Example 21.6 A System of Nine Particles

Nine particles have speeds of $5.00,8.00,12.0,12.0,12.0,14.0$, $14.0,17.0$, and $20.0 \mathrm{~m} / \mathrm{s}$. (a) Find the particles' average speed.

Solution The average speed is the sum of the speeds divided by the total number of particles:

$$
\begin{aligned}
\bar{v} & =\frac{\begin{array}{c}
(5.00+8.00+12.0+12.0+12.0 \\
+14.0+14.0+17.0+20.0) \mathrm{m} / \mathrm{s}
\end{array}}{9} \\
& =12.7 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

(b) What is the rms speed?

Solution The average value of the square of the speed is

$$
\begin{aligned}
\overline{v^{2}} & =\frac{\begin{array}{c}
\left(5.00^{2}+8.00^{2}+12.0^{2}+12.0^{2}+12.0^{2}\right. \\
\left.+14.0^{2}+14.0^{2}+17.0^{2}+20.0^{2}\right) \mathrm{m}
\end{array}}{9} \\
& =178 \mathrm{~m}^{2} / \mathrm{s}^{2}
\end{aligned}
$$

Hence, the rms speed is

$$
v_{\mathrm{rms}}=\sqrt{\overline{v^{2}}}=\sqrt{178 \mathrm{~m}^{2} / \mathrm{s}^{2}}=13.3 \mathrm{~m} / \mathrm{s}
$$

(c) What is the most probable speed of the particles?

Solution Three of the particles have a speed of $12 \mathrm{~m} / \mathrm{s}$, two have a speed of $14 \mathrm{~m} / \mathrm{s}$, and the remaining have different speeds. Hence, we see that the most probable speed $v_{\text {mp }}$ is
$12 \mathrm{~m} / \mathrm{s}$.

Optional Section

21.7 MEAN FREE PATH

Most of us are familiar with the fact that the strong odor associated with a gas such as ammonia may take a fraction of a minute to diffuse throughout a room. However, because average molecular speeds are typically several hundred meters per second at room temperature, we might expect a diffusion time much less than 1 s . But, as we saw in Quick Quiz 21.1, molecules collide with one other because they are not geometrical points. Therefore, they do not travel from one side of a room to the other in a straight line. Between collisions, the molecules move with constant speed along straight lines. The average distance between collisions is called the mean free path. The path of an individual molecule is random and resembles that shown in Figure 21.13. As we would expect from this description, the mean free path is related to the diameter of the molecules and the density of the gas.

We now describe how to estimate the mean free path for a gas molecule. For this calculation, we assume that the molecules are spheres of diameter d. We see from Figure 21.14a that no two molecules collide unless their centers are less than a distance d apart as they approach each other. An equivalent way to describe the

Figure 21.14 (a) Two spherical molecules, each of diameter d, collide if their centers are within a distance d of each other. (b) The collision between the two molecules is equivalent to a point molecule's colliding with a molecule having an effective diameter of $2 d$.

Figure 21.13 A molecule moving through a gas collides with other molecules in a random fashion. This behavior is sometimes referred to as a random-walk process. The mean free path increases as the number of molecules per unit volume decreases. Note that the motion is not limited to the plane of the paper.

Figure 21.15 In a time t, a molecule of effective diameter $2 d$ sweeps out a cylinder of length $\bar{v} t$, where \bar{v} is its average speed. In this time, it collides with every point molecule within this cylinder.

Mean free path

Collision frequency
collisions is to imagine that one of the molecules has a diameter $2 d$ and that the rest are geometrical points (Fig. 21.14b). Let us choose the large molecule to be one moving with the average speed \bar{v}. In a time t, this molecule travels a distance $\bar{v} t$. In this time interval, the molecule sweeps out a cylinder having a cross-sectional area πd^{2} and a length $\bar{v} t$ (Fig. 21.15). Hence, the volume of the cylinder is $\pi d^{2} \bar{v} t$. If n_{V} is the number of molecules per unit volume, then the number of point-size molecules in the cylinder is $\left(\pi d^{2} \bar{v} t\right) n_{V}$. The molecule of equivalent diameter $2 d$ collides with every molecule in this cylinder in the time t. Hence, the number of collisions in the time t is equal to the number of molecules in the cylinder, $\left(\pi d^{2} \bar{v} t\right) n_{V}$.

The mean free path ℓ equals the average distance $\bar{v} t$ traveled in a time t divided by the number of collisions that occur in that time:

$$
\ell=\frac{\bar{v} t}{\left(\pi d^{2} \bar{v} t\right) n_{V}}=\frac{1}{\pi d^{2} n_{V}}
$$

Because the number of collisions in a time t is $\left(\pi d^{2} \bar{v} t\right) n_{V}$, the number of collisions per unit time, or collision frequency f, is

$$
f=\pi d^{2} \bar{v} n_{V}
$$

The inverse of the collision frequency is the average time between collisions, known as the mean free time.

Our analysis has assumed that molecules in the cylinder are stationary. When the motion of these molecules is included in the calculation, the correct results are

$$
\begin{gather*}
\ell=\frac{1}{\sqrt{2} \pi d^{2} n_{V}} \tag{21.30}\\
f=\sqrt{2} \pi d^{2} \bar{v} n_{V}=\frac{\bar{v}}{\ell} \tag{21.31}
\end{gather*}
$$

EXAMPLE 21.7 Bouncing Around in the Air

Approximate the air around you as a collection of nitrogen molecules, each of which has a diameter of $2.00 \times 10^{-10} \mathrm{~m}$. (a) How far does a typical molecule move before it collides with another molecule?

Solution Assuming that the gas is ideal, we can use the equation $P V=N k_{\mathrm{B}} T$ to obtain the number of molecules per unit volume under typical room conditions:

$$
\begin{aligned}
n_{V} & =\frac{N}{V}=\frac{P}{k_{\mathrm{B}} T}=\frac{1.01 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}}{\left(1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}\right)(293 \mathrm{~K})} \\
& =2.50 \times 10^{25} \text { molecules } / \mathrm{m}^{3}
\end{aligned}
$$

Hence, the mean free path is

$$
\begin{aligned}
\ell & =\frac{1}{\sqrt{2} \pi d^{2} n_{V}} \\
& =\frac{1}{\sqrt{2} \pi\left(2.00 \times 10^{-10} \mathrm{~m}\right)^{2}\left(2.50 \times 10^{25} \text { molecules } / \mathrm{m}^{3}\right)} \\
& =2.25 \times 10^{-7} \mathrm{~m}
\end{aligned}
$$

This value is about 10^{3} times greater than the molecular diameter.
(b) On average, how frequently does one molecule collide with another?

Solution Because the rms speed of a nitrogen molecule at $20.0^{\circ} \mathrm{C}$ is $511 \mathrm{~m} / \mathrm{s}$ (see Table 21.1), we know from Equations 21.27 and 21.28 that $\bar{v}=(1.60 / 1.73)(511 \mathrm{~m} / \mathrm{s})=473 \mathrm{~m} / \mathrm{s}$. Therefore, the collision frequency is

$$
f=\frac{\bar{v}}{\ell}=\frac{473 \mathrm{~m} / \mathrm{s}}{2.25 \times 10^{-7} \mathrm{~m}}=2.10 \times 10^{9} / \mathrm{s}
$$

The molecule collides with other molecules at the average rate of about two billion times each second!

The mean free path ℓ is not the same as the average separation between particles. In fact, the average separation d between particles is approximately $n_{V}{ }^{-1 / 3}$. In this example, the average molecular separation is

$$
d=\frac{1}{n_{V}^{1 / 3}}=\frac{1}{\left(2.5 \times 10^{25}\right)^{1 / 3}}=3.4 \times 10^{-9} \mathrm{~m}
$$

SUMMARY

The pressure of N molecules of an ideal gas contained in a volume V is

$$
\begin{equation*}
P=\frac{2}{3} \frac{N}{V}\left(\frac{1}{2} m \overline{v^{2}}\right) \tag{21.2}
\end{equation*}
$$

The average translational kinetic energy per molecule of a gas, $\frac{1}{2} m \overline{v^{2}}$, is related to the temperature T of the gas through the expression

$$
\begin{equation*}
\frac{1}{2} m \overline{v^{2}}=\frac{3}{2} k_{\mathrm{B}} T \tag{21.4}
\end{equation*}
$$

where k_{B} is Boltzmann's constant. Each translational degree of freedom (x, y, or z) has $\frac{1}{2} k_{\mathrm{B}} T$ of energy associated with it.

The theorem of equipartition of energy states that the energy of a system in thermal equilibrium is equally divided among all degrees of freedom.

The total energy of N molecules (or $n \mathrm{~mol}$) of an ideal monatomic gas is

$$
\begin{equation*}
E_{\mathrm{int}}=\frac{3}{2} N k_{\mathrm{B}} T=\frac{3}{2} n R T \tag{21.10}
\end{equation*}
$$

The change in internal energy for $n \mathrm{~mol}$ of any ideal gas that undergoes a change in temperature ΔT is

$$
\begin{equation*}
\Delta E_{\mathrm{int}}=n C_{V} \Delta T \tag{21.12}
\end{equation*}
$$

where C_{V} is the molar specific heat at constant volume.
The molar specific heat of an ideal monatomic gas at constant volume is $C_{V}=\frac{3}{2} R$; the molar specific heat at constant pressure is $C_{P}=\frac{5}{2} R$. The ratio of specific heats is $\gamma=C_{P} / C_{V}=\frac{5}{3}$.

If an ideal gas undergoes an adiabatic expansion or compression, the first law of thermodynamics, together with the equation of state, shows that

$$
\begin{equation*}
P V^{\gamma}=\text { constant } \tag{21.18}
\end{equation*}
$$

The Boltzmann distribution law describes the distribution of particles among available energy states. The relative number of particles having energy E is

$$
\begin{equation*}
n_{V}(E)=n_{0} e^{-E / k_{\mathrm{B}} T} \tag{21.25}
\end{equation*}
$$

The Maxwell-Boltzmann distribution function describes the distribution of speeds of molecules in a gas:

$$
\begin{equation*}
N_{v}=4 \pi N\left(\frac{m}{2 \pi k_{\mathrm{B}} T}\right)^{3 / 2} v^{2} e^{-m v^{2} / 2 k_{\mathrm{B}} T} \tag{21.26}
\end{equation*}
$$

This expression enables us to calculate the root-mean-square speed, the average speed, and the most probable speed:

$$
\begin{align*}
v_{\mathrm{rms}} & =\sqrt{\overline{v^{2}}}=\sqrt{3 k_{\mathrm{B}} T / m}=1.73 \sqrt{k_{\mathrm{B}} T / m} \tag{21.27}\\
\bar{v} & =\sqrt{8 k_{\mathrm{B}} T / \pi m}=1.60 \sqrt{k_{\mathrm{B}} T / m} \tag{21.28}\\
v_{\mathrm{mp}} & =\sqrt{2 k_{\mathrm{B}} T / m}=1.41 \sqrt{k_{\mathrm{B}} T / m} \tag{21.29}
\end{align*}
$$

Questions

1. Dalton's law of partial pressures states that the total pressure of a mixture of gases is equal to the sum of the partial pressures of gases making up the mixture. Give a convincing argument for this law on the basis of the kinetic theory of gases.
2. One container is filled with helium gas and another with argon gas. If both containers are at the same temperature, which gas molecules have the higher rms speed? Explain.
3. A gas consists of a mixture of He and N_{2} molecules. Do the lighter He molecules travel faster than the N_{2} molecules? Explain.
4. Although the average speed of gas molecules in thermal equilibrium at some temperature is greater than zero, the average velocity is zero. Explain why this statement must be true.
5. When alcohol is rubbed on your body, your body temperature decreases. Explain this effect.
6. A liquid partially fills a container. Explain why the temperature of the liquid decreases if the container is then partially evacuated. (Using this technique, one can freeze water at temperatures above $0^{\circ} \mathrm{C}$.)
7. A vessel containing a fixed volume of gas is cooled. Does the mean free path of the gas molecules increase, decrease, or remain constant during the cooling process? What about the collision frequency?
8. A gas is compressed at a constant temperature. What happens to the mean free path of the molecules in the process?
9. If a helium-filled balloon initially at room temperature is placed in a freezer, will its volume increase, decrease, or remain the same?
10. What happens to a helium-filled balloon released into the air? Will it expand or contract? Will it stop rising at some height?
11. Which is heavier, dry air or air saturated with water vapor? Explain.
12. Why does a diatomic gas have a greater energy content per mole than a monatomic gas at the same temperature?
13. An ideal gas is contained in a vessel at 300 K . If the temperature is increased to 900 K , (a) by what factor does the rms speed of each molecule change? (b) By what factor does the pressure in the vessel change?
14. A vessel is filled with gas at some equilibrium pressure and temperature. Can all gas molecules in the vessel have the same speed?
15. In our model of the kinetic theory of gases, molecules were viewed as hard spheres colliding elastically with the walls of the container. Is this model realistic?
16. In view of the fact that hot air rises, why does it generally become cooler as you climb a mountain? (Note that air is a poor thermal conductor.)

Problems

1, 2, 3 = straightforward, intermediate, challenging $\quad \square=$ full solution available in the Student Solutions Manual and Study Guide
$W E B=$ solution posted at http://www.saunderscollege.com/physics/ $\square=$ Computer useful in solving problem = Interactive Physics
\square = paired numerical/symbolic problems

Section 21.1 Molecular Model of an Ideal Gas

1. Use the definition of Avogadro's number to find the mass of a helium atom.
2. A sealed cubical container 20.0 cm on a side contains three times Avogadro's number of molecules at a temperature of $20.0^{\circ} \mathrm{C}$. Find the force exerted by the gas on one of the walls of the container.
3. In a $30.0-\mathrm{s}$ interval, 500 hailstones strike a glass window with an area of $0.600 \mathrm{~m}^{2}$ at an angle of 45.0° to the window surface. Each hailstone has a mass of 5.00 g and a speed of $8.00 \mathrm{~m} / \mathrm{s}$. If the collisions are elastic, what are the average force and pressure on the window?
4. In a time t, N hailstones strike a glass window of area A at an angle θ to the window surface. Each hailstone has a mass m and a speed v. If the collisions are elastic, what are the average force and pressure on the window?
5. In a period of $1.00 \mathrm{~s}, 5.00 \times 10^{23}$ nitrogen molecules strike a wall with an area of $8.00 \mathrm{~cm}^{2}$. If the molecules
move with a speed of $300 \mathrm{~m} / \mathrm{s}$ and strike the wall headon in perfectly elastic collisions, what is the pressure exerted on the wall? (The mass of one N_{2} molecule is $4.68 \times 10^{-26} \mathrm{~kg}$.)
6. A $5.00-\mathrm{L}$ vessel contains 2 mol of oxygen gas at a pressure of 8.00 atm . Find the average translational kinetic energy of an oxygen molecule under these conditions.
7. A spherical balloon with a volume of $4000 \mathrm{~cm}^{3}$ contains helium at an (inside) pressure of $1.20 \times 10^{5} \mathrm{~Pa}$. How many moles of helium are in the balloon if each helium atom has an average kinetic energy of $3.60 \times 10^{-22} \mathrm{~J}$?
8. The rms speed of a helium atom at a certain temperature is $1350 \mathrm{~m} / \mathrm{s}$. Find by proportion the rms speed of an oxygen molecule at this temperature. (The molar mass of O_{2} is $32.0 \mathrm{~g} / \mathrm{mol}$, and the molar mass of He is $4.00 \mathrm{~g} / \mathrm{mol}$.)
9. (a) How many atoms of helium gas fill a balloon of diameter 30.0 cm at $20.0^{\circ} \mathrm{C}$ and 1.00 atm ? (b) What is the average kinetic energy of the helium atoms? (c) What is the root-mean-square speed of each helium atom?
10. A 5.00 -liter vessel contains nitrogen gas at $27.0^{\circ} \mathrm{C}$ and 3.00 atm . Find (a) the total translational kinetic energy of the gas molecules and (b) the average kinetic energy per molecule.
11. A cylinder contains a mixture of helium and argon gas in equilibrium at $150^{\circ} \mathrm{C}$. (a) What is the average kinetic energy for each type of gas molecule? (b) What is the root-mean-square speed for each type of molecule?
12. (a) Show that $1 \mathrm{~Pa}=1 \mathrm{~J} / \mathrm{m}^{3}$. (b) Show that the density in space of the translational kinetic energy of an ideal gas is $3 P / 2$.

Section 21.2 Molar Specific Heat of an Ideal Gas

Note: You may use the data given in Table 21.2.
13. Calculate the change in internal energy of 3.00 mol of helium gas when its temperature is increased by 2.00 K .
14. One mole of air ($C_{V}=5 R / 2$) at 300 K and confined in a cylinder under a heavy piston occupies a volume of 5.00 L . Determine the new volume of the gas if 4.40 kJ of energy is transferred to the air by heat.
15. One mole of hydrogen gas is heated at constant pressure from 300 K to 420 K . Calculate (a) the energy transferred by heat to the gas, (b) the increase in its internal energy, and (c) the work done by the gas.
16. In a constant-volume process, 209 J of energy is transferred by heat to 1.00 mol of an ideal monatomic gas initially at 300 K . Find (a) the increase in internal energy of the gas, (b) the work it does, and (c) its final temperature.
17. A house has well-insulated walls. It contains a volume of $100 \mathrm{~m}^{3}$ of air at 300 K . (a) Calculate the energy required to increase the temperature of this air by $1.00^{\circ} \mathrm{C}$. (b) If this energy could be used to lift an object of mass m through a height of 2.00 m , what is the value of m ?
18. A vertical cylinder with a heavy piston contains air at 300 K . The initial pressure is 200 kPa , and the initial volume is $0.350 \mathrm{~m}^{3}$. Take the molar mass of air as $28.9 \mathrm{~g} / \mathrm{mol}$ and assume that $C_{V}=5 R / 2$. (a) Find the specific heat of air at constant volume in units of $\mathrm{J} / \mathrm{kg} \cdot{ }^{\circ} \mathrm{C}$. (b) Calculate the mass of the air in the cylinder. (c) Suppose the piston is held fixed. Find the energy input required to raise the temperature of the air to 700 K. (d) Assume again the conditions of the initial state and that the heavy piston is free to move. Find the energy input required to raise the temperature to 700 K .
19. A 1-L Thermos bottle is full of tea at $90^{\circ} \mathrm{C}$. You pour out one cup and immediately screw the stopper back on. Make an order-of-magnitude estimate of the change in temperature of the tea remaining in the flask that results from the admission of air at room temperature. State the quantities you take as data and the values you measure or estimate for them.
20. For a diatomic ideal gas, $C_{V}=5 R / 2$. One mole of this gas has pressure P and volume V. When the gas is heated, its pressure triples and its volume doubles. If this heating process includes two steps, the first at con-
stant pressure and the second at constant volume, determine the amount of energy transferred to the gas by heat.
21. One mole of an ideal monatomic gas is at an initial temperature of 300 K . The gas undergoes an isovolumetric process, acquiring 500 J of energy by heat. It then undergoes an isobaric process, losing this same amount of energy by heat. Determine (a) the new temperature of the gas and (b) the work done on the gas.
22. A container has a mixture of two gases: n_{1} moles of gas 1 , which has a molar specific heat C_{1}; and n_{2} moles of gas 2, which has a molar specific heat C_{2}. (a) Find the molar specific heat of the mixture. (b) What is the molar specific heat if the mixture has m gases in the amounts $n_{1}, n_{2}, n_{3}, \ldots, n_{m}$, and molar specific heats $C_{1}, C_{2}, C_{3}, \ldots, C_{m}$, respectively?
23. One mole of an ideal diatomic gas with $C_{V}=5 R / 2 \mathrm{oc}-$ cupies a volume V_{i} at a pressure P_{i}. The gas undergoes a process in which the pressure is proportional to the volume. At the end of the process, it is found that the rms speed of the gas molecules has doubled from its initial value. Determine the amount of energy transferred to the gas by heat.

Section 21.3 Adiabatic Processes for an Ideal Gas

24. During the compression stroke of a certain gasoline engine, the pressure increases from 1.00 atm to 20.0 atm . Assuming that the process is adiabatic and that the gas is ideal, with $\gamma=1.40$, (a) by what factor does the volume change and (b) by what factor does the temperature change? (c) If the compression starts with 0.0160 mol of gas at $27.0^{\circ} \mathrm{C}$, find the values of Q, W, and $\Delta E_{\text {int }}$ that characterize the process.
25. Two moles of an ideal gas $(\gamma=1.40)$ expands slowly and adiabatically from a pressure of 5.00 atm and a volume of 12.0 L to a final volume of 30.0 L . (a) What is the final pressure of the gas? (b) What are the initial and final temperatures? (c) Find Q, W, and $\Delta E_{\text {int }}$.
26. Air $(\gamma=1.40)$ at $27.0^{\circ} \mathrm{C}$ and at atmospheric pressure is drawn into a bicycle pump that has a cylinder with an inner diameter of 2.50 cm and a length of 50.0 cm . The down stroke adiabatically compresses the air, which reaches a gauge pressure of 800 kPa before entering the tire. Determine (a) the volume of the compressed air and (b) the temperature of the compressed air.
(c) The pump is made of steel and has an inner wall that is 2.00 mm thick. Assume that 4.00 cm of the cylinder's length is allowed to come to thermal equilibrium with the air. What will be the increase in wall temperature?
27. Air in a thundercloud expands as it rises. If its initial temperature was 300 K , and if no energy is lost by thermal conduction on expansion, what is its temperature when the initial volume has doubled?
28. How much work is required to compress 5.00 mol of air at $20.0^{\circ} \mathrm{C}$ and 1.00 atm to one tenth of the original vol-
