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n this chapter, we discuss capacitors—devices that store electric charge. Capaci-
tors are commonly used in a variety of electric circuits. For instance, they are
used to tune the frequency of radio receivers, as filters in power supplies, to

eliminate sparking in automobile ignition systems, and as energy-storing devices in
electronic flash units.

A capacitor consists of two conductors separated by an insulator. We shall see
that the capacitance of a given capacitor depends on its geometry and on the ma-
terial—called a dielectric—that separates the conductors.

DEFINITION OF CAPACITANCE
Consider two conductors carrying charges of equal magnitude but of opposite
sign, as shown in Figure 26.1. Such a combination of two conductors is called a ca-
pacitor. The conductors are called plates. A potential difference �V exists between
the conductors due to the presence of the charges. Because the unit of potential
difference is the volt, a potential difference is often called a voltage. We shall use
this term to describe the potential difference across a circuit element or between
two points in space.

What determines how much charge is on the plates of a capacitor for a given
voltage? In other words, what is the capacity of the device for storing charge at a
particular value of �V ? Experiments show that the quantity of charge Q on a ca-
pacitor1 is linearly proportional to the potential difference between the conduc-
tors; that is, The proportionality constant depends on the shape and sepa-
ration of the conductors.2 We can write this relationship as if we define
capacitance as follows:

Q � C �V
Q � �V.

26.1

The capacitance C of a capacitor is the ratio of the magnitude of the charge on
either conductor to the magnitude of the potential difference between them:

(26.1)C �
Q

�V

I

Note that by definition capacitance is always a positive quantity. Furthermore, the po-
tential difference �V is always expressed in Equation 26.1 as a positive quantity. Be-
cause the potential difference increases linearly with the stored charge, the ratio
Q /�V is constant for a given capacitor. Therefore, capacitance is a measure of a
capacitor’s ability to store charge and electric potential energy.

From Equation 26.1, we see that capacitance has SI units of coulombs per volt.
The SI unit of capacitance is the farad (F), which was named in honor of Michael
Faraday:

The farad is a very large unit of capacitance. In practice, typical devices have ca-
pacitances ranging from microfarads (10�6 F) to picofarads (10�12 F). For practi-
cal purposes, capacitors often are labeled “mF” for microfarads and “mmF” for mi-
cromicrofarads or, equivalently, “pF” for picofarads.

1 F � 1 C/V

Definition of capacitance

1 Although the total charge on the capacitor is zero (because there is as much excess positive charge
on one conductor as there is excess negative charge on the other), it is common practice to refer to the
magnitude of the charge on either conductor as “the charge on the capacitor.”
2 The proportionality between �V and Q can be proved from Coulomb’s law or by experiment.
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Figure 26.1 A capacitor consists
of two conductors carrying charges
of equal magnitude but opposite
sign.
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Let us consider a capacitor formed from a pair of parallel plates, as shown in
Figure 26.2. Each plate is connected to one terminal of a battery (not shown in
Fig. 26.2), which acts as a source of potential difference. If the capacitor is initially
uncharged, the battery establishes an electric field in the connecting wires when
the connections are made. Let us focus on the plate connected to the negative ter-
minal of the battery. The electric field applies a force on electrons in the wire just
outside this plate; this force causes the electrons to move onto the plate. This
movement continues until the plate, the wire, and the terminal are all at the same
electric potential. Once this equilibrium point is attained, a potential difference
no longer exists between the terminal and the plate, and as a result no electric
field is present in the wire, and the movement of electrons stops. The plate now
carries a negative charge. A similar process occurs at the other capacitor plate,
with electrons moving from the plate to the wire, leaving the plate positively
charged. In this final configuration, the potential difference across the capacitor
plates is the same as that between the terminals of the battery.

Suppose that we have a capacitor rated at 4 pF. This rating means that the ca-
pacitor can store 4 pC of charge for each volt of potential difference between the
two conductors. If a 9-V battery is connected across this capacitor, one of the con-
ductors ends up with a net charge of � 36 pC and the other ends up with a net
charge of � 36 pC.

CALCULATING CAPACITANCE
We can calculate the capacitance of a pair of oppositely charged conductors in the
following manner: We assume a charge of magnitude Q , and we calculate the po-
tential difference using the techniques described in the preceding chapter. We
then use the expression to evaluate the capacitance. As we might ex-
pect, we can perform this calculation relatively easily if the geometry of the capaci-
tor is simple.

We can calculate the capacitance of an isolated spherical conductor of radius
R and charge Q if we assume that the second conductor making up the capacitor is
a concentric hollow sphere of infinite radius. The electric potential of the sphere
of radius R is simply keQ /R, and setting at infinity as usual, we have

(26.2)

This expression shows that the capacitance of an isolated charged sphere is pro-
portional to its radius and is independent of both the charge on the sphere and
the potential difference.

C �
Q
�V

�
Q

keQ /R
�

R
ke

� 4��0R

V � 0

C � Q /�V

26.2

QuickLab
Roll some socks into balls and stuff
them into a shoebox. What deter-
mines how many socks fit in the box?
Relate how hard you push on the
socks to �V for a capacitor. How does
the size of the box influence its “sock
capacity”?

A collection of capacitors used in a variety of applica-
tions. 

d

–Q
+Q

Area = A

Figure 26.2 A parallel-plate ca-
pacitor consists of two parallel con-
ducting plates, each of area A, sepa-
rated by a distance d. When the
capacitor is charged, the plates
carry equal amounts of charge.
One plate carries positive charge,
and the other carries negative
charge.
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The capacitance of a pair of conductors depends on the geometry of the con-
ductors. Let us illustrate this with three familiar geometries, namely, parallel
plates, concentric cylinders, and concentric spheres. In these examples, we assume
that the charged conductors are separated by a vacuum. The effect of a dielectric
material placed between the conductors is treated in Section 26.5.

Parallel-Plate Capacitors

Two parallel metallic plates of equal area A are separated by a distance d, as shown
in Figure 26.2. One plate carries a charge Q , and the other carries a charge �Q .
Let us consider how the geometry of these conductors influences the capacity of
the combination to store charge. Recall that charges of like sign repel one an-
other. As a capacitor is being charged by a battery, electrons flow into the negative
plate and out of the positive plate. If the capacitor plates are large, the accumu-
lated charges are able to distribute themselves over a substantial area, and the
amount of charge that can be stored on a plate for a given potential difference in-
creases as the plate area is increased. Thus, we expect the capacitance to be pro-
portional to the plate area A.

Now let us consider the region that separates the plates. If the battery has a
constant potential difference between its terminals, then the electric field between
the plates must increase as d is decreased. Let us imagine that we move the plates
closer together and consider the situation before any charges have had a chance
to move in response to this change. Because no charges have moved, the electric
field between the plates has the same value but extends over a shorter distance.
Thus, the magnitude of the potential difference between the plates (Eq.
25.6) is now smaller. The difference between this new capacitor voltage and the
terminal voltage of the battery now exists as a potential difference across the wires
connecting the battery to the capacitor. This potential difference results in an elec-
tric field in the wires that drives more charge onto the plates, increasing the po-
tential difference between the plates. When the potential difference between the
plates again matches that of the battery, the potential difference across the wires
falls back to zero, and the flow of charge stops. Thus, moving the plates closer to-
gether causes the charge on the capacitor to increase. If d is increased, the charge
decreases. As a result, we expect the device’s capacitance to be inversely propor-
tional to d.

�V � Ed

Figure 26.3 (a) The electric field between the plates of a parallel-plate capacitor is uniform
near the center but nonuniform near the edges. (b) Electric field pattern of two oppositely
charged conducting parallel plates. Small pieces of thread on an oil surface align with the elec-
tric field.

+Q

–Q

(a) (b)
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We can verify these physical arguments with the following derivation. The sur-
face charge density on either plate is If the plates are very close to-
gether (in comparison with their length and width), we can assume that the elec-
tric field is uniform between the plates and is zero elsewhere. According to the last
paragraph of Example 24.8, the value of the electric field between the plates is

Because the field between the plates is uniform, the magnitude of the potential
difference between the plates equals Ed (see Eq. 25.6); therefore,

Substituting this result into Equation 26.1, we find that the capacitance is

(26.3)

That is, the capacitance of a parallel-plate capacitor is proportional to the
area of its plates and inversely proportional to the plate separation, just as
we expect from our conceptual argument.

A careful inspection of the electric field lines for a parallel-plate capacitor re-
veals that the field is uniform in the central region between the plates, as shown in
Figure 26.3a. However, the field is nonuniform at the edges of the plates. Figure
26.3b is a photograph of the electric field pattern of a parallel-plate capacitor.
Note the nonuniform nature of the electric field at the ends of the plates. Such
end effects can be neglected if the plate separation is small compared with the
length of the plates.

Many computer keyboard buttons are constructed of capacitors, as shown in Figure 26.4.
When a key is pushed down, the soft insulator between the movable plate and the fixed
plate is compressed. When the key is pressed, the capacitance (a) increases, (b) decreases,
or (c) changes in a way that we cannot determine because the complicated electric circuit
connected to the keyboard button may cause a change in �V.

Quick Quiz 26.1

C �
�0A
d

C �
Q
�V

�
Q

Qd/�0A

�V � Ed �
Qd
�0A

E �
�

�0
�

Q
�0A

� � Q /A.

Key

Movable
plate

Soft
insulator

Fixed
plate

B

Parallel-Plate CapacitorEXAMPLE 26.1

Exercise What is the capacitance for a plate separation of
3.00 mm?

Answer 0.590 pF.

1.77 pF � 1.77 	 10�12 F �
A parallel-plate capacitor has an area 
and a plate separation mm. Find its capacitance.

Solution From Equation 26.3, we find that

C � �0 
A
d

� (8.85 	 10�12 C2/N
m2)� 2.00 	 10�4 m2

1.00 	 10�3 m �

d � 1.00
A � 2.00 	 10�4 m2

Figure 26.4 One type of com-
puter keyboard button.
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The Cylindrical CapacitorEXAMPLE 26.2
by (b/a), a positive quantity. As
predicted, the capacitance is proportional to the length of
the cylinders. As we might expect, the capacitance also de-
pends on the radii of the two cylindrical conductors. From
Equation 26.4, we see that the capacitance per unit length of
a combination of concentric cylindrical conductors is

(26.5)

An example of this type of geometric arrangement is a coaxial
cable, which consists of two concentric cylindrical conductors
separated by an insulator. The cable carries electrical signals
in the inner and outer conductors. Such a geometry is espe-
cially useful for shielding the signals from any possible exter-
nal influences.

C
�

�
1

2ke ln� b
a �

�V � � Vb � Va � � 2ke � lnA solid cylindrical conductor of radius a and charge Q is
coaxial with a cylindrical shell of negligible thickness, radius

and charge �Q (Fig. 26.5a). Find the capacitance of
this cylindrical capacitor if its length is �.

Solution It is difficult to apply physical arguments to this
configuration, although we can reasonably expect the capaci-
tance to be proportional to the cylinder length � for the same
reason that parallel-plate capacitance is proportional to plate
area: Stored charges have more room in which to be distrib-
uted. If we assume that � is much greater than a and b, we can
neglect end effects. In this case, the electric field is perpen-
dicular to the long axis of the cylinders and is confined to the
region between them (Fig. 26.5b). We must first calculate the
potential difference between the two cylinders, which is given
in general by

where E is the electric field in the region In Chap-
ter 24, we showed using Gauss’s law that the magnitude of the
electric field of a cylindrical charge distribution having linear
charge density � is (Eq. 24.7). The same result
applies here because, according to Gauss’s law, the charge on
the outer cylinder does not contribute to the electric field in-
side it. Using this result and noting from Figure 26.5b that E
is along r, we find that

Substituting this result into Equation 26.1 and using the fact
that we obtain

(26.4)

where �V is the magnitude of the potential difference, given

�

2ke ln� b
a �

C �
Q

�V
�

Q

2keQ
�

 ln� b
a �

�

� � Q /�,

Vb � Va � ��b

a
 Er dr � �2ke � �b

a
 
dr
r

� �2ke � ln� b
a �

Er � 2ke �/r

a � r � b.

Vb � Va � ��b

a
 E � ds

b 
 a,

The Spherical CapacitorEXAMPLE 26.3
Solution As we showed in Chapter 24, the field outside
a spherically symmetric charge distribution is radial and
given by the expression In this case, this result ap-
plies to the field between the spheres From(a � r � b).

keQ /r 2.

A spherical capacitor consists of a spherical conducting shell
of radius b and charge �Q concentric with a smaller conduct-
ing sphere of radius a and charge Q (Fig. 26.6). Find the ca-
pacitance of this device.

b
a

�

(a) (b)

Gaussian
surface

–Q
a

Q

b

r

Figure 26.5 (a) A cylindrical capacitor consists of a solid cylindri-
cal conductor of radius a and length � surrounded by a coaxial cylin-
drical shell of radius b. (b) End view. The dashed line represents the
end of the cylindrical gaussian surface of radius r and length �.

Cylindrical and Spherical Capacitors

From the definition of capacitance, we can, in principle, find the capacitance of
any geometric arrangement of conductors. The following examples demonstrate
the use of this definition to calculate the capacitance of the other familiar geome-
tries that we mentioned: cylinders and spheres.
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What is the magnitude of the electric field in the region outside the spherical capacitor de-
scribed in Example 26.3?

COMBINATIONS OF CAPACITORS
Two or more capacitors often are combined in electric circuits. We can calculate
the equivalent capacitance of certain combinations using methods described in
this section. The circuit symbols for capacitors and batteries, as well as the color
codes used for them in this text, are given in Figure 26.7. The symbol for the ca-
pacitor reflects the geometry of the most common model for a capacitor—a pair
of parallel plates. The positive terminal of the battery is at the higher potential
and is represented in the circuit symbol by the longer vertical line.

Parallel Combination

Two capacitors connected as shown in Figure 26.8a are known as a parallel combina-
tion of capacitors. Figure 26.8b shows a circuit diagram for this combination of ca-
pacitors. The left plates of the capacitors are connected by a conducting wire to
the positive terminal of the battery and are therefore both at the same electric po-
tential as the positive terminal. Likewise, the right plates are connected to the neg-
ative terminal and are therefore both at the same potential as the negative termi-
nal. Thus, the individual potential differences across capacitors connected in
parallel are all the same and are equal to the potential difference applied
across the combination.

In a circuit such as that shown in Figure 26.8, the voltage applied across the
combination is the terminal voltage of the battery. Situations can occur in which

26.3

Quick Quiz 26.2

Figure 26.6 A spherical capacitor consists of an inner sphere of
radius a surrounded by a concentric spherical shell of radius b. The
electric field between the spheres is directed radially outward when
the inner sphere is positively charged.

a

b

– Q

+Q

Exercise Show that as the radius b of the outer sphere ap-
proaches infinity, the capacitance approaches the value
a/ke � 4��0a .

Figure 26.7 Circuit symbols for
capacitors, batteries, and switches.
Note that capacitors are in blue
and batteries and switches are in
red.

Capacitor
symbol

Battery
symbol +–

Switch
symbol

13.5

Gauss’s law we see that only the inner sphere contributes 
to this field. Thus, the potential difference between the
spheres is

The magnitude of the potential difference is

Substituting this value for �V into Equation 26.1, we obtain

(26.6)
ab

ke(b � a)
C �

Q
�V

�

�V � � Vb � Va � � keQ 
(b � a)

ab

 � keQ � 1
b

�
1
a �

Vb � Va � ��b

a
 Er dr � �keQ �b

a
 
dr
r 2 � keQ � 1

r �
b

a
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the parallel combination is in a circuit with other circuit elements; in such situa-
tions, we must determine the potential difference across the combination by ana-
lyzing the entire circuit.

When the capacitors are first connected in the circuit shown in Figure 26.8,
electrons are transferred between the wires and the plates; this transfer leaves the
left plates positively charged and the right plates negatively charged. The energy
source for this charge transfer is the internal chemical energy stored in the bat-
tery, which is converted to electric potential energy associated with the charge sep-
aration. The flow of charge ceases when the voltage across the capacitors is equal
to that across the battery terminals. The capacitors reach their maximum charge
when the flow of charge ceases. Let us call the maximum charges on the two ca-
pacitors Q 1 and Q 2 . The total charge Q stored by the two capacitors is

(26.7)

That is, the total charge on capacitors connected in parallel is the sum of the
charges on the individual capacitors. Because the voltages across the capacitors
are the same, the charges that they carry are

Suppose that we wish to replace these two capacitors by one equivalent capacitor
having a capacitance Ceq , as shown in Figure 26.8c. The effect this equivalent ca-
pacitor has on the circuit must be exactly the same as the effect of the combina-
tion of the two individual capacitors. That is, the equivalent capacitor must store Q
units of charge when connected to the battery. We can see from Figure 26.8c that
the voltage across the equivalent capacitor also is �V because the equivalent capac-

Q 1 � C1 �V  Q 2 � C2 �V

Q � Q 1 � Q 2

(a)

+ –

C2

+ –

C1

+ –

(b)

∆V

+ –

Q2

C2

Q1

C1

∆V1 = ∆V2 = ∆V

∆V

+ –

Ceq = C1 + C2

(c)

∆V

Figure 26.8 (a) A parallel combination of two capacitors in an electric circuit in which the po-
tential difference across the battery terminals is �V. (b) The circuit diagram for the parallel com-
bination. (c) The equivalent capacitance is C eq � C 1 � C 2 .
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itor is connected directly across the battery terminals. Thus, for the equivalent ca-
pacitor,

Substituting these three relationships for charge into Equation 26.7, we have

If we extend this treatment to three or more capacitors connected in parallel,
we find the equivalent capacitance to be

(26.8)

Thus, the equivalent capacitance of a parallel combination of capacitors is
greater than any of the individual capacitances. This makes sense because we
are essentially combining the areas of all the capacitor plates when we connect
them with conducting wire.

Series Combination

Two capacitors connected as shown in Figure 26.9a are known as a series combina-
tion of capacitors. The left plate of capacitor 1 and the right plate of capacitor 2
are connected to the terminals of a battery. The other two plates are connected to
each other and to nothing else; hence, they form an isolated conductor that is ini-
tially uncharged and must continue to have zero net charge. To analyze this com-
bination, let us begin by considering the uncharged capacitors and follow what
happens just after a battery is connected to the circuit. When the battery is con-

Ceq � C1 � C2 � C3 � 


  (parallel combination)

Ceq � C1 � C2  �parallel
combination�

Ceq �V � C1 �V � C2 �V 

Q � Ceq �V

(a)

+ –

C2

∆V

C1
∆V1 ∆V2

+Q –Q +Q –Q

(b)

+ –

∆V

Ceq

Figure 26.9 (a) A series combination of two capacitors. The charges on the two capacitors are
the same. (b) The capacitors replaced by a single equivalent capacitor. The equivalent capaci-
tance can be calculated from the relationship

1
C eq

�
1

C 1
�

1
C 2
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nected, electrons are transferred out of the left plate of C1 and into the right plate
of C2 . As this negative charge accumulates on the right plate of C2 , an equivalent
amount of negative charge is forced off the left plate of C2 , and this left plate
therefore has an excess positive charge. The negative charge leaving the left plate
of C2 travels through the connecting wire and accumulates on the right plate of
C1 . As a result, all the right plates end up with a charge �Q , and all the left plates
end up with a charge �Q. Thus, the charges on capacitors connected in series
are the same.

From Figure 26.9a, we see that the voltage �V across the battery terminals is
split between the two capacitors:

(26.9)

where �V1 and �V2 are the potential differences across capacitors C1 and C2 , re-
spectively. In general, the total potential difference across any number of ca-
pacitors connected in series is the sum of the potential differences across
the individual capacitors.

Suppose that an equivalent capacitor has the same effect on the circuit as the
series combination. After it is fully charged, the equivalent capacitor must have a
charge of �Q on its right plate and a charge of �Q on its left plate. Applying the
definition of capacitance to the circuit in Figure 26.9b, we have

Because we can apply the expression to each capacitor shown in Figure
26.9a, the potential difference across each is

Substituting these expressions into Equation 26.9 and noting that 
we have

Canceling Q , we arrive at the relationship

When this analysis is applied to three or more capacitors connected in series, the
relationship for the equivalent capacitance is

(26.10)

This demonstrates that the equivalent capacitance of a series combination is
always less than any individual capacitance in the combination.

1
Ceq

�
1

C1
�

1
C2

�
1

C3
� 


  �series

combination�

1
Ceq

�
1

C1
�

1
C2

  �series
combination�

Q
Ceq

�
Q
C1

�
Q
C2

�V � Q /Ceq ,

�V1 �
Q
C1

  �V2 �
Q
C2

Q � C �V

�V �
Q

Ceq

�V � �V1 � �V2

Equivalent CapacitanceEXAMPLE 26.4
Solution Using Equations 26.8 and 26.10, we reduce the
combination step by step as indicated in the figure. The 
1.0-�F and 3.0-�F capacitors are in parallel and combine ac-

Find the equivalent capacitance between a and b for the com-
bination of capacitors shown in Figure 26.10a. All capaci-
tances are in microfarads.
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ENERGY STORED IN A CHARGED CAPACITOR
Almost everyone who works with electronic equipment has at some time verified
that a capacitor can store energy. If the plates of a charged capacitor are con-
nected by a conductor, such as a wire, charge moves between the plates and the
connecting wire until the capacitor is uncharged. The discharge can often be ob-
served as a visible spark. If you should accidentally touch the opposite plates of a
charged capacitor, your fingers act as a pathway for discharge, and the result is an
electric shock. The degree of shock you receive depends on the capacitance and
on the voltage applied to the capacitor. Such a shock could be fatal if high voltages
are present, such as in the power supply of a television set. Because the charges
can be stored in a capacitor even when the set is turned off, unplugging the televi-
sion does not make it safe to open the case and touch the components inside.

Consider a parallel-plate capacitor that is initially uncharged, such that the ini-
tial potential difference across the plates is zero. Now imagine that the capacitor is
connected to a battery and develops a maximum charge Q. (We assume that the
capacitor is charged slowly so that the problem can be considered as an electrosta-
tic system.) When the capacitor is connected to the battery, electrons in the wire
just outside the plate connected to the negative terminal move into the plate to
give it a negative charge. Electrons in the plate connected to the positive terminal
move out of the plate into the wire to give the plate a positive charge. Thus,
charges move only a small distance in the wires. 

To calculate the energy of the capacitor, we shall assume a different process—
one that does not actually occur but gives the same final result. We can make this

26.4

cording to the expression �F. The 
2.0-�F and 6.0-�F capacitors also are in parallel and have an
equivalent capacitance of 8.0 �F. Thus, the upper branch in
Figure 26.10b consists of two 4.0-�F capacitors in series,
which combine as follows:

Ceq �
1

1/2.0 �F
� 2.0 �F 

1
Ceq

�
1

C1
�

1
C2

�
1

4.0 �F
�

1
4.0 �F

�
1

2.0 �F

Ceq � C1 � C2 � 4.0 The lower branch in Figure 26.10b consists of two 8.0-�F ca-
pacitors in series, which combine to yield an equivalent ca-
pacitance of 4.0 �F. Finally, the 2.0-�F and 4.0-�F capacitors
in Figure 26.10c are in parallel and thus have an equivalent
capacitance of 6.0 �F.

Exercise Consider three capacitors having capacitances of
3.0 �F, 6.0 �F, and 12 �F. Find their equivalent capacitance
when they are connected (a) in parallel and (b) in series.

Answer (a) 21 �F; (b) 1.7 �F.

4.0
4.0

8.0
8.0

ba

(b)

4.0

ba

(c)

2.0

6.0 ba

(d)

4.0

8.0

ba

(a)

2.0

6.0

3.0

1.0

Figure 26.10 To find the equivalent capacitance of the capacitors in part (a), we
reduce the various combinations in steps as indicated in parts (b), (c), and (d), using
the series and parallel rules described in the text.

13.5
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assumption because the energy in the final configuration does not depend on the
actual charge-transfer process. We imagine that we reach in and grab a small
amount of positive charge on the plate connected to the negative terminal and ap-
ply a force that causes this positive charge to move over to the plate connected to
the positive terminal. Thus, we do work on the charge as we transfer it from one
plate to the other. At first, no work is required to transfer a small amount of
charge dq from one plate to the other.3 However, once this charge has been trans-
ferred, a small potential difference exists between the plates. Therefore, work
must be done to move additional charge through this potential difference. As
more and more charge is transferred from one plate to the other, the potential dif-
ference increases in proportion, and more work is required.

Suppose that q is the charge on the capacitor at some instant during the
charging process. At the same instant, the potential difference across the capacitor
is �V � q/C . From Section 25.2, we know that the work necessary to transfer an in-
crement of charge dq from the plate carrying charge �q to the plate carrying
charge q (which is at the higher electric potential) is

This is illustrated in Figure 26.11. The total work required to charge the capacitor
from to some final charge is

The work done in charging the capacitor appears as electric potential energy U
stored in the capacitor. Therefore, we can express the potential energy stored in a
charged capacitor in the following forms:

(26.11)

This result applies to any capacitor, regardless of its geometry. We see that for a
given capacitance, the stored energy increases as the charge increases and as the
potential difference increases. In practice, there is a limit to the maximum energy

U �
Q2

2C
� 1

2Q �V � 1
2C(�V )2

W � �Q

0
 

q
C

 dq �
1
C

 �Q

0
 q dq �

Q2

2C

q � Qq � 0

dW � �V dq �
q
C

 dq

Energy stored in a charged
capacitor

QuickLab
Here’s how to find out whether your
calculator has a capacitor to protect
values or programs during battery
changes: Store a number in your cal-
culator’s memory, remove the calcu-
lator battery for a moment, and then
quickly replace it. Was the number
that you stored preserved while the
battery was out of the calculator?
(You may want to write down any crit-
ical numbers or programs that are
stored in the calculator before trying
this!)

3 We shall use lowercase q for the varying charge on the capacitor while it is charging, to distinguish it
from uppercase Q , which is the total charge on the capacitor after it is completely charged.

V

dq

q

∆

Figure 26.11 A plot of potential difference versus charge for
a capacitor is a straight line having a slope 1/C. The work re-
quired to move charge dq through the potential difference �V
across the capacitor plates is given by the area of the shaded
rectangle. The total work required to charge the capacitor to a
final charge Q is the triangular area under the straight line,

. (Don’t forget that J/C; hence, the unit
for the area is the joule.)

1 V � 1W � 1
2Q �V
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(or charge) that can be stored because, at a sufficiently great value of �V, dis-
charge ultimately occurs between the plates. For this reason, capacitors are usually
labeled with a maximum operating voltage.

You have three capacitors and a battery. How should you combine the capacitors and the
battery in one circuit so that the capacitors will store the maximum possible energy?

We can consider the energy stored in a capacitor as being stored in the elec-
tric field created between the plates as the capacitor is charged. This description is
reasonable in view of the fact that the electric field is proportional to the charge
on the capacitor. For a parallel-plate capacitor, the potential difference is related
to the electric field through the relationship �V � Ed. Furthermore, its capaci-
tance is (Eq. 26.3). Substituting these expressions into Equation 26.11,
we obtain

(26.12)

Because the volume V (volume, not voltage!) occupied by the electric field is Ad,
the energy per unit volume known as the energy density, is

(26.13)

Although Equation 26.13 was derived for a parallel-plate capacitor, the expression
is generally valid. That is, the energy density in any electric field is propor-
tional to the square of the magnitude of the electric field at a given point.

uE � 1
2�0E2

uE � U/V � U/Ad,

U �
1
2

 
�0A

d
 (E2d2) �

1
2

 (�0Ad)E2

C � �0A/d

Quick Quiz 26.3

Energy stored in a parallel-plate
capacitor

Energy density in an electric field

This bank of capacitors stores electrical en-
ergy for use in the particle accelerator at
FermiLab, located outside Chicago. Be-
cause the electric utility company cannot
provide a large enough burst of energy to
operate the equipment, these capacitors
are slowly charged up, and then the energy
is rapidly “dumped” into the accelerator. In
this sense, the setup is much like a fire-
protection water tank on top of a building.
The tank collects water and stores it for sit-
uations in which a lot of water is needed in
a short time. 
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Rewiring Two Charged CapacitorsEXAMPLE 26.5

As noted earlier, 
To express �Vf in terms of the given quantities and

we substitute the value of Q from Equation (1) to obtain

(b) Find the total energy stored in the capacitors before
and after the switches are closed and the ratio of the final en-
ergy to the initial energy.

Solution Before the switches are closed, the total energy
stored in the capacitors is

After the switches are closed, the total energy stored in the
capacitors is

Using Equation (1), we can express this as

Therefore, the ratio of the final energy stored to the initial
energy stored is

� C1 � C2

C1 � C2
�

2Uf

Ui
�

1
2

 
(C1 � C2)2(�Vi)2

(C1 � C2)

1
2

 (C1 � C2)(�Vi)2
�

1
2

 
(C1 � C2)2(�Vi)2

(C1 � C2)
Uf �

1
2

 
Q2

(C1 � C2)
�  

 �
1
2

 (C1 � C2)� Q
C1 � C2

�
2

�
1
2

 
Q2

C1 � C2
 

Uf � 1
2C1(�Vf)2 � 1

2C2(�Vf)2 � 1
2 (C1 � C2)(�Vf)2

1
2 (C1 � C2)(�Vi)2Ui � 1

2C1(�Vi)2 � 1
2C2(�Vi)2 �

�Vf � � C1 � C2

C1 � C2
� �Vi

�Vi ,
C1, C2,

�V1f � �V2 f � �Vf .

�V2 f �
Q 2 f

C2
�

Q � C2

C1 � C2
�

C2
�

Q

C1 � C2

Two capacitors C1 and C2 (where are charged to
the same initial potential difference �Vi , but with opposite
polarity. The charged capacitors are removed from the bat-
tery, and their plates are connected as shown in Figure
26.12a. The switches S1 and S2 are then closed, as shown in
Figure 26.12b. (a) Find the final potential difference �Vf be-
tween a and b after the switches are closed.

Solution Let us identify the left-hand plates of the capaci-
tors as an isolated system because they are not connected to
the right-hand plates by conductors. The charges on the left-
hand plates before the switches are closed are

The negative sign for Q 2i is necessary because the charge on
the left plate of capacitor C2 is negative. The total charge Q
in the system is

(1)

After the switches are closed, the total charge in the system
remains the same:

(2)

The charges redistribute until the entire system is at the same
potential �Vf . Thus, the final potential difference across C1
must be the same as the final potential difference across C2 .
To satisfy this requirement, the charges on the capacitors af-
ter the switches are closed are

Dividing the first equation by the second, we have

(3)

Combining Equations (2) and (3), we obtain

Using Equation (3) to find Q 1 f in terms of Q , we have

Finally, using Equation 26.1 to find the voltage across each ca-
pacitor, we find that

�V1f �
Q 1f

C1
�

Q � C1

C1 � C2
�

C1
�

Q

C1 � C2

Q 1f �
C1

C2
 Q 2f �

C1

C2
 Q � C2

C1 � C2
� � Q � C1

C1 � C2
�

 Q 2 f � Q � C2

C1 � C2
�

Q � Q 1f � Q 2 f �
C1

C2
 Q 2f � Q 2f � Q 2f �1 �

C1

C2
�

Q 1f �
C1

C2
 Q 2f

Q 1f

Q 2f
�

C1 �Vf

C2 �Vf
�

C1

C2
 

Q 1f � C1 �Vf  and  Q 2f � C2 �Vf

Q � Q 1f � Q 2f

Q � Q 1i � Q 2i � (C1 � C2)�Vi

Q 1i � C1 �Vi  and  Q 2i � �C2 �Vi

C1 
 C2)

+ –

Q1i
+

ba

(a)

–
C1

Q 2i
– +

C2

S1 S2

+

ba

(b)

–

S1 S2

Q1f
C1

Q 2f C2

Figure 26.12
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You charge a parallel-plate capacitor, remove it from the battery, and prevent the wires con-
nected to the plates from touching each other. When you pull the plates apart, do the fol-
lowing quantities increase, decrease, or stay the same? (a) C ; (b) Q ; (c) E between the
plates; (d) �V ; (e) energy stored in the capacitor.

Repeat Quick Quiz 26.4, but this time answer the questions for the situation in which the
battery remains connected to the capacitor while you pull the plates apart.

One device in which capacitors have an important role is the defibrillator (Fig.
26.13). Up to 360 J is stored in the electric field of a large capacitor in a defibrilla-
tor when it is fully charged. The defibrillator can deliver all this energy to a patient
in about 2 ms. (This is roughly equivalent to 3 000 times the power output of a 
60-W lightbulb!) The sudden electric shock stops the fibrillation (random contrac-
tions) of the heart that often accompanies heart attacks and helps to restore the
correct rhythm.

A camera’s flash unit also uses a capacitor, although the total amount of en-
ergy stored is much less than that stored in a defibrillator. After the flash unit’s ca-
pacitor is charged, tripping the camera’s shutter causes the stored energy to be
sent through a special lightbulb that briefly illuminates the subject being pho-
tographed.

Quick Quiz 26.5

Quick Quiz 26.4

web
To learn more about defibrillators, visit
www.physiocontrol.com

This ratio is less than unity, indicating that the final energy 
is less than the initial energy. At first, you might think that
the law of energy conservation has been violated, but this 

is not the case. The “missing” energy is radiated away in 
the form of electromagnetic waves, as we shall see in Chap-
ter 34.

Figure 26.13 In a hospital
or at an emergency scene, you
might see a patient being re-
vived with a defibrillator. The
defibrillator’s paddles are ap-
plied to the patient’s chest,
and an electric shock is sent
through the chest cavity. The
aim of this technique is to re-
store the heart’s normal
rhythm pattern.
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CAPACITORS WITH DIELECTRICS
A dielectric is a nonconducting material, such as rubber, glass, or waxed paper.
When a dielectric is inserted between the plates of a capacitor, the capacitance in-
creases. If the dielectric completely fills the space between the plates, the capaci-
tance increases by a dimensionless factor �, which is called the dielectric con-
stant. The dielectric constant is a property of a material and varies from one
material to another. In this section, we analyze this change in capacitance in terms
of electrical parameters such as electric charge, electric field, and potential differ-
ence; in Section 26.7, we shall discuss the microscopic origin of these changes.

We can perform the following experiment to illustrate the effect of a dielectric
in a capacitor: Consider a parallel-plate capacitor that without a dielectric has a
charge Q 0 and a capacitance C 0 . The potential difference across the capacitor is

Figure 26.14a illustrates this situation. The potential difference is
measured by a voltmeter, which we shall study in greater detail in Chapter 28. Note
that no battery is shown in the figure; also, we must assume that no charge can
flow through an ideal voltmeter, as we shall learn in Section 28.5. Hence, there is
no path by which charge can flow and alter the charge on the capacitor. If a dielec-
tric is now inserted between the plates, as shown in Figure 26.14b, the voltmeter
indicates that the voltage between the plates decreases to a value �V. The voltages
with and without the dielectric are related by the factor � as follows:

Because �V � �V0 , we see that 
Because the charge Q 0 on the capacitor does not change, we conclude that

the capacitance must change to the value

(26.14)

That is, the capacitance increases by the factor � when the dielectric completely fills
the region between the plates.4 For a parallel-plate capacitor, where 
(Eq. 26.3), we can express the capacitance when the capacitor is filled with a di-
electric as

(26.15)

From Equations 26.3 and 26.15, it would appear that we could make the ca-
pacitance very large by decreasing d, the distance between the plates. In practice,
the lowest value of d is limited by the electric discharge that could occur through
the dielectric medium separating the plates. For any given separation d, the maxi-
mum voltage that can be applied to a capacitor without causing a discharge de-
pends on the dielectric strength (maximum electric field) of the dielectric. If the
magnitude of the electric field in the dielectric exceeds the dielectric strength,
then the insulating properties break down and the dielectric begins to conduct.
Insulating materials have values of � greater than unity and dielectric strengths

C � � 
�0A
d

C0 � �0A/d

C � �C0

C �
Q 0

�V
�

Q 0

�V0/�
� � 

Q 0

�V0

� 
 1.

�V �
�V0

�

�V0 � Q 0/C0 .

26.5

The capacitance of a filled
capacitor is greater than that of an
empty one by a factor �.

4 If the dielectric is introduced while the potential difference is being maintained constant by a battery,
the charge increases to a value Q � �Q 0 . The additional charge is supplied by the battery, and the ca-
pacitance again increases by the factor �.
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greater than that of air, as Table 26.1 indicates. Thus, we see that a dielectric pro-
vides the following advantages:

• Increase in capacitance
• Increase in maximum operating voltage
• Possible mechanical support between the plates, which allows the plates to be

close together without touching, thereby decreasing d and increasing C

C0 Q 0

+
–

C Q 0

Dielectric

∆V∆V0

+
–

(a) (b)

Figure 26.14 A charged capacitor (a) before and (b) after insertion of a dielectric between the
plates. The charge on the plates remains unchanged, but the potential difference decreases from
�V0 to �V � �V0/�. Thus, the capacitance increases from C0 to �C0 .

TABLE 26.1 Dielectric Constants and Dielectric Strengths
of Various Materials at Room Temperature

Dielectric Dielectric
Material Constant � Strengtha (V/m)

Air (dry) 1.000 59 3 	 106

Bakelite 4.9 24 	 106

Fused quartz 3.78 8 	 106

Neoprene rubber 6.7 12 	 106

Nylon 3.4 14 	 106

Paper 3.7 16 	 106

Polystyrene 2.56 24 	 106

Polyvinyl chloride 3.4 40 	 106

Porcelain 6 12 	 106

Pyrex glass 5.6 14 	 106

Silicone oil 2.5 15 	 106

Strontium titanate 233 8 	 106

Teflon 2.1 60 	 106

Vacuum 1.000 00 —
Water 80 —

a The dielectric strength equals the maximum electric field that can exist in a
dielectric without electrical breakdown. Note that these values depend
strongly on the presence of impurities and flaws in the materials.
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Types of Capacitors

Commercial capacitors are often made from metallic foil interlaced with thin
sheets of either paraffin-impregnated paper or Mylar as the dielectric material.
These alternate layers of metallic foil and dielectric are rolled into a cylinder to
form a small package (Fig. 26.15a). High-voltage capacitors commonly consist of a
number of interwoven metallic plates immersed in silicone oil (Fig. 26.15b). Small
capacitors are often constructed from ceramic materials. Variable capacitors (typi-
cally 10 to 500 pF) usually consist of two interwoven sets of metallic plates, one
fixed and the other movable, and contain air as the dielectric.

Often, an electrolytic capacitor is used to store large amounts of charge at rela-
tively low voltages. This device, shown in Figure 26.15c, consists of a metallic foil in
contact with an electrolyte—a solution that conducts electricity by virtue of the mo-
tion of ions contained in the solution. When a voltage is applied between the foil
and the electrolyte, a thin layer of metal oxide (an insulator) is formed on the foil,

(a) Kirlian photograph created by dropping a steel ball into a high-energy electric field. Kirlian
photography is also known as electrophotography. (b) Sparks from static electricity discharge be-
tween a fork and four electrodes. Many sparks were used to create this image because only one
spark forms for a given discharge. Note that the bottom prong discharges to both electrodes at
the bottom right. The light of each spark is created by the excitation of gas atoms along its path.

(a) (b)

Metal foil

Paper

Plates

Oil

Electrolyte

Case

Metallic foil + oxide layer

Contacts

(a) (b) (c)

Figure 26.15 Three commercial capacitor designs. (a) A tubular capacitor, whose plates are
separated by paper and then rolled into a cylinder. (b) A high-voltage capacitor consisting of
many parallel plates separated by insulating oil. (c) An electrolytic capacitor.
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A Paper-Filled CapacitorEXAMPLE 26.6
the paper is 1.0 mm, the maximum voltage that can be ap-
plied before breakdown is

Hence, the maximum charge is

Exercise What is the maximum energy that can be stored
in the capacitor?

Answer 2.6 	 10�3 J.

0.32 �CQ max � C �Vmax � (20 	 10�12 F)(16 	 103 V) �

 � 16 	 103 V

�Vmax � Emaxd � (16 	 106 V/m)(1.0 	 10�3 m)

A parallel-plate capacitor has plates of dimensions 2.0 cm by
3.0 cm separated by a 1.0-mm thickness of paper. (a) Find its
capacitance.

Solution Because � � 3.7 for paper (see Table 26.1), we
have

(b) What is the maximum charge that can be placed on
the capacitor?

Solution From Table 26.1 we see that the dielectric
strength of paper is 16 	 106 V/m. Because the thickness of

20 pF � 20 	 10�12 F �

C � � 
�0A

d
� 3.7(8.85 	 10�12 C2/N
m2)� 6.0 	 10�4 m2

1.0 	 10�3 m �

and this layer serves as the dielectric. Very large values of capacitance can be ob-
tained in an electrolytic capacitor because the dielectric layer is very thin, and thus
the plate separation is very small.

Electrolytic capacitors are not reversible as are many other capacitors—they
have a polarity, which is indicated by positive and negative signs marked on the de-
vice. When electrolytic capacitors are used in circuits, the polarity must be aligned
properly. If the polarity of the applied voltage is opposite that which is intended,
the oxide layer is removed and the capacitor conducts electricity instead of storing
charge.

If you have ever tried to hang a picture, you know it can be difficult to locate a wooden stud
in which to anchor your nail or screw. A carpenter’s stud-finder is basically a capacitor with
its plates arranged side by side instead of facing one another, as shown in Figure 26.16.
When the device is moved over a stud, does the capacitance increase or decrease?

Quick Quiz 26.6

Capacitor
plates

Stud-finder

Wall board

Stud

(b)(a)

Figure 26.16 A stud-finder. (a)The materials between the plates of the capacitor are the wall-
board and air. (b) When the capacitor moves across a stud in the wall, the materials between the
plates are the wallboard and the wood. The change in the dielectric constant causes a signal light
to illuminate.
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Energy Stored Before and AfterEXAMPLE 26.7
Exercise Suppose that the capacitance in the absence of a
dielectric is 8.50 pF and that the capacitor is charged to a po-
tential difference of 12.0 V. If the battery is disconnected and
a slab of polystyrene is inserted between the plates, what is

Answer 373 pJ.

U0 � U  ?

A parallel-plate capacitor is charged with a battery to a charge
Q 0 , as shown in Figure 26.17a. The battery is then removed,
and a slab of material that has a dielectric constant � is in-
serted between the plates, as shown in Figure 26.17b. Find
the energy stored in the capacitor before and after the dielec-
tric is inserted.

Solution The energy stored in the absence of the dielec-
tric is (see Eq. 26.11):

After the battery is removed and the dielectric inserted, the
charge on the capacitor remains the same. Hence, the energy
stored in the presence of the dielectric is

But the capacitance in the presence of the dielectric is
so U becomes

Because � 
 1, the final energy is less than the initial energy.
We can account for the “missing” energy by noting that the
dielectric, when inserted, gets pulled into the device (see the
following discussion and Figure 26.18). An external agent
must do negative work to keep the dielectric from accelerat-
ing. This work is simply the difference (Alternatively,
the positive work done by the system on the external agent is
U0 � U.)

U � U0 .

U �
Q 0 

2

2�C0
�

U0

�

C � �C0 ,

U �
Q 0 

2

2C

U0 �
Q 0 

2

2C0

As we have seen, the energy of a capacitor not connected to a battery is low-
ered when a dielectric is inserted between the plates; this means that negative
work is done on the dielectric by the external agent inserting the dielectric into
the capacitor. This, in turn, implies that a force that draws it into the capacitor
must be acting on the dielectric. This force originates from the nonuniform na-
ture of the electric field of the capacitor near its edges, as indicated in Figure
26.18. The horizontal component of this fringe field acts on the induced charges on
the surface of the dielectric, producing a net horizontal force directed into the
space between the capacitor plates.

A fully charged parallel-plate capacitor remains connected to a battery while you slide a di-
electric between the plates. Do the following quantities increase, decrease, or stay the same?
(a) C ; (b) Q ; (c) E between the plates; (d) �V ; (e) energy stored in the capacitor.

Quick Quiz 26.7

Figure 26.17

–+

Q 0
C 0

∆V 0

(a)

Dielectric

–+
Q 0

(b)


