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n Chapter 19 we discussed the properties of an ideal gas, using such macro-
scopic variables as pressure, volume, and temperature. We shall now show that
such large-scale properties can be described on a microscopic scale, where mat-

ter is treated as a collection of molecules. Newton’s laws of motion applied in a sta-
tistical manner to a collection of particles provide a reasonable description of ther-
modynamic processes. To keep the mathematics relatively simple, we shall
consider molecular behavior of gases only, because in gases the interactions be-
tween molecules are much weaker than they are in liquids or solids. In the current
view of gas behavior, called the kinetic theory, gas molecules move about in a ran-
dom fashion, colliding with the walls of their container and with each other. Per-
haps the most important feature of this theory is that it demonstrates that the ki-
netic energy of molecular motion and the internal energy of a gas system are
equivalent. Furthermore, the kinetic theory provides us with a physical basis for
our understanding of the concept of temperature.

In the simplest model of a gas, each molecule is considered to be a hard
sphere that collides elastically with other molecules and with the container’s walls.
The hard-sphere model assumes that the molecules do not interact with each
other except during collisions and that they are not deformed by collisions. This
description is adequate only for monatomic gases, for which the energy is entirely
translational kinetic energy. One must modify the theory for more complex mole-
cules, such as oxygen (O2) and carbon dioxide (CO2), to include the internal en-
ergy associated with rotations and vibrations of the molecules.

MOLECULAR MODEL OF AN IDEAL GAS
We begin this chapter by developing a microscopic model of an ideal gas. The
model shows that the pressure that a gas exerts on the walls of its container is a
consequence of the collisions of the gas molecules with the walls. As we shall see,
the model is consistent with the macroscopic description of Chapter 19. In devel-
oping this model, we make the following assumptions:

• The number of molecules is large, and the average separation between mole-
cules is great compared with their dimensions. This means that the volume of
the molecules is negligible when compared with the volume of the container.

• The molecules obey Newton’s laws of motion, but as a whole they move ran-
domly. By “randomly” we mean that any molecule can move in any direction
with equal probability. We also assume that the distribution of speeds does not
change in time, despite the collisions between molecules. That is, at any given
moment, a certain percentage of molecules move at high speeds, a certain per-
centage move at low speeds, and a certain percentage move at speeds intermedi-
ate between high and low.

• The molecules undergo elastic collisions with each other and with the walls of
the container. Thus, in the collisions, both kinetic energy and momentum are
constant.

• The forces between molecules are negligible except during a collision. The
forces between molecules are short-range, so the molecules interact with each
other only during collisions.

• The gas under consideration is a pure substance. That is, all of its molecules are
identical.

Although we often picture an ideal gas as consisting of single atoms, we can as-
sume that the behavior of molecular gases approximates that of ideal gases rather
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642 C H A P T E R  2 1 The Kinetic Theory of Gases

well at low pressures. Molecular rotations or vibrations have no effect, on the aver-
age, on the motions that we considered here.

Now let us derive an expression for the pressure of an ideal gas consisting of N
molecules in a container of volume V. The container is a cube with edges of length
d (Fig. 21.1). Consider the collision of one molecule moving with a velocity v to-
ward the right-hand face of the box. The molecule has velocity components vx , vy ,
and vz . Previously, we used m to represent the mass of a sample, but throughout
this chapter we shall use m to represent the mass of one molecule. As the molecule
collides with the wall elastically, its x component of velocity is reversed, while its y
and z components of velocity remain unaltered (Fig. 21.2). Because the x compo-
nent of the momentum of the molecule is mvx before the collision and � mvx after
the collision, the change in momentum of the molecule is

Applying the impulse–momentum theorem (Eq. 9.9) to the molecule gives

where F1 is the magnitude of the average force exerted by the wall on the mole-
cule in the time �t. The subscript 1 indicates that we are currently considering
only one molecule. For the molecule to collide twice with the same wall, it must
travel a distance 2d in the x direction. Therefore, the time interval between two
collisions with the same wall is Over a time interval that is long com-
pared with �t, the average force exerted on the molecule for each collision is

(21.1)

According to Newton’s third law, the average force exerted by the molecule on the
wall is equal in magnitude and opposite in direction to the force in Equation 21.1:

Each molecule of the gas exerts a force F1 on the wall. We find the total force F ex-
erted by all the molecules on the wall by adding the forces exerted by the individ-
ual molecules:

In this equation, vx1 is the x component of velocity of molecule 1, vx2 is the x com-
ponent of velocity of molecule 2, and so on. The summation terminates when we
reach N molecules because there are N molecules in the container.

To proceed further, we must note that the average value of the square of the
velocity in the x direction for N molecules is

Thus, the total force exerted on the wall can be written

Now let us focus on one molecule in the container whose velocity components
are vx , vy , and vz . The Pythagorean theorem relates the square of the speed of this
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Figure 21.1 A cubical box with
sides of length d containing an
ideal gas. The molecule shown
moves with velocity v.

Figure 21.2 A molecule makes
an elastic collision with the wall of
the container. Its x component of
momentum is reversed, while its y
component remains unchanged. In
this construction, we assume that
the molecule moves in the xy
plane.
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molecule to the squares of these components:

Hence, the average value of v2 for all the molecules in the container is related to
the average values of vx

2, vy
2, and vz

2 according to the expression

Because the motion is completely random, the average values and are
equal to each other. Using this fact and the previous equation, we find that

Thus, the total force exerted on the wall is

Using this expression, we can find the total pressure exerted on the wall:

(21.2)

This result indicates that the pressure is proportional to the number of mole-
cules per unit volume and to the average translational kinetic energy of the
molecules, In deriving this simplified model of an ideal gas, we obtain an
important result that relates the large-scale quantity of pressure to an atomic quan-
tity—the average value of the square of the molecular speed. Thus, we have estab-
lished a key link between the atomic world and the large-scale world.

You should note that Equation 21.2 verifies some features of pressure with
which you are probably familiar. One way to increase the pressure inside a con-
tainer is to increase the number of molecules per unit volume in the container.
This is what you do when you add air to a tire. The pressure in the tire can also be
increased by increasing the average translational kinetic energy of the air mole-
cules in the tire. As we shall soon see, this can be accomplished by increasing the
temperature of that air. It is for this reason that the pressure inside a tire increases
as the tire warms up during long trips. The continuous flexing of the tire as it
moves along the surface of a road results in work done as parts of the tire distort
and in an increase in internal energy of the rubber. The increased temperature of
the rubber results in the transfer of energy by heat into the air inside the tire. This
transfer increases the air’s temperature, and this increase in temperature in turn
produces an increase in pressure.

Molecular Interpretation of Temperature

We can gain some insight into the meaning of temperature by first writing Equa-
tion 21.2 in the more familiar form

Let us now compare this with the equation of state for an ideal gas (Eq. 19.10):
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Recall that the equation of state is based on experimental facts concerning the
macroscopic behavior of gases. Equating the right sides of these expressions, we
find that

(21.3)

That is, temperature is a direct measure of average molecular kinetic energy.
By rearranging Equation 21.3, we can relate the translational molecular ki-

netic energy to the temperature:

(21.4)

That is, the average translational kinetic energy per molecule is Because
it follows that

(21.5)

In a similar manner, it follows that the motions in the y and z directions give us

Thus, each translational degree of freedom contributes an equal amount of en-
ergy to the gas, namely, (In general, “degrees of freedom” refers to the num-
ber of independent means by which a molecule can possess energy.) A generaliza-
tion of this result, known as the theorem of equipartition of energy, states that
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The total translational kinetic energy of N molecules of gas is simply N times
the average energy per molecule, which is given by Equation 21.4:

(21.6)

where we have used for Boltzmann’s constant and for the
number of moles of gas. If we consider a gas for which the only type of energy for
the molecules is translational kinetic energy, we can use Equation 21.6 to express

n � N/NAkB � R/NA

E trans � N �1
2 mv 

2� � 3
2 NkBT � 3

2 nRT

TABLE 21.1 Some rms Speeds

Molar Mass vrms
Gas (g/mol) at 20°C (m/s)

H2 2.02 1904
He 4.00 1352
H2O 18.0 637
Ne 20.2 602
N2 or CO 28.0 511
NO 30.0 494
CO2 44.0 408
SO2 64.1 338
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the internal energy of the gas. This result implies that the internal energy of an
ideal gas depends only on the temperature.

The square root of is called the root-mean-square (rms) speed of the mole-
cules. From Equation 21.4 we obtain, for the rms speed,

(21.7)

where M is the molar mass in kilograms per mole. This expression shows that, at a
given temperature, lighter molecules move faster, on the average, than do heavier
molecules. For example, at a given temperature, hydrogen molecules, whose mo-
lar mass is 2 � 10�3 kg/mol, have an average speed four times that of oxygen mol-
ecules, whose molar mass is 32 � 10�3 kg/mol. Table 21.1 lists the rms speeds for
various molecules at 20°C.

v rms � !v2 �! 3kBT
m

�! 3RT
M

v 

2

At room temperature, the average speed of an air molecule is several hundred meters per
second. A molecule traveling at this speed should travel across a room in a small fraction of
a second. In view of this, why does it take the odor of perfume (or other smells) several
minutes to travel across the room?

MOLAR SPECIFIC HEAT OF AN IDEAL GAS
The energy required to raise the temperature of n moles of gas from Ti to Tf de-
pends on the path taken between the initial and final states. To understand this,
let us consider an ideal gas undergoing several processes such that the change in
temperature is for all processes. The temperature change can be
achieved by taking a variety of paths from one isotherm to another, as shown in
Figure 21.3. Because �T is the same for each path, the change in internal energy
�E int is the same for all paths. However, we know from the first law,

that the heat Q is different for each path because W (the area un-
der the curves) is different for each path. Thus, the heat associated with a given
change in temperature does not have a unique value.

Q � �E int � W,

�T � Tf � Ti

21.2

Quick Quiz 21.1

Root-mean-square speed

A Tank of HeliumEXAMPLE 21.1
Solution Using Equation 21.4, we find that the average ki-
netic energy per molecule is

Exercise Using the fact that the molar mass of helium is
4.00 � 10�3 kg/mol, determine the rms speed of the atoms
at 20.0°C.

Answer 1.35 � 103 m/s.

6.07 � 10�21 J�

1
2 mv2 � 3

2 kBT � 3
2 (1.38 � 10�23 J/K)(293 K)

A tank used for filling helium balloons has a volume of 
0.300 m3 and contains 2.00 mol of helium gas at 20.0°C. Assum-
ing that the helium behaves like an ideal gas, (a) what is the
total translational kinetic energy of the molecules of the gas?

Solution Using Equation 21.6 with mol and 
293 K, we find that

(b) What is the average kinetic energy per molecule?

7.30 � 103 J�

E trans � 3
2 nRT � 3

2(2.00 mol)(8.31 J/mol �K)(293 K)

T �n � 2.00
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Figure 21.3 An ideal gas is taken
from one isotherm at temperature
T to another at temperature

along three different
paths.
T � �T

10.5
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We can address this difficulty by defining specific heats for two processes that
frequently occur: changes at constant volume and changes at constant pressure.
Because the number of moles is a convenient measure of the amount of gas, we
define the molar specific heats associated with these processes with the following
equations:

(constant volume) (21.8)

(constant pressure) (21.9)

where CV is the molar specific heat at constant volume and CP is the molar
specific heat at constant pressure. When we heat a gas at constant pressure, not
only does the internal energy of the gas increase, but the gas also does work be-
cause of the change in volume. Therefore, the heat Q constant P must account for
both the increase in internal energy and the transfer of energy out of the system
by work, and so Q constant P is greater than Q constant V . Thus, CP is greater than CV .

In the previous section, we found that the temperature of a gas is a measure of
the average translational kinetic energy of the gas molecules. This kinetic energy is
associated with the motion of the center of mass of each molecule. It does not in-
clude the energy associated with the internal motion of the molecule—namely, vi-
brations and rotations about the center of mass. This should not be surprising be-
cause the simple kinetic theory model assumes a structureless molecule.

In view of this, let us first consider the simplest case of an ideal monatomic
gas, that is, a gas containing one atom per molecule, such as helium, neon, or ar-
gon. When energy is added to a monatomic gas in a container of fixed volume (by
heating, for example), all of the added energy goes into increasing the transla-
tional kinetic energy of the atoms. There is no other way to store the energy in a
monatomic gas. Therefore, from Equation 21.6, we see that the total internal en-
ergy E int of N molecules (or n mol) of an ideal monatomic gas is

(21.10)

Note that for a monatomic ideal gas, E int is a function of T only, and the functional
relationship is given by Equation 21.10. In general, the internal energy of an ideal
gas is a function of T only, and the exact relationship depends on the type of gas,
as we shall soon explore.

How does the internal energy of a gas change as its pressure is decreased while its volume is
increased in such a way that the process follows the isotherm labeled T in Figure 21.4? 
(a) E int increases. (b) E int decreases. (c) Eint stays the same. (d) There is not enough infor-
mation to determine �E int .

If energy is transferred by heat to a system at constant volume, then no work is
done by the system. That is, for a constant-volume process. Hence,
from the first law of thermodynamics, we see that

(21.11)

In other words, all of the energy transferred by heat goes into increasing the in-
ternal energy (and temperature) of the system. A constant-volume process from i
to f is described in Figure 21.4, where �T is the temperature difference between
the two isotherms. Substituting the expression for Q given by Equation 21.8 into

Q � �E int

W � �P dV � 0

Quick Quiz 21.2

E int � 3
2 NkBT � 3

2 nRT

Q � nCP �T

Q � nCV �T

Internal energy of an ideal
monatomic gas is proportional to
its temperature
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Equation 21.11, we obtain

(21.12)

If the molar specific heat is constant, we can express the internal energy of a gas as

This equation applies to all ideal gases—to gases having more than one atom per
molecule, as well as to monatomic ideal gases.

In the limit of infinitesimal changes, we can use Equation 21.12 to express the
molar specific heat at constant volume as

(21.13)

Let us now apply the results of this discussion to the monatomic gas that we
have been studying. Substituting the internal energy from Equation 21.10 into
Equation 21.13, we find that

(21.14)

This expression predicts a value of for all monatomic
gases. This is in excellent agreement with measured values of molar specific heats
for such gases as helium, neon, argon, and xenon over a wide range of tempera-
tures (Table 21.2).

Now suppose that the gas is taken along the constant-pressure path i : f �
shown in Figure 21.4. Along this path, the temperature again increases by �T. The
energy that must be transferred by heat to the gas in this process is 
Because the volume increases in this process, the work done by the gas is

where P is the constant pressure at which the process occurs. ApplyingW � P�V,

Q � nCP �T.

CV � 3
2 R � 12.5 J/mol�K

CV � 3
2 R
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Figure 21.4 Energy is trans-
ferred by heat to an ideal gas in two
ways. For the constant-volume path
i : f, all the energy goes into in-
creasing the internal energy of the
gas because no work is done. Along
the constant-pressure path i : f �,
part of the energy transferred in by
heat is transferred out by work
done by the gas.

TABLE 21.2 Molar Specific Heats of Various Gases

Molar Specific Heat ( J/mol K)a

Gas CP CV CP � CV � � CP/CV

Monatomic Gases
He 20.8 12.5 8.33 1.67
Ar 20.8 12.5 8.33 1.67
Ne 20.8 12.7 8.12 1.64
Kr 20.8 12.3 8.49 1.69

Diatomic Gases
H2 28.8 20.4 8.33 1.41
N2 29.1 20.8 8.33 1.40
O2 29.4 21.1 8.33 1.40
CO 29.3 21.0 8.33 1.40
Cl2 34.7 25.7 8.96 1.35

Polyatomic Gases
CO2 37.0 28.5 8.50 1.30
SO2 40.4 31.4 9.00 1.29
H2O 35.4 27.0 8.37 1.30
CH4 35.5 27.1 8.41 1.31

a All values except that for water were obtained at 300 K.

�
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the first law to this process, we have

(21.15)

In this case, the energy added to the gas by heat is channeled as follows: Part of it
does external work (that is, it goes into moving a piston), and the remainder in-
creases the internal energy of the gas. But the change in internal energy for the
process i : f � is equal to that for the process i : f because E int depends only on
temperature for an ideal gas and because �T is the same for both processes. In ad-
dition, because we note that for a constant-pressure process,

Substituting this value for P�V into Equation 21.15 with
(Eq. 21.12) gives

(21.16)

This expression applies to any ideal gas. It predicts that the molar specific heat of
an ideal gas at constant pressure is greater than the molar specific heat at constant
volume by an amount R, the universal gas constant (which has the value 
8.31 J/mol � K). This expression is applicable to real gases, as the data in Table 21.2
show.

Because for a monatomic ideal gas, Equation 21.16 predicts a value 
for the molar specific heat of a monatomic gas at con-

stant pressure. The ratio of these heat capacities is a dimensionless quantity �
(Greek letter gamma):

(21.17)

Theoretical values of CP and � are in excellent agreement with experimental val-
ues obtained for monatomic gases, but they are in serious disagreement with the
values for the more complex gases (see Table 21.2). This is not surprising because
the value was derived for a monatomic ideal gas, and we expect some ad-
ditional contribution to the molar specific heat from the internal structure of the
more complex molecules. In Section 21.4, we describe the effect of molecular
structure on the molar specific heat of a gas. We shall find that the internal en-
ergy—and, hence, the molar specific heat—of a complex gas must include con-
tributions from the rotational and the vibrational motions of the molecule.

We have seen that the molar specific heats of gases at constant pressure are
greater than the molar specific heats at constant volume. This difference is a con-
sequence of the fact that in a constant-volume process, no work is done and all of
the energy transferred by heat goes into increasing the internal energy (and tem-
perature) of the gas, whereas in a constant-pressure process, some of the energy
transferred by heat is transferred out as work done by the gas as it expands. In the
case of solids and liquids heated at constant pressure, very little work is done be-
cause the thermal expansion is small. Consequently, CP and CV are approximately
equal for solids and liquids.

CV � 3
2 R

� �
CP

CV
�

(5/2)R
(3/2)R

�
5
3

� 1.67

CP � 5
2 R � 20.8 J/mol�K

CV � 3
2 R

CP � CV � R 

nCV �T � nCP �T � nR�T

�E int � nCV �T
P�V � nR�T.

PV � nRT,

�E int � Q � W � nCP �T � P�V

Heating a Cylinder of HeliumEXAMPLE 21.2
Solution For the constant-volume process, we have

Because J/mol � K for helium and K, we�T � 200CV � 12.5

Q 1 � nCV �T

A cylinder contains 3.00 mol of helium gas at a temperature
of 300 K. (a) If the gas is heated at constant volume, how
much energy must be transferred by heat to the gas for its
temperature to increase to 500 K ?

Ratio of molar specific heats for a
monatomic ideal gas



21.3 Adiabatic Processes for an Ideal Gas 649

ADIABATIC PROCESSES FOR AN IDEAL GAS
As we noted in Section 20.6, an adiabatic process is one in which no energy is
transferred by heat between a system and its surroundings. For example, if a gas is
compressed (or expanded) very rapidly, very little energy is transferred out of (or
into) the system by heat, and so the process is nearly adiabatic. (We must remem-
ber that the temperature of a system changes in an adiabatic process even though
no energy is transferred by heat.) Such processes occur in the cycle of a gasoline
engine, which we discuss in detail in the next chapter.

Another example of an adiabatic process is the very slow expansion of a gas
that is thermally insulated from its surroundings. In general,

21.3

an adiabatic process is one in which no energy is exchanged by heat between
a system and its surroundings.

Let us suppose that an ideal gas undergoes an adiabatic expansion. At any
time during the process, we assume that the gas is in an equilibrium state, so that
the equation of state is valid. As we shall soon see, the pressure and vol-
ume at any time during an adiabatic process are related by the expression

(21.18)

where is assumed to be constant during the process. Thus, we see that
all three variables in the ideal gas law—P, V, and T—change during an adiabatic
process.

Proof That PV � � constant for an Adiabatic Process

When a gas expands adiabatically in a thermally insulated cylinder, no energy is
transferred by heat between the gas and its surroundings; thus, Let us take
the infinitesimal change in volume to be dV and the infinitesimal change in tem-
perature to be dT. The work done by the gas is P dV. Because the internal energy
of an ideal gas depends only on temperature, the change in the internal energy in
an adiabatic expansion is the same as that for an isovolumetric process between
the same temperatures, (Eq. 21.12). Hence, the first law of ther-
modynamics, with becomes

Taking the total differential of the equation of state of an ideal gas, wePV � nRT,

dE int � nCV dT � �P dV

Q � 0,�E int � Q � W,
dE int � nCV dT

Q � 0.

� � CP/CV

PV � � constant

PV � nRT

Definition of an adiabatic process

Relationship between P and V for
an adiabatic process involving an
ideal gas

obtain

(b) How much energy must be transferred by heat to the
gas at constant pressure to raise the temperature to 500 K?

Solution Making use of Table 21.2, we obtain

7.50 � 103 JQ 1 � (3.00 mol)(12.5 J/mol �K)(200 K) �

Exercise What is the work done by the gas in this isobaric
process?

Answer W � Q 2 � Q 1 � 5.00 � 103 J.

12.5 � 103 J�

Q 2 � nCP �T � (3.00 mol)(20.8 J/mol �K)(200 K)


