.22 with Equation 16.23, we obtain

(16.24) 
�

T
 

�2y
�t2 �

(�y/�x)B � (�y/�x)A

�x
 

��x � �2y
�t2 � � T �� �y

�x �B
� � �y

�x �A
�

	Fy � may � ��x� �2y
�t2 �

m � ��x :

	Fy � T  �� �y
�x �B

� � �y
�x �A

�
�y/�x,

	Fy � T(tan �B � tan �A)

	Fy � T sin �B � T sin �A � T(sin �B � sin �A)

16.9

Power Supplied to a Vibrating StringEXAMPLE 16.5
oidal waves on the string has the value

Using these values in Equation 16.21 for the power, with
we obtain

512 W  �

 � � (6.00 � 10�2 m)2(40.0 m/s)

 � 1
2(5.00 � 10�2 kg/m)(377 s�1)2

� � 1
2��2A2v 

A � 6.00 � 10�2 m,

� � 2
f � 2
(60.0 Hz) � 377 s�1

A taut string for which is under a ten-
sion of 80.0 N. How much power must be supplied to the
string to generate sinusoidal waves at a frequency of 60.0 Hz
and an amplitude of 6.00 cm?

Solution The wave speed on the string is, from Equation
16.4,

Because Hz, the angular frequency � of the sinus-f � 60.0

v � √ T
�

� √ 80.0 N
5.00 � 10�2 kg/m

� 40.0 m/s

� � 5.00 � 10�2 kg/m

Figure 16.22 A segment of a
string under tension T. The slopes
at points A and B are given by 
tan �A and tan �B , respectively.
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The right side of this equation can be expressed in a different form if we note that
the partial derivative of any function is defined as

If we associate with and f(x) with we see that, in the
limit �x : 0, Equation 16.24 becomes

(16.25)

This is the linear wave equation as it applies to waves on a string.
We now show that the sinusoidal wave function (Eq. 16.11) represents a solu-

tion of the linear wave equation. If we take the sinusoidal wave function to be of
the form sin then the appropriate derivatives are

Substituting these expressions into Equation 16.25, we obtain

This equation must be true for all values of the variables x and t in order for the 
sinusoidal wave function to be a solution of the wave equation. Both sides of the
equation depend on x and t through the same function sin(kx � �t). Because this
function divides out, we do indeed have an identity, provided that

Using the relationship (Eq. 16.13) in this expression, we see that

which is Equation 16.4. This derivation represents another proof of the expression
for the wave speed on a taut string.

The linear wave equation (Eq. 16.25) is often written in the form

(16.26)

This expression applies in general to various types of traveling waves. For waves on
strings, y represents the vertical displacement of the string. For sound waves, y cor-
responds to displacement of air molecules from equilibrium or variations in either
the pressure or the density of the gas through which the sound waves are propa-
gating. In the case of electromagnetic waves, y corresponds to electric or magnetic
field components.

We have shown that the sinusoidal wave function (Eq. 16.11) is one solution of
the linear wave equation (Eq. 16.26). Although we do not prove it here, the linear
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�x:0

 
f(x � �x) � f(x)

�x

Linear wave equation in general

Linear wave equation
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wave equation is satisfied by any wave function having the form Fur-
thermore, we have seen that the linear wave equation is a direct consequence of
Newton’s second law applied to any segment of the string.

SUMMARY

A transverse wave is one in which the particles of the medium move in a direc-
tion perpendicular to the direction of the wave velocity. An example is a wave on a
taut string. A longitudinal wave is one in which the particles of the medium move
in a direction parallel to the direction of the wave velocity. Sound waves in fluids
are longitudinal. You should be able to identify examples of both types of waves.

Any one-dimensional wave traveling with a speed v in the x direction can be
represented by a wave function of the form

(16.1, 16.2)

where the positive sign applies to a wave traveling in the negative x direction and the
negative sign applies to a wave traveling in the positive x direction. The shape of the
wave at any instant in time (a snapshot of the wave) is obtained by holding t constant.

The superposition principle specifies that when two or more waves move
through a medium, the resultant wave function equals the algebraic sum of the 
individual wave functions. When two waves combine in space, they interfere to
produce a resultant wave. The interference may be constructive (when the indi-
vidual displacements are in the same direction) or destructive (when the dis-
placements are in opposite directions).

The speed of a wave traveling on a taut string of mass per unit length � and
tension T is

(16.4)

A wave is totally or partially reflected when it reaches the end of the medium in
which it propagates or when it reaches a boundary where its speed changes discon-
tinuously. If a wave pulse traveling on a string meets a fixed end, the pulse is re-
flected and inverted. If the pulse reaches a free end, it is reflected but not inverted.

The wave function for a one-dimensional sinusoidal wave traveling to the
right can be expressed as

(16.6, 16.11)

where A is the amplitude, � is the wavelength, k is the angular wave number,
and � is the angular frequency. If T is the period and f the frequency, v, k and �
can be written

(16.7, 16.14)

(16.9)

(16.10, 16.12)

You should know how to find the equation describing the motion of particles in a
wave from a given set of physical parameters.

The power transmitted by a sinusoidal wave on a stretched string is

(16.21)� � 1
2��2A2v

� �
2


T
� 2
f

k �
2


�
 

v �
�

T
� �f 

y � A sin� 2


�
 (x � vt)� � A sin(kx � �t)

v � √ T
�

y � f(x  vt)

y � f(x  vt).


