
844 C H A P T E R  2 7 Current and Resistance

for many materials (including most metals), the ratio of the current density to
the electric field is a constant � that is independent of the electric field produc-
ing the current.

1 Do not confuse conductivity � with surface charge density, for which the same symbol is used.

Current density

Ohm’s law

13.3

Example 27.1 shows that typical drift speeds are very low. For instance, elec-
trons traveling with a speed of 2.46 � 10�4 m/s would take about 68 min to travel
1 m! In view of this, you might wonder why a light turns on almost instantaneously
when a switch is thrown. In a conductor, the electric field that drives the free elec-
trons travels through the conductor with a speed close to that of light. Thus, when
you flip on a light switch, the message for the electrons to start moving through
the wire (the electric field) reaches them at a speed on the order of 108 m/s.

RESISTANCE AND OHM’S LAW
In Chapter 24 we found that no electric field can exist inside a conductor. How-
ever, this statement is true only if the conductor is in static equilibrium. The pur-
pose of this section is to describe what happens when the charges in the conductor
are allowed to move.

Charges moving in a conductor produce a current under the action of an elec-
tric field, which is maintained by the connection of a battery across the conductor.
An electric field can exist in the conductor because the charges in this situation
are in motion—that is, this is a nonelectrostatic situation.

Consider a conductor of cross-sectional area A carrying a current I. The cur-
rent density J in the conductor is defined as the current per unit area. Because
the current the current density is

(27.5)

where J has SI units of A/m2. This expression is valid only if the current density is
uniform and only if the surface of cross-sectional area A is perpendicular to the di-
rection of the current. In general, the current density is a vector quantity:

(27.6)

From this equation, we see that current density, like current, is in the direction of
charge motion for positive charge carriers and opposite the direction of motion
for negative charge carriers.

A current density J and an electric field E are established in a conductor
whenever a potential difference is maintained across the conductor. If the
potential difference is constant, then the current also is constant. In some materi-
als, the current density is proportional to the electric field:

(27.7)

where the constant of proportionality � is called the conductivity of the con-
ductor.1 Materials that obey Equation 27.7 are said to follow Ohm’s law, named af-
ter Georg Simon Ohm (1787–1854). More specifically, Ohm’s law states that

J � �E

J � nqvd

J �
I
A

� nqvd

I � nqvdA,

27.2

Materials that obey Ohm’s law and hence demonstrate this simple relationship be-
tween E and J are said to be ohmic. Experimentally, it is found that not all materials
have this property, however, and materials that do not obey Ohm’s law are said to
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be nonohmic. Ohm’s law is not a fundamental law of nature but rather an empirical
relationship valid only for certain materials.

Suppose that a current-carrying ohmic metal wire has a cross-sectional area that gradually
becomes smaller from one end of the wire to the other. How do drift velocity, current den-
sity, and electric field vary along the wire? Note that the current must have the same value
everywhere in the wire so that charge does not accumulate at any one point.

We can obtain a form of Ohm’s law useful in practical applications by consid-
ering a segment of straight wire of uniform cross-sectional area A and length , as
shown in Figure 27.5. A potential difference is maintained across
the wire, creating in the wire an electric field and a current. If the field is assumed
to be uniform, the potential difference is related to the field through the relation-
ship2

Therefore, we can express the magnitude of the current density in the wire as

Because we can write the potential difference as

The quantity /�A is called the resistance R of the conductor. We can define the
resistance as the ratio of the potential difference across a conductor to the current
through the conductor:

(27.8)

From this result we see that resistance has SI units of volts per ampere. One volt
per ampere is defined to be 1 ohm (�):

(27.9)1 � �
1 V
1 A

R �
�

�A
�

�V
I

�

�V �
�

�
 J � � �

�A �I

J � I/A,

J � �E � � 
�V
�

�V � E�

�V � Vb � Va

�

Quick Quiz 27.2

2 This result follows from the definition of potential difference:

Vb � Va � ��b

a
 E � ds � E ��

0
 dx � E�

�

E

Vb Va

IA

Figure 27.5 A uniform conductor of length 
and cross-sectional area A. A potential difference
�V � Vb � Va maintained across the conductor
sets up an electric field E, and this field produces
a current I that is proportional to the potential
difference.

�

Resistance of a conductor
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Resistance of a uniform conductor

This expression shows that if a potential difference of 1 V across a conductor
causes a current of 1 A, the resistance of the conductor is 1 �. For example, if an
electrical appliance connected to a 120-V source of potential difference carries a
current of 6 A, its resistance is 20 �. 

Equation 27.8 solved for potential difference (�V ) explains part of the
chapter-opening puzzler: How can a bird perch on a high-voltage power line without
being electrocuted? Even though the potential difference between the ground and
the wire might be hundreds of thousands of volts, that between the bird’s feet (which
is what determines how much current flows through the bird) is very small.

The inverse of conductivity is resistivity3 �:

(27.10)

where � has the units ohm-meters (� � m). We can use this definition and Equation
27.8 to express the resistance of a uniform block of material as

(27.11)

Every ohmic material has a characteristic resistivity that depends on the properties
of the material and on temperature. Additionally, as you can see from Equation
27.11, the resistance of a sample depends on geometry as well as on resistivity.
Table 27.1 gives the resistivities of a variety of materials at 20°C. Note the enor-
mous range, from very low values for good conductors such as copper and silver,
to very high values for good insulators such as glass and rubber. An ideal conduc-
tor would have zero resistivity, and an ideal insulator would have infinite resistivity.

Equation 27.11 shows that the resistance of a given cylindrical conductor is
proportional to its length and inversely proportional to its cross-sectional area. If
the length of a wire is doubled, then its resistance doubles. If its cross-sectional
area is doubled, then its resistance decreases by one half. The situation is analo-
gous to the flow of a liquid through a pipe. As the pipe’s length is increased, the

R � � 
�

A

� �
1
�

� I�/�A

Resistivity

3 Do not confuse resistivity with mass density or charge density, for which the same symbol is used.

An assortment of resistors used in electric circuits.
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resistance to flow increases. As the pipe’s cross-sectional area is increased, more
liquid crosses a given cross-section of the pipe per unit time. Thus, more liquid
flows for the same pressure differential applied to the pipe, and the resistance to
flow decreases.

Most electric circuits use devices called resistors to control the current level
in the various parts of the circuit. Two common types of resistors are the composi-
tion resistor, which contains carbon, and the wire-wound resistor, which consists of a
coil of wire. Resistors’ values in ohms are normally indicated by color-coding, as
shown in Figure 27.6 and Table 27.2.

Ohmic materials have a linear current–potential difference relationship over
a broad range of applied potential differences (Fig. 27.7a). The slope of the 
I -versus-�V curve in the linear region yields a value for 1/R . Nonohmic materials

TABLE 27.1 Resistivities and Temperature Coefficients of
Resistivity for Various Materials

Resistivity a Temperature
Material (� m) Coefficient �[(�C)�1]

Silver 1.59 � 10�8 3.8 � 10�3

Copper 1.7 � 10�8 3.9 � 10�3

Gold 2.44 � 10�8 3.4 � 10�3

Aluminum 2.82 � 10�8 3.9 � 10�3

Tungsten 5.6 � 10�8 4.5 � 10�3

Iron 10 � 10�8 5.0 � 10�3

Platinum 11 � 10�8 3.92 � 10�3

Lead 22 � 10�8 3.9 � 10�3

Nichromeb 1.50 � 10�6 0.4 � 10�3

Carbon 3.5 � 10�5 � 0.5 � 10�3

Germanium 0.46 � 48 � 10�3

Silicon 640 � 75 � 10�3

Glass 1010 to 1014

Hard rubber � 1013

Sulfur 1015

Quartz (fused) 75 � 1016

a All values at 20°C.
b A nickel–chromium alloy commonly used in heating elements.

�

Figure 27.6 The colored bands on a re-
sistor represent a code for determining re-
sistance. The first two colors give the first
two digits in the resistance value. The third
color represents the power of ten for the
multiplier of the resistance value. The last
color is the tolerance of the resistance
value. As an example, the four colors on
the circled resistors are red black

orange and gold 
and so the resistance value is 20 � 103 � �
20 k� with a tolerance value of 5% � 1 k�.
(The values for the colors are from Table
27.2.)

(� 5%),(� 103),(� 0),
(� 2),
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have a nonlinear current–potential difference relationship. One common semi-
conducting device that has nonlinear I -versus-�V characteristics is the junction
diode (Fig. 27.7b). The resistance of this device is low for currents in one direction
(positive �V ) and high for currents in the reverse direction (negative �V ). In fact,
most modern electronic devices, such as transistors, have nonlinear current–
potential difference relationships; their proper operation depends on the particu-
lar way in which they violate Ohm’s law.

What does the slope of the curved line in Figure 27.7b represent?

Your boss asks you to design an automobile battery jumper cable that has a low resistance.
In view of Equation 27.11, what factors would you consider in your design?

Quick Quiz 27.4

Quick Quiz 27.3

TABLE 27.2 Color Coding for Resistors

Color Number Multiplier Tolerance

Black 0 1
Brown 1 101

Red 2 102

Orange 3 103

Yellow 4 104

Green 5 105

Blue 6 106

Violet 7 107

Gray 8 108

White 9 109

Gold 10�1 5%
Silver 10�2 10%
Colorless 20%

Figure 27.7 (a) The current–potential difference curve for an ohmic material. The curve is
linear, and the slope is equal to the inverse of the resistance of the conductor. (b) A nonlinear
current–potential difference curve for a semiconducting diode. This device does not obey
Ohm’s law.

(a)

I

Slope = 1
R

�V

(b)

I

�V
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The Resistance of a ConductorEXAMPLE 27.2
ties, the resistance of identically shaped cylinders of alu-
minum and glass differ widely. The resistance of the glass
cylinder is 18 orders of magnitude greater than that of the
aluminum cylinder.

Calculate the resistance of an aluminum cylinder that is 
10.0 cm long and has a cross-sectional area of 2.00 � 10�4 m2.
Repeat the calculation for a cylinder of the same dimensions
and made of glass having a resistivity of 

Solution From Equation 27.11 and Table 27.1, we can cal-
culate the resistance of the aluminum cylinder as follows:

Similarly, for glass we find that

As you might guess from the large difference in resistivi-

1.5 � 1013 ��

R � � 
�

A
� (3.0 � 1010 ��m) � 0.100 m

2.00 � 10�4 m2 �

1.41 � 10�5 ��

R � � 
�

A
� (2.82 � 10�8 ��m) � 0.100 m

2.00 � 10�4 m2 �

3.0 � 1010 ��m.

Electrical insulators on telephone poles are often made of glass because
of its low electrical conductivity. 

The Resistance of Nichrome WireEXAMPLE 27.3
Note from Table 27.1 that the resistivity of Nichrome wire

is about 100 times that of copper. A copper wire of the same
radius would have a resistance per unit length of only 
0.052 �/m. A 1.0-m length of copper wire of the same radius
would carry the same current (2.2 A) with an applied poten-
tial difference of only 0.11 V.

Because of its high resistivity and its resistance to oxida-
tion, Nichrome is often used for heating elements in toasters,
irons, and electric heaters.

Exercise What is the resistance of a 6.0-m length of 22-
gauge Nichrome wire? How much current does the wire carry
when connected to a 120-V source of potential difference?

Answer 28 �; 4.3 A.

Exercise Calculate the current density and electric field in
the wire when it carries a current of 2.2 A.

Answer 6.8 � 106 A/m2; 10 N/C.

(a) Calculate the resistance per unit length of a 22-gauge
Nichrome wire, which has a radius of 0.321 mm.

Solution The cross-sectional area of this wire is

The resistivity of Nichrome is (see Table
27.1). Thus, we can use Equation 27.11 to find the resistance
per unit length:

(b) If a potential difference of 10 V is maintained across a
1.0-m length of the Nichrome wire, what is the current in the
wire?

Solution Because a 1.0-m length of this wire has a resis-
tance of 4.6 �, Equation 27.8 gives

2.2 AI �
�V
R

�
10 V
4.6 �

�

4.6 �/m
R
�

�
�

A
�

1.5 � 10�6 ��m
3.24 � 10�7 m2 �

1.5 � 10�6 ��m

A � 	r 2 � 	(0.321 � 10�3 m)2 � 3.24 � 10�7 m2

The Radial Resistance of a Coaxial CableEXAMPLE 27.4
completely filled with silicon, as shown in Figure 27.8a, and
current leakage through the silicon is unwanted. (The cable
is designed to conduct current along its length.) The radius

Coaxial cables are used extensively for cable television and
other electronic applications. A coaxial cable consists of two
cylindrical conductors. The gap between the conductors is
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of the inner conductor is the radius of the
outer one is and the length of the cable is

Calculate the resistance of the silicon between
the two conductors.

Solution In this type of problem, we must divide the ob-
ject whose resistance we are calculating into concentric ele-
ments of infinitesimal thickness dr (Fig. 27.8b). We start by
using the differential form of Equation 27.11, replacing 
with r for the distance variable: where dR is the
resistance of an element of silicon of thickness dr and surface
area A. In this example, we take as our representative concen-
tric element a hollow silicon cylinder of radius r, thickness dr,
and length L, as shown in Figure 27.8. Any current that
passes from the inner conductor to the outer one must pass
radially through this concentric element, and the area
through which this current passes is (This is the
curved surface area—circumference multiplied by length—
of our hollow silicon cylinder of thickness dr .) Hence, we can
write the resistance of our hollow cylinder of silicon as

A � 2	rL .

dR � � dr/A,
�

L � 15.0 cm.
b � 1.75 cm,

a � 0.500 cm,

Because we wish to know the total resistance across the entire
thickness of the silicon, we must integrate this expression
from to 

Substituting in the values given, and using � � 640 � � m for
silicon, we obtain

Exercise If a potential difference of 12.0 V is applied be-
tween the inner and outer conductors, what is the value of
the total current that passes between them?

Answer 14.1 mA.

851 �R �
640 ��m

2	(0.150 m)
 ln� 1.75 cm

0.500 cm � �

R � �b

a
 dR �

�

2	L
 �b

a
 
dr
r

�
�

2	L
 ln� b

a �
r � b :r � a

dR �
�

2	rL
 dr

(a)

L

Outer
conductor

Inner
conductor

Silicon

a

b

Current
direction

End view

(b)

dr

r

Figure 27.8 A coaxial cable. (a) Silicon fills the gap between the two conductors. 
(b) End view, showing current leakage.

A MODEL FOR ELECTRICAL CONDUCTION
In this section we describe a classical model of electrical conduction in metals that
was first proposed by Paul Drude in 1900. This model leads to Ohm’s law and
shows that resistivity can be related to the motion of electrons in metals. Although
the Drude model described here does have limitations, it nevertheless introduces
concepts that are still applied in more elaborate treatments.

Consider a conductor as a regular array of atoms plus a collection of free elec-
trons, which are sometimes called conduction electrons. The conduction electrons,
although bound to their respective atoms when the atoms are not part of a solid,
gain mobility when the free atoms condense into a solid. In the absence of an elec-
tric field, the conduction electrons move in random directions through the con-

27.3


