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onsider what happens when a golf ball is struck by a club. The ball is given a
very large initial velocity as a result of the collision; consequently, it is able to
travel more than 100 m through the air. The ball experiences a large accelera-

tion. Furthermore, because the ball experiences this acceleration over a very short
time interval, the average force exerted on it during the collision is very great. Ac-
cording to Newton’s third law, the ball exerts on the club a reaction force that is
equal in magnitude to and opposite in direction to the force exerted by the club
on the ball. This reaction force causes the club to accelerate. Because the club is
much more massive than the ball, however, the acceleration of the club is much
less than the acceleration of the ball.

One of the main objectives of this chapter is to enable you to understand and
analyze such events. As a first step, we introduce the concept of momentum, which is
useful for describing objects in motion and as an alternate and more general
means of applying Newton’s laws. For example, a very massive football player is of-
ten said to have a great deal of momentum as he runs down the field. A much less
massive player, such as a halfback, can have equal or greater momentum if his
speed is greater than that of the more massive player. This follows from the fact
that momentum is defined as the product of mass and velocity. The concept of
momentum leads us to a second conservation law, that of conservation of momen-
tum. This law is especially useful for treating problems that involve collisions be-
tween objects and for analyzing rocket propulsion. The concept of the center of
mass of a system of particles also is introduced, and we shall see that the motion of
a system of particles can be described by the motion of one representative particle
located at the center of mass.

LINEAR MOMENTUM AND ITS CONSERVATION
In the preceding two chapters we studied situations too complex to analyze easily
with Newton’s laws. In fact, Newton himself used a form of his second law slightly
different from (Eq. 5.2)—a form that is considerably easier to apply in
complicated circumstances. Physicists use this form to study everything from sub-
atomic particles to rocket propulsion. In studying situations such as these, it is of-
ten useful to know both something about the object and something about its mo-
tion. We start by defining a new term that incorporates this information:

�F � ma

9.1

The linear momentum of a particle of mass m moving with a velocity v is de-
fined to be the product of the mass and velocity:

(9.1)p � mv

C

Linear momentum is a vector quantity because it equals the product of a scalar
quantity m and a vector quantity v. Its direction is along v, it has dimensions
ML/T, and its SI unit is kg � m/s.

If a particle is moving in an arbitrary direction, p must have three compo-
nents, and Equation 9.1 is equivalent to the component equations

(9.2)

As you can see from its definition, the concept of momentum provides a quantita-
tive distinction between heavy and light particles moving at the same velocity. For
example, the momentum of a bowling ball moving at 10 m/s is much greater than
that of a tennis ball moving at the same speed. Newton called the product mv

px � mvx  py � mvy  pz � mvz

Definition of linear momentum of
a particle

6.2
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quantity of motion; this is perhaps a more graphic description than our present-day
word momentum, which comes from the Latin word for movement.

Two objects have equal kinetic energies. How do the magnitudes of their momenta com-
pare? (a) (b) (c) (d) not enough information to tell.

Using Newton’s second law of motion, we can relate the linear momentum of a
particle to the resultant force acting on the particle: The time rate of change of the
linear momentum of a particle is equal to the net force acting on the particle:

(9.3)

In addition to situations in which the velocity vector varies with time, we can
use Equation 9.3 to study phenomena in which the mass changes. The real value
of Equation 9.3 as a tool for analysis, however, stems from the fact that when the
net force acting on a particle is zero, the time derivative of the momentum of the
particle is zero, and therefore its linear momentum1 is constant. Of course, if 
the particle is isolated, then by necessity and p remains unchanged. This
means that p is conserved. Just as the law of conservation of energy is useful in
solving complex motion problems, the law of conservation of momentum can
greatly simplify the analysis of other types of complicated motion.

Conservation of Momentum for a Two-Particle System

Consider two particles 1 and 2 that can interact with each other but are isolated
from their surroundings (Fig. 9.1). That is, the particles may exert a force on each
other, but no external forces are present. It is important to note the impact of
Newton’s third law on this analysis. If an internal force from particle 1 (for exam-
ple, a gravitational force) acts on particle 2, then there must be a second internal
force—equal in magnitude but opposite in direction—that particle 2 exerts on
particle 1.

Suppose that at some instant, the momentum of particle 1 is p1 and that of
particle 2 is p2 . Applying Newton’s second law to each particle, we can write

where F21 is the force exerted by particle 2 on particle 1 and F12 is the force ex-
erted by particle 1 on particle 2. Newton’s third law tells us that F12 and F21 are
equal in magnitude and opposite in direction. That is, they form an action–reac-
tion pair F12 � � F21 . We can express this condition as

or as

dp1

dt
�

dp2

dt
�

d
dt

 (p1 � p2) � 0

F21 � F12 � 0

  F21 �
dp1

dt
        and         F12 �

dp2

dt

�F � 0

�F �
dp
dt

�
d(mv)

dt

p1 � p 2 ,p1 � p 2 ,p1 � p 2 ,

Quick Quiz 9.1

1In this chapter, the terms momentum and linear momentum have the same meaning. Later, in Chapter
11, we shall use the term angular momentum when dealing with rotational motion.

6.2

Newton’s second law for a particle

p2 = m2v2

m2

m1

F21

F12

p1 = m1v1

Figure 9.1 At some instant, the
momentum of particle 1 is p1 �
m1v1 and the momentum of parti-
cle 2 is p2 � m 2v2 . Note that F12 �
� F21 . The total momentum of the
system ptot is equal to the vector
sum p1 � p2 .
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Because the time derivative of the total momentum ptot � p1 � p2 is zero, we con-
clude that the total momentum of the system must remain constant:

(9.4)

or, equivalently,

(9.5)

where pli and p2i are the initial values and p1f and p2f the final values of the mo-
mentum during the time interval dt over which the reaction pair interacts. Equa-
tion 9.5 in component form demonstrates that the total momenta in the x, y, and z
directions are all independently conserved:

(9.6)

This result, known as the law of conservation of linear momentum, can be ex-
tended to any number of particles in an isolated system. It is considered one of the
most important laws of mechanics. We can state it as follows:

�
system

 pix � �
system

 pf x  �
system

 piy � �
system

 pf y  �
system

 piz � �
system

 pf z

p1i � p2i � p1f � p2f

ptot � �
system

 p � p1 � p2 � constant

Whenever two or more particles in an isolated system interact, the total momen-
tum of the system remains constant.

This law tells us that the total momentum of an isolated system at all times
equals its initial momentum.

Notice that we have made no statement concerning the nature of the forces
acting on the particles of the system. The only requirement is that the forces must
be internal to the system.

Your physical education teacher throws a baseball to you at a certain speed, and you catch
it. The teacher is next going to throw you a medicine ball whose mass is ten times the mass
of the baseball. You are given the following choices: You can have the medicine ball thrown
with (a) the same speed as the baseball, (b) the same momentum, or (c) the same kinetic
energy. Rank these choices from easiest to hardest to catch.

Quick Quiz 9.2

The Floating AstronautEXAMPLE 9.1
A SkyLab astronaut discovered that while concentrating on
writing some notes, he had gradually floated to the middle of
an open area in the spacecraft. Not wanting to wait until he
floated to the opposite side, he asked his colleagues for a
push. Laughing at his predicament, they decided not to help,
and so he had to take off his uniform and throw it in one di-
rection so that he would be propelled in the opposite direc-
tion. Estimate his resulting velocity.

Solution We begin by making some reasonable guesses of
relevant data. Let us assume we have a 70-kg astronaut who
threw his 1-kg uniform at a speed of 20 m/s. For conve-

Conservation of momentum

Figure 9.2 A hapless astronaut has discarded his uniform to get
somewhere.

v2fv1f
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IMPULSE AND MOMENTUM
As we have seen, the momentum of a particle changes if a net force acts on the
particle. Knowing the change in momentum caused by a force is useful in solving
some types of problems. To begin building a better understanding of this impor-
tant concept, let us assume that a single force F acts on a particle and that this
force may vary with time. According to Newton’s second law, or

(9.7)

We can integrate2 this expression to find the change in the momentum of a parti-
cle when the force acts over some time interval. If the momentum of the particle

dp � F dt

F � dp/dt,

9.2

Breakup of a Kaon at RestEXAMPLE 9.2
The important point behind this problem is that even though
it deals with objects that are very different from those in the
preceding example, the physics is identical: Linear momen-
tum is conserved in an isolated system.

One type of nuclear particle, called the neutral kaon (K0),
breaks up into a pair of other particles called pions (�� and
��) that are oppositely charged but equal in mass, as illus-
trated in Figure 9.3. Assuming the kaon is initially at rest,
prove that the two pions must have momenta that are equal
in magnitude and opposite in direction.

Solution The breakup of the kaon can be written

If we let p� be the momentum of the positive pion and p�

the momentum of the negative pion, the final momentum of
the system consisting of the two pions can be written

Because the kaon is at rest before the breakup, we know that
pi � 0. Because momentum is conserved, so that

or
p� � �p�

p� � p� � 0,
pi � pf � 0,

pf � p� � p�

K0 9: �� � ��

6.3
&
6.4

Figure 9.3 A kaon at rest breaks up spontaneously into a pair of
oppositely charged pions. The pions move apart with momenta that
are equal in magnitude but opposite in direction.

nience, we set the positive direction of the x axis to be the di-
rection of the throw (Fig. 9.2). Let us also assume that the x
axis is tangent to the circular path of the spacecraft.

We take the system to consist of the astronaut and the uni-
form. Because of the gravitational force (which keeps the as-
tronaut, his uniform, and the entire spacecraft in orbit), the
system is not really isolated. However, this force is directed
perpendicular to the motion of the system. Therefore, mo-
mentum is constant in the x direction because there are no
external forces in this direction.

The total momentum of the system before the throw is
zero Therefore, the total momentum af-
ter the throw must be zero; that is,

m1v1f � m2v2f � 0

(m1v1i � m2v2i � 0).

With m/s, and kg, solving for
v1f , we find the recoil velocity of the astronaut to be

The negative sign for v1f indicates that the astronaut is mov-
ing to the left after the throw, in the direction opposite the
direction of motion of the uniform, in accordance with New-
ton’s third law. Because the astronaut is much more massive
than his uniform, his acceleration and consequent velocity
are much smaller than the acceleration and velocity of the
uniform.

�0.3i m/sv1f � �
m2

m1
 v2f � �� 1 kg

70 kg �(20i m/s) �

m2 � 1v2f � 20im1 � 70 kg,

Κ
Before
decay

(at rest)

p+p–

π– π+

After decay

π π

0

2Note that here we are integrating force with respect to time. Compare this with our efforts in Chapter 7,
where we integrated force with respect to position to express the work done by the force.
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changes from pi at time ti to pf at time tf , integrating Equation 9.7 gives

(9.8)

To evaluate the integral, we need to know how the force varies with time. The
quantity on the right side of this equation is called the impulse of the force F act-
ing on a particle over the time interval Impulse is a vector defined by

(9.9)I � �tf

ti

 F dt � 	p

	t � tf � ti .

	p � pf � pi � �tf

ti
 F dt

The impulse of the force F acting on a particle equals the change in the mo-
mentum of the particle caused by that force.

This statement, known as the impulse–momentum theorem,3 is equivalent to
Newton’s second law. From this definition, we see that impulse is a vector quantity
having a magnitude equal to the area under the force–time curve, as described in
Figure 9.4a. In this figure, it is assumed that the force varies in time in the general
manner shown and is nonzero in the time interval The direction of
the impulse vector is the same as the direction of the change in momentum. Im-
pulse has the dimensions of momentum—that is, ML/T. Note that impulse is not
a property of a particle; rather, it is a measure of the degree to which an external
force changes the momentum of the particle. Therefore, when we say that an im-
pulse is given to a particle, we mean that momentum is transferred from an exter-
nal agent to that particle.

Because the force imparting an impulse can generally vary in time, it is conve-
nient to define a time-averaged force

(9.10)

where (This is an application of the mean value theorem of calculus.)
Therefore, we can express Equation 9.9 as

(9.11)

This time-averaged force, described in Figure 9.4b, can be thought of as the con-
stant force that would give to the particle in the time interval 	t the same impulse
that the time-varying force gives over this same interval.

In principle, if F is known as a function of time, the impulse can be calculated
from Equation 9.9. The calculation becomes especially simple if the force acting
on the particle is constant. In this case, and Equation 9.11 becomes

(9.12)

In many physical situations, we shall use what is called the impulse approxi-
mation, in which we assume that one of the forces exerted on a particle acts
for a short time but is much greater than any other force present. This ap-
proximation is especially useful in treating collisions in which the duration of the

I � F 	t

F � F

I � F 	t

	t � tf � ti .

F �
1
	t
�tf

t i

 F dt

	t � tf � ti .

Impulse–momentum theorem

Impulse of a force

3Although we assumed that only a single force acts on the particle, the impulse–momentum theorem is
valid when several forces act; in this case, we replace F in Equation 9.9 with �F.

t i t f

t i

F

(a)

t f
t

F

(b)

t

F

Area = F∆t

Figure 9.4 (a) A force acting on
a particle may vary in time. The im-
pulse imparted to the particle by
the force is the area under the
force versus time curve. (b) In the
time interval 	t, the time-averaged
force (horizontal dashed line)
gives the same impulse to a particle
as does the time-varying force de-
scribed in part (a).
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collision is very short. When this approximation is made, we refer to the force as
an impulsive force. For example, when a baseball is struck with a bat, the time of the
collision is about 0.01 s and the average force that the bat exerts on the ball in this
time is typically several thousand newtons. Because this is much greater than the
magnitude of the gravitational force, the impulse approximation justifies our ig-
noring the weight of the ball and bat. When we use this approximation, it is impor-
tant to remember that pi and pf represent the momenta immediately before and af-
ter the collision, respectively. Therefore, in any situation in which it is proper to
use the impulse approximation, the particle moves very little during the collision.

Two objects are at rest on a frictionless surface. Object 1 has a greater mass than object 2.
When a force is applied to object 1, it accelerates through a distance d. The force is re-
moved from object 1 and is applied to object 2. At the moment when object 2 has acceler-
ated through the same distance d, which statements are true? (a) (b) 
(c) (d) (e) (f) K1 � K2 .K1 � K2 ,K1 � K2 ,p 1 � p 2 ,

p 1 � p 2 ,p 1 � p 2 ,

Quick Quiz 9.3

During the brief time the club is in contact with the ball, the ball gains momentum as a result of
the collision, and the club loses the same amount of momentum.

QuickLab
If you can find someone willing, play
catch with an egg. What is the best
way to move your hands so that the
egg does not break when you change
its momentum to zero?

Teeing OffEXAMPLE 9.3
the club loses contact with the ball as the ball starts on its tra-
jectory, and � to denote its landing. Neglecting air resis-
tance, we can use Equation 4.14 for the range of a projectile:

Let us assume that the launch angle 
B is 45°, the angle that
provides the maximum range for any given launch velocity.
This assumption gives sin 2
B � 1, and the launch velocity of

R � xC �
v B 

2

g
 sin 2
 B

A golf ball of mass 50 g is struck with a club (Fig. 9.5). The
force exerted on the ball by the club varies from zero, at the in-
stant before contact, up to some maximum value (at which the
ball is deformed) and then back to zero when the ball leaves
the club. Thus, the force–time curve is qualitatively described
by Figure 9.4. Assuming that the ball travels 200 m, estimate the
magnitude of the impulse caused by the collision.

Solution Let us use � to denote the moment when the
club first contacts the ball, � to denote the moment when
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How Good Are the Bumpers?EXAMPLE 9.4
The initial and final momenta of the automobile are

Hence, the impulse is

The average force exerted on the automobile is

1.76 � 105i NF �
	p
	t

�
2.64 � 104 i kg�m/s

0.150 s
�

2.64 � 104i kg�m/s I �

  � (�2.25 � 104i kg�m/s) 

I � 	p � pf � pi � 0.39 � 104i kg�m/s

pf � mvf � (1 500 kg)(2.60 i m/s) � 0.39 � 104i kg�m/s 

pi � mvi � (1 500 kg)(�15.0i m/s) � �2.25 � 104i kg�m/s

In a particular crash test, an automobile of mass 1 500 kg col-
lides with a wall, as shown in Figure 9.6. The initial and final
velocities of the automobile are m/s and

m/s, respectively. If the collision lasts for 0.150 s,
find the impulse caused by the collision and the average
force exerted on the automobile.

Solution Let us assume that the force exerted on the car
by the wall is large compared with other forces on the car so
that we can apply the impulse approximation. Furthermore,
we note that the force of gravity and the normal force ex-
erted by the road on the car are perpendicular to the motion
and therefore do not affect the horizontal momentum.

vf � 2.60i
vi � �15.0i

Figure 9.6 (a) This car’s momentum
changes as a result of its collision with
the wall. (b) In a crash test, much of the
car’s initial kinetic energy is transformed
into energy used to damage the car.

Figure 9.5 A golf ball being struck by a club. (© Harold E. Edgerton/
Courtesy of Palm Press, Inc.)

the ball is

Considering the time interval for the collision, 
and for the ball. Hence, the magnitude of the im-
pulse imparted to the ball is

Exercise If the club is in contact with the ball for a time of
4.5 � 10�4 s, estimate the magnitude of the average force ex-
erted by the club on the ball.

Answer 4.9 � 103 N, a value that is extremely large when
compared with the weight of the ball, 0.49 N.

2.2 kg�m/s�

I � 	p � mv B � mvA � (50 � 10�3 kg)(44 m/s) � 0

vf � v B

vi � vA � 0

v B � √xCg � √(200 m)(9.80 m/s2) � 44 m/s

Before

After

2.60 m/s

–15.0 m/s

(a) (b)
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Rank an automobile dashboard, seatbelt, and airbag in terms of (a) the impulse and 
(b) the average force they deliver to a front-seat passenger during a collision.

COLLISIONS
In this section we use the law of conservation of linear momentum to describe
what happens when two particles collide. We use the term collision to represent
the event of two particles’ coming together for a short time and thereby producing
impulsive forces on each other. These forces are assumed to be much greater
than any external forces present.

A collision may entail physical contact between two macroscopic objects, as de-
scribed in Figure 9.7a, but the notion of what we mean by collision must be gener-
alized because “physical contact” on a submicroscopic scale is ill-defined and
hence meaningless. To understand this, consider a collision on an atomic scale
(Fig. 9.7b), such as the collision of a proton with an alpha particle (the nucleus of
a helium atom). Because the particles are both positively charged, they never
come into physical contact with each other; instead, they repel each other because
of the strong electrostatic force between them at close separations. When two par-
ticles 1 and 2 of masses m1 and m2 collide as shown in Figure 9.7, the impulsive
forces may vary in time in complicated ways, one of which is described in Figure
9.8. If F21 is the force exerted by particle 2 on particle 1, and if we assume that no
external forces act on the particles, then the change in momentum of particle 1
due to the collision is given by Equation 9.8:

Likewise, if F12 is the force exerted by particle 1 on particle 2, then the change in
momentum of particle 2 is

From Newton’s third law, we conclude that

Because the total momentum of the system is we conclude that
the change in the momentum of the system due to the collision is zero:

This is precisely what we expect because no external forces are acting on the sys-
tem (see Section 9.2). Because the impulsive forces are internal, they do not
change the total momentum of the system (only external forces can do that).

psystem � p1 � p2 � constant

psystem � p1 � p2 ,

	p1 � 	p2 � 0 

 	p1 � �	p2

	p2 � �tf

ti
 F12 dt

	p1 � �tf

ti
 F21 dt

9.3

Quick Quiz 9.4

signs of the velocities indicated the reversal of directions.
What would the mathematics be describing if both the initial
and final velocities had the same sign?

Note that the magnitude of this force is large compared with
the weight of the car ( N), which justifies
our initial assumption. Of note in this problem is how the

mg � 1.47 � 104

p

+

+ +

He

(b)

m2
m1

(a)

F12F21

4

t

F12

F21

F

Figure 9.8 The impulse force as
a function of time for the two col-
liding particles described in Figure
9.7a. Note that F12 � � F21.

Figure 9.7 (a) The collision be-
tween two objects as the result of
direct contact. (b) The “collision”
between two charged particles.

6.5
&
6.6


