

Figure 24.1 Field lines representing a uniform electric field penetrating a plane of area *A* perpendicular to the field. The electric flux Φ_E through this area is equal to *EA*.

n the preceding chapter we showed how to use Coulomb's law to calculate the electric field generated by a given charge distribution. In this chapter, we describe *Gauss's law* and an alternative procedure for calculating electric fields. The law is based on the fact that the fundamental electrostatic force between point charges exhibits an inverse-square behavior. Although a consequence of Coulomb's law, Gauss's law is more convenient for calculating the electric fields of highly symmetric charge distributions and makes possible useful qualitative reasoning when we are dealing with complicated problems.

24.1 ELECTRIC FLUX

The concept of electric field lines is described qualitatively in Chapter 23. We now
 use the concept of electric flux to treat electric field lines in a more quantitative way.

Consider an electric field that is uniform in both magnitude and direction, as shown in Figure 24.1. The field lines penetrate a rectangular surface of area A, which is perpendicular to the field. Recall from Section 23.6 that the number of lines per unit area (in other words, the *line density*) is proportional to the magnitude of the electric field. Therefore, the total number of lines penetrating the surface is proportional to the product *EA*. This product of the magnitude of the electric field E and surface area A perpendicular to the field is called the **electric flux** Φ_E (uppercase Greek phi):

$$\Phi_E = EA \tag{24.1}$$

From the SI units of *E* and *A*, we see that Φ_E has units of newton-meters squared per coulomb (N·m²/C). Electric flux is proportional to the number of electric field lines penetrating some surface.

EXAMPLE 24.1 Flux Through a Sphere

What is the electric flux through a sphere that has a radius of 1.00 m and carries a charge of $+1.00 \ \mu$ C at its center?

Solution The magnitude of the electric field 1.00 m from this charge is given by Equation 23.4,

$$E = k_e \frac{q}{r^2} = (8.99 \times 10^9 \,\mathrm{N \cdot m^2/C^2}) \frac{1.00 \times 10^{-6} \,\mathrm{C}}{(1.00 \,\mathrm{m})^2}$$
$$= 8.99 \times 10^3 \,\mathrm{N/C}$$

The field points radially outward and is therefore everywhere

perpendicular to the surface of the sphere. The flux through the sphere (whose surface area $A = 4\pi r^2 = 12.6 \text{ m}^2$) is thus

$$\Phi_E = EA = (8.99 \times 10^3 \text{ N/C})(12.6 \text{ m}^2)$$
$$= 1.13 \times 10^5 \text{ N} \cdot \text{m}^2/\text{C}$$

Exercise What would be the (a) electric field and (b) flux through the sphere if it had a radius of 0.500 m?

Answer (a) $3.60 \times 10^4 \text{ N/C}$; (b) $1.13 \times 10^5 \text{ N} \cdot \text{m}^2/\text{C}$.

If the surface under consideration is not perpendicular to the field, the flux through it must be less than that given by Equation 24.1. We can understand this by considering Figure 24.2, in which the normal to the surface of area A is at an angle θ to the uniform electric field. Note that the number of lines that cross this area A is equal to the number that cross the area A', which is a projection of area A aligned perpendicular to the field. From Figure 24.2 we see that the two areas are related by $A' = A \cos \theta$. Because the flux through A equals the flux through A', we

Figure 24.2 Field lines representing a uniform electric field penetrating an area A that is at an angle θ to the field. Because the number of lines that go through the area A' is the same as the number that go through A, the flux through A' is equal to the flux through A and is given by $\Phi_E = EA \cos \theta$.

conclude that the flux through A is

$$\Phi_E = EA' = EA\cos\theta \tag{24.2}$$

From this result, we see that the flux through a surface of fixed area A has a maximum value EA when the surface is perpendicular to the field (in other words, when the normal to the surface is parallel to the field, that is, $\theta = 0^{\circ}$ in Figure 24.2); the flux is zero when the surface is parallel to the field (in other words, when the normal to the surface is perpendicular to the field, that is, $\theta = 90^{\circ}$).

We assumed a uniform electric field in the preceding discussion. In more general situations, the electric field may vary over a surface. Therefore, our definition of flux given by Equation 24.2 has meaning only over a small element of area. Consider a general surface divided up into a large number of small elements, each of area ΔA . The variation in the electric field over one element can be neglected if the element is sufficiently small. It is convenient to define a vector $\Delta \mathbf{A}_i$ whose magnitude represents the area of the *i*th element of the surface and whose direction is defined to be perpendicular to the surface element, as shown in Figure 24.3. The electric flux $\Delta \Phi_E$ through this element is

$$\Delta \Phi_E = E_i \Delta A_i \cos \theta = \mathbf{E}_i \cdot \Delta \mathbf{A}$$

where we have used the definition of the scalar product of two vectors $(\mathbf{A} \cdot \mathbf{B} = AB \cos \theta)$. By summing the contributions of all elements, we obtain the total flux through the surface.¹ If we let the area of each element approach zero, then the number of elements approaches infinity and the sum is replaced by an integral. Therefore, the general definition of electric flux is

$$\Phi_E = \lim_{\Delta A_i \to 0} \sum \mathbf{E}_i \cdot \Delta \mathbf{A}_i = \int_{\text{surface}} \mathbf{E} \cdot d\mathbf{A}$$
(24.3)

Definition of electric flux

Equation 24.3 is a *surface integral*, which means it must be evaluated over the surface in question. In general, the value of Φ_E depends both on the field pattern and on the surface.

We are often interested in evaluating the flux through a *closed surface*, which is defined as one that divides space into an inside and an outside region, so that one cannot move from one region to the other without crossing the surface. The surface of a sphere, for example, is a closed surface.

Consider the closed surface in Figure 24.4. The vectors $\Delta \mathbf{A}_i$ point in different directions for the various surface elements, but at each point they are normal to

Shine a desk lamp onto a playing card and notice how the size of the shadow on your desk depends on the orientation of the card with respect to the beam of light. Could a formula like Equation 24.2 be used to describe how much light was being blocked by the card?

Figure 24.3 A small element of surface area ΔA_i . The electric field makes an angle θ with the vector $\Delta \mathbf{A}_i$, defined as being normal to the surface element, and the flux through the element is equal to $E_i \Delta A_i \cos \theta$.

¹ It is important to note that drawings with field lines have their inaccuracies because a small area element (depending on its location) may happen to have too many or too few field lines penetrating it. We stress that the basic definition of electric flux is $\int \mathbf{E} \cdot d\mathbf{A}$. The use of lines is only an aid for visualizing the concept.

Figure 24.4 A closed surface in an electric field. The area vectors $\Delta \mathbf{A}_i$ are, by convention, normal to the surface and point outward. The flux through an area element can be positive (element ①), zero (element ②), or negative (element ③).

Karl Friedrich Gauss German mathematician and astronomer (1777–1855)

the surface and, by convention, always point outward. At the element labeled ①, the field lines are crossing the surface from the inside to the outside and $\theta < 90^{\circ}$; hence, the flux $\Delta \Phi_E = \mathbf{E} \cdot \Delta \mathbf{A}_i$ through this element is positive. For element ②, the field lines graze the surface (perpendicular to the vector $\Delta \mathbf{A}_i$); thus, $\theta = 90^{\circ}$ and the flux is zero. For elements such as ③, where the field lines are crossing the surface from outside to inside, $180^{\circ} > \theta > 90^{\circ}$ and the flux is negative because $\cos \theta$ is negative. The *net* flux through the surface is proportional to the net number of lines leaving the surface, where the net number means *the number leaving the surface minus the number entering the surface.* If more lines are leaving than entering, the net flux is positive. If more lines are entering than leaving, the net flux is negative. Using the symbol \oint to represent an integral over a closed surface, we can write the net flux Φ_E through a closed surface as

$$\Phi_E = \oint \mathbf{E} \cdot d\mathbf{A} = \oint E_n \, dA \tag{24.4}$$

where E_n represents the component of the electric field normal to the surface. Evaluating the net flux through a closed surface can be very cumbersome. However, if the field is normal to the surface at each point and constant in magnitude, the calculation is straightforward, as it was in Example 24.1. The next example also illustrates this point.

EXAMPLE 24.2 Flux Through a Cube

Consider a uniform electric field **E** oriented in the *x* direction. Find the net electric flux through the surface of a cube of edges ℓ , oriented as shown in Figure 24.5.

Solution The net flux is the sum of the fluxes through all faces of the cube. First, note that the flux through four of the

faces (③, ④, and the unnumbered ones) is zero because \mathbf{E} is perpendicular to $d\mathbf{A}$ on these faces.

The net flux through faces ① and ② is

$$\Phi_E = \int_1 \mathbf{E} \cdot d\mathbf{A} + \int_2 \mathbf{E} \cdot d\mathbf{A}$$

24.2 Gauss's Law

Figure 24.5 A closed surface in the shape of a cube in a uniform electric field oriented parallel to the *x* axis. The net flux through the closed surface is zero. Side ④ is the bottom of the cube, and side ① is opposite side ②.

24.2 GAUSS'S LAW

In this section we describe a general relationship between the net electric flux
 11.6 through a closed surface (often called a *gaussian surface*) and the charge enclosed by the surface. This relationship, known as *Gauss's law*, is of fundamental importance in the study of electric fields.

Let us again consider a positive point charge q located at the center of a sphere of radius r, as shown in Figure 24.6. From Equation 23.4 we know that the magnitude of the electric field everywhere on the surface of the sphere is $E = k_e q/r^2$. As noted in Example 24.1, the field lines are directed radially outward and hence perpendicular to the surface at every point on the surface. That is, at each surface point, **E** is parallel to the vector $\Delta \mathbf{A}_i$ representing a local element of area ΔA_i surrounding the surface point. Therefore,

$$\mathbf{E} \cdot \Delta \mathbf{A}_i = E \Delta A_i$$

and from Equation 24.4 we find that the net flux through the gaussian surface is

$$\Phi_E = \oint \mathbf{E} \cdot d\mathbf{A} = \oint E \, dA = E \oint dA$$

where we have moved *E* outside of the integral because, by symmetry, *E* is constant over the surface and given by $E = k_e q/r^2$. Furthermore, because the surface is spherical, $\oint dA = A = 4\pi r^2$. Hence, the net flux through the gaussian surface is

$$\Phi_E = \frac{k_e q}{r^2} \left(4\pi r^2\right) = 4\pi k_e q$$

Recalling from Section 23.3 that $k_e = 1/(4\pi\epsilon_0)$, we can write this equation in the form

$$\Phi_E = \frac{q}{\epsilon_0} \tag{24.5}$$

We can verify that this expression for the net flux gives the same result as Example 24.1: $\Phi_E = (1.00 \times 10^{-6} \text{ C})/(8.85 \times 10^{-12} \text{ C}^2/\text{N} \cdot \text{m}^2) = 1.13 \times 10^5 \text{ N} \cdot \text{m}^2/\text{C}.$

For (\mathbf{D}, \mathbf{E}) is constant and directed inward but $d\mathbf{A}_1$ is directed outward ($\theta = 180^\circ$); thus, the flux through this face is

$$\int_{1} \mathbf{E} \cdot d\mathbf{A} = \int_{1} E(\cos 180^{\circ}) dA = -E \int_{1} dA = -EA = -E\ell^{2}$$

because the area of each face is $A = \ell^2$.

For ②, **E** is constant and outward and in the same direction as $d\mathbf{A}_2(\theta = 0^\circ)$; hence, the flux through this face is

$$\int_{2} \mathbf{E} \cdot d\mathbf{A} = \int_{2} E(\cos 0^{\circ}) dA = E \int_{2} dA = +EA = E\ell^{2}$$

Therefore, the net flux over all six faces is

$$\Phi_E = -E\ell^2 + E\ell^2 + 0 + 0 + 0 + 0 = 0$$

Figure 24.6 A spherical gaussian surface of radius r surrounding a point charge q. When the charge is at the center of the sphere, the electric field is everywhere normal to the surface and constant in magnitude.

Figure 24.7 Closed surfaces of various shapes surrounding a charge *q*. The net electric flux is the same through all surfaces.

Provide the second seco

Figure 24.8 A point charge located *outside* a closed surface. The number of lines entering the surface equals the number leaving the surface.

The net electric flux through a closed surface is zero if there is no charge inside

Note from Equation 24.5 that the net flux through the spherical surface is proportional to the charge inside. The flux is independent of the radius r because the area of the spherical surface is proportional to r^2 , whereas the electric field is proportional to $1/r^2$. Thus, in the product of area and electric field, the dependence on r cancels.

Now consider several closed surfaces surrounding a charge q, as shown in Figure 24.7. Surface S_1 is spherical, but surfaces S_2 and S_3 are not. From Equation 24.5, the flux that passes through S_1 has the value q/ϵ_0 . As we discussed in the previous section, flux is proportional to the number of electric field lines passing through a surface. The construction shown in Figure 24.7 shows that the number of lines through S_1 is equal to the number of lines through the nonspherical surfaces S_2 and S_3 . Therefore, we conclude that the net flux through *any* closed surface is independent of the shape of that surface. The net flux through any closed surface surface surrounding a point charge q is given by q/ϵ_0 .

Now consider a point charge located *outside* a closed surface of arbitrary shape, as shown in Figure 24.8. As you can see from this construction, any electric field line that enters the surface leaves the surface at another point. The number of electric field lines entering the surface equals the number leaving the surface. Therefore, we conclude that **the net electric flux through a closed surface that surrounds no charge is zero**. If we apply this result to Example 24.2, we can easily see that the net flux through the cube is zero because there is no charge inside the cube.

Quick Quiz 24.1

Suppose that the charge in Example 24.1 is just outside the sphere, 1.01 m from its center. What is the total flux through the sphere?

Let us extend these arguments to two generalized cases: (1) that of many point charges and (2) that of a continuous distribution of charge. We once again use the superposition principle, which states that **the electric field due to many charges is the vector sum of the electric fields produced by the individual charges.** Therefore, we can express the flux through any closed surface as

$$\oint \mathbf{E} \cdot d\mathbf{A} = \oint (\mathbf{E}_1 + \mathbf{E}_2 + \cdots) \cdot d\mathbf{A}$$

where \mathbf{E} is the total electric field at any point on the surface produced by the vector addition of the electric fields at that point due to the individual charges.

Consider the system of charges shown in Figure 24.9. The surface S surrounds only one charge, q_1 ; hence, the net flux through S is q_1/ϵ_0 . The flux through S due to charges q_2 and q_3 outside it is zero because each electric field line that enters S at one point leaves it at another. The surface S' surrounds charges q_2 and q_3 ; hence, the net flux through it is $(q_2 + q_3)/\epsilon_0$. Finally, the net flux through surface S" is zero because there is no charge inside this surface. That is, *all* the electric field lines that enter S" at one point leave at another.

Gauss's law, which is a generalization of what we have just described, states that the net flux through *any* closed surface is

$$\Phi_E = \oint \mathbf{E} \cdot d\mathbf{A} = \frac{q_{\rm in}}{\epsilon_0}$$
(24.6)

where q_{in} represents the net charge inside the surface and **E** represents the electric field at any point on the surface.

A formal proof of Gauss's law is presented in Section 24.6. When using Equation 24.6, you should note that although the charge q_{in} is the net charge inside the gaussian surface, **E** represents the *total electric field*, which includes contributions from charges both inside and outside the surface.

In principle, Gauss's law can be solved for \mathbf{E} to determine the electric field due to a system of charges or a continuous distribution of charge. In practice, however, this type of solution is applicable only in a limited number of highly symmetric situations. As we shall see in the next section, Gauss's law can be used to evaluate the electric field for charge distributions that have spherical, cylindrical, or planar symmetry. If one chooses the gaussian surface surrounding the charge distribution carefully, the integral in Equation 24.6 can be simplified. You should also note that a gaussian surface is a mathematical construction and need not coincide with any real physical surface.

Quick Quiz 24.2

For a gaussian surface through which the net flux is zero, the following four statements *could be true*. Which of the statements *must be true*? (a) There are no charges inside the surface. (b) The net charge inside the surface is zero. (c) The electric field is zero everywhere on the surface. (d) The number of electric field lines entering the surface equals the number leaving the surface.

Gauss's law is useful for evaluating

E when the charge distribution has

Gauss's law

high symmetry

Figure 24.9 The net electric flux through any closed surface depends only on the charge *inside* that surface. The net flux through surface *S* is q_1/ϵ_0 , the net flux through surface *S'* is $(q_2 + q_3)/\epsilon_0$, and the net flux through surface *S''* is zero.

CONCEPTUAL EXAMPLE 24.3

A spherical gaussian surface surrounds a point charge q. Describe what happens to the total flux through the surface if (a) the charge is tripled, (b) the radius of the sphere is doubled, (c) the surface is changed to a cube, and (d) the charge is moved to another location inside the surface.

Solution (a) The flux through the surface is tripled because flux is proportional to the amount of charge inside the surface.

(b) The flux does not change because all electric field

lines from the charge pass through the sphere, regardless of its radius.

(c) The flux does not change when the shape of the gaussian surface changes because all electric field lines from the charge pass through the surface, regardless of its shape.

(d) The flux does not change when the charge is moved to another location inside that surface because Gauss's law refers to the total charge enclosed, regardless of where the charge is located inside the surface.

24.3 APPLICATION OF GAUSS'S LAW TO CHARGED INSULATORS

As mentioned earlier, Gauss's law is useful in determining electric fields when the charge distribution is characterized by a high degree of symmetry. The following examples demonstrate ways of choosing the gaussian surface over which the surface integral given by Equation 24.6 can be simplified and the electric field determined. In choosing the surface, we should always take advantage of the symmetry of the charge distribution so that we can remove E from the integral and solve for it. The goal in this type of calculation is to determine a surface that satisfies one or more of the following conditions:

- 1. The value of the electric field can be argued by symmetry to be constant over the surface.
- 2. The dot product in Equation 24.6 can be expressed as a simple algebraic product *E* dA because **E** and d**A** are parallel.
- The dot product in Equation 24.6 is zero because E and dA are perpendicular.
 The field can be argued to be zero over the surface.

All four of these conditions are used in examples throughout the remainder of this chapter.

EXAMPLE 24.4 The Electric Field Due to a Point Charge

Starting with Gauss's law, calculate the electric field due to an isolated point charge *q*.

Solution A single charge represents the simplest possible charge distribution, and we use this familiar case to show how to solve for the electric field with Gauss's law. We choose a spherical gaussian surface of radius *r* centered on the point charge, as shown in Figure 24.10. The electric field due to a positive point charge is directed radially outward by symmetry and is therefore normal to the surface at every point. Thus, as in condition (2), **E** is parallel to $d\mathbf{A}$ at each point. Therefore, $\mathbf{E} \cdot d\mathbf{A} = E \, dA$ and Gauss's law gives

$$\Phi_E = \oint \mathbf{E} \cdot d\mathbf{A} = \oint E \, dA = \frac{q}{\epsilon_0}$$

By symmetry, E is constant everywhere on the surface, which satisfies condition (1), so it can be removed from the integral. Therefore,

$\oint E \, dA = E \oint \, dA = E(4\pi r^2) = \frac{q}{\epsilon_0}$

where we have used the fact that the surface area of a sphere is $4\pi r^2$. Now, we solve for the electric field:

$$E = \frac{q}{4\pi\epsilon_0 r^2} = k_e \frac{q}{r^2}$$

This is the familiar electric field due to a point charge that we developed from Coulomb's law in Chapter 23.

Figure 24.10 The point charge q is at the center of the spherical gaussian surface, and **E** is parallel to d**A** at every point on the surface.

EXAMPLE 24.5 A Spherically Symmetric Charge Distribution

An insulating solid sphere of radius *a* has a uniform volume charge density ρ and carries a total positive charge *Q* (Fig. 24.11). (a) Calculate the magnitude of the electric field at a point outside the sphere.

Solution Because the charge distribution is spherically symmetric, we again select a spherical gaussian surface of radius *r*, concentric with the sphere, as shown in Figure 24.11a. For this choice, conditions (1) and (2) are satisfied, as they

were for the point charge in Example 24.4. Following the line of reasoning given in Example 24.4, we find that

$$E = k_e \frac{Q}{r^2} \qquad (\text{for } r > a)$$

Note that this result is identical to the one we obtained for a point charge. Therefore, we conclude that, for a uniformly charged sphere, the field in the region external to the sphere is *equivalent* to that of a point charge located at the center of the sphere.

(b) Find the magnitude of the electric field at a point inside the sphere.

Solution In this case we select a spherical gaussian surface having radius r < a, concentric with the insulated sphere (Fig. 24.11b). Let us denote the volume of this smaller sphere by V'. To apply Gauss's law in this situation, it is important to recognize that the charge $q_{\rm in}$ within the gaussian surface of volume V' is less than Q. To calculate $q_{\rm in}$, we use the fact that $q_{\rm in} = \rho V'$:

 $q_{\rm in}=\rho V'=\rho(\tfrac{4}{3}\pi r^3)$

By symmetry, the magnitude of the electric field is constant everywhere on the spherical gaussian surface and is normal

Figure 24.11 A uniformly charged insulating sphere of radius *a* and total charge *Q*. (a) The magnitude of the electric field at a point exterior to the sphere is $k_e Q / r^2$. (b) The magnitude of the electric field inside the insulating sphere is due only to the charge *within* the gaussian sphere defined by the dashed circle and is $k_e Q r / a^3$.

to the surface at each point—both conditions (1) and (2) are satisfied. Therefore, Gauss's law in the region r < a gives

$$\oint E \, dA = E \oint dA = E(4\pi r^2) = \frac{q_{\rm in}}{\epsilon_0}$$

Solving for E gives

$$E = \frac{q_{\rm in}}{4\pi\epsilon_0 r^2} = \frac{\rho_3^4 \pi r^3}{4\pi\epsilon_0 r^2} = \frac{\rho}{3\epsilon_0} r$$

Because $\rho = Q/\frac{4}{3}\pi a^3$ by definition and since $k_e = 1/(4\pi\epsilon_0)$, this expression for *E* can be written as

$$E = \frac{Qr}{4\pi\epsilon_0 a^3} = \frac{k_e Q}{a^3} r \qquad \text{(for } r < a)$$

Note that this result for *E* differs from the one we obtained in part (a). It shows that $E \rightarrow 0$ as $r \rightarrow 0$. Therefore, the result eliminates the problem that would exist at r = 0 if *E* varied as $1/r^2$ inside the sphere as it does outside the sphere. That is, if $E \propto 1/r^2$ for r < a, the field would be infinite at r = 0, which is physically impossible. Note also that the expressions for parts (a) and (b) match when r = a.

A plot of *E* versus *r* is shown in Figure 24.12.

Figure 24.12 A plot of *E* versus *r* for a uniformly charged insulating sphere. The electric field inside the sphere (r < a) varies linearly with *r*. The field outside the sphere (r > a) is the same as that of a point charge *Q* located at r = 0.

EXAMPLE 24.6 The Electric Field Due to a Thin Spherical Shell

A thin spherical shell of radius a has a total charge Q distributed uniformly over its surface (Fig. 24.13a). Find the electric field at points (a) outside and (b) inside the shell.

Solution (a) The calculation for the field outside the shell is identical to that for the solid sphere shown in Example 24.5a. If we construct a spherical gaussian surface of radius r > a concentric with the shell (Fig. 24.13b), the charge inside this surface is Q. Therefore, the field at a point outside

the shell is equivalent to that due to a point charge Q located at the center:

$$E = k_e \frac{Q}{r^2} \qquad (\text{for } r > a)$$

(b) The electric field inside the spherical shell is zero. This follows from Gauss's law applied to a spherical surface of radius r < a concentric with the shell (Fig. 24.13c). Because

of the spherical symmetry of the charge distribution and because the net charge inside the surface is zero—satisfaction of conditions (1) and (2) again—application of Gauss's law shows that E = 0 in the region r < a. We obtain the same results using Equation 23.6 and integrating over the charge distribution. This calculation is rather complicated. Gauss's law allows us to determine these results in a much simpler way.

Figure 24.13 (a) The electric field inside a uniformly charged spherical shell is zero. The field outside is the same as that due to a point charge Q located at the center of the shell. (b) Gaussian surface for r > a. (c) Gaussian surface for r < a.

EXAMPLE 24.7 A Cylindrically Symmetric Charge Distribution

Find the electric field a distance *r* from a line of positive charge of infinite length and constant charge per unit length λ (Fig. 24.14a).

Solution The symmetry of the charge distribution requires that **E** be perpendicular to the line charge and directed outward, as shown in Figure 24.14a and b. To reflect the symmetry of the charge distribution, we select a cylindrical gaussian surface of radius r and length ℓ that is coaxial with the line charge. For the curved part of this surface, **E** is constant in magnitude and perpendicular to the surface at each point—satisfaction of conditions (1) and (2). Furthermore, the flux through the ends of the gaussian cylinder is zero because **E** is parallel to these surfaces—the first application we have seen of condition (3).

We take the surface integral in Gauss's law over the entire gaussian surface. Because of the zero value of $\mathbf{E} \cdot d\mathbf{A}$ for the ends of the cylinder, however, we can restrict our attention to only the curved surface of the cylinder.

The total charge inside our gaussian surface is $\lambda \ell$. Applying Gauss's law and conditions (1) and (2), we find that for the curved surface

$$\Phi_E = \oint \mathbf{E} \cdot d\mathbf{A} = E \oint dA = EA = \frac{q_{\rm in}}{\epsilon_0} = \frac{\lambda \ell}{\epsilon_0}$$

Figure 24.14 (a) An infinite line of charge surrounded by a cylindrical gaussian surface concentric with the line. (b) An end view shows that the electric field at the cylindrical surface is constant in magnitude and perpendicular to the surface.

6

11.7

The area of the curved surface is $A = 2\pi r\ell$; therefore,

$$E(2\pi r\ell) = \frac{\lambda \ell}{\epsilon_0}$$
$$E = \frac{\lambda}{2\pi\epsilon_0 r} = 2k_e \frac{\lambda}{r}$$
(24.7)

Thus, we see that the electric field due to a cylindrically symmetric charge distribution varies as 1/r, whereas the field external to a spherically symmetric charge distribution varies as $1/r^2$. Equation 24.7 was also derived in Chapter 23 (see Problem 35[b]), by integration of the field of a point charge.

If the line charge in this example were of finite length, the result for *E* would not be that given by Equation 24.7. A finite line charge does not possess sufficient symmetry for us to make use of Gauss's law. This is because the magnitude of the electric field is no longer constant over the surface of the gaussian cylinder—the field near the ends of the line would be different from that far from the ends. Thus, condition (1) would not be satisfied in this situation. Furthermore, **E** is not perpendicular to the cylindrical surface at all points—the field vectors near the ends would have a component parallel to the line. Thus, condition (2) would not be satisfied. When there is insufficient symmetry in the charge distribution, as in this situation, it is necessary to use Equation 23.6 to calculate **E**.

For points close to a finite line charge and far from the ends, Equation 24.7 gives a good approximation of the value of the field.

It is left for you to show (see Problem 29) that the electric field inside a uniformly charged rod of finite radius and infinite length is proportional to *r*.

EXAMPLE 24.8 A Nonconducting Plane of Charge

Find the electric field due to a nonconducting, infinite plane of positive charge with uniform surface charge density σ .

Solution By symmetry, E must be perpendicular to the plane and must have the same magnitude at all points equidistant from the plane. The fact that the direction of **E** is away from positive charges indicates that the direction of E on one side of the plane must be opposite its direction on the other side, as shown in Figure 24.15. A gaussian surface that reflects the symmetry is a small cylinder whose axis is perpendicular to the plane and whose ends each have an area A and are equidistant from the plane. Because E is parallel to the curved surface—and, therefore, perpendicular to dA everywhere on the surface-condition (3) is satisfied and there is no contribution to the surface integral from this surface. For the flat ends of the cylinder, conditions (1) and (2) are satisfied. The flux through each end of the cylinder is EA; hence, the total flux through the entire gaussian surface is just that through the ends, $\Phi_E = 2EA$.

Noting that the total charge inside the surface is $q_{in} = \sigma A$, we use Gauss's law and find that

$$\Phi_{E} = 2EA = \frac{q_{\text{in}}}{\epsilon_{0}} = \frac{\sigma A}{\epsilon_{0}}$$

$$E = \frac{\sigma}{2\epsilon_{0}}$$
(24.8)

Because the distance from each flat end of the cylinder to the plane does not appear in Equation 24.8, we conclude that $E = \sigma/2\epsilon_0$ at any distance from the plane. That is, the field is uniform everywhere.

An important charge configuration related to this example consists of two parallel planes, one positively charged and the other negatively charged, and each with a surface charge density σ (see Problem 58). In this situation, the electric fields due to the two planes add in the region between the planes, resulting in a field of magnitude σ/ϵ_0 , and cancel elsewhere to give a field of zero.

Figure 24.15 A cylindrical gaussian surface penetrating an infinite plane of charge. The flux is *EA* through each end of the gaussian surface and zero through its curved surface.

CONCEPTUAL EXAMPLE 24.9

Explain why Gauss's law cannot be used to calculate the electric field near an electric dipole, a charged disk, or a triangle with a point charge at each corner.