Definition of capacitance

Figure 26.1 A capacitor consists of two conductors carrying charges of equal magnitude but opposite sign.

In this chapter, we discuss capacitors-devices that store electric charge. Capacitors are commonly used in a variety of electric circuits. For instance, they are used to tune the frequency of radio receivers, as filters in power supplies, to eliminate sparking in automobile ignition systems, and as energy-storing devices in electronic flash units.

A capacitor consists of two conductors separated by an insulator. We shall see that the capacitance of a given capacitor depends on its geometry and on the material - called a dielectric - that separates the conductors.

26.1 DEFINITION OF CAPACITANCE

Consider two conductors carrying charges of equal magnitude but of opposite 13.5 sign, as shown in Figure 26.1. Such a combination of two conductors is called a capacitor. The conductors are called plates. A potential difference ΔV exists between the conductors due to the presence of the charges. Because the unit of potential difference is the volt, a potential difference is often called a voltage. We shall use this term to describe the potential difference across a circuit element or between two points in space.

What determines how much charge is on the plates of a capacitor for a given voltage? In other words, what is the capacity of the device for storing charge at a particular value of ΔV ? Experiments show that the quantity of charge Q on a capacitor ${ }^{1}$ is linearly proportional to the potential difference between the conductors; that is, $Q \propto \Delta V$. The proportionality constant depends on the shape and separation of the conductors. ${ }^{2}$ We can write this relationship as $Q=C \Delta V$ if we define capacitance as follows:

The capacitance C of a capacitor is the ratio of the magnitude of the charge on either conductor to the magnitude of the potential difference between them:

$$
\begin{equation*}
C \equiv \frac{Q}{\Delta V} \tag{26.1}
\end{equation*}
$$

Note that by definition capacitance is always a positive quantity. Furthermore, the potential difference ΔV is always expressed in Equation 26.1 as a positive quantity. Because the potential difference increases linearly with the stored charge, the ratio $Q / \Delta V$ is constant for a given capacitor. Therefore, capacitance is a measure of a capacitor's ability to store charge and electric potential energy.

From Equation 26.1, we see that capacitance has SI units of coulombs per volt. The SI unit of capacitance is the farad (F), which was named in honor of Michael Faraday:

$$
1 \mathrm{~F}=1 \mathrm{C} / \mathrm{V}
$$

The farad is a very large unit of capacitance. In practice, typical devices have capacitances ranging from microfarads $\left(10^{-6} \mathrm{~F}\right)$ to picofarads $\left(10^{-12} \mathrm{~F}\right)$. For practical purposes, capacitors often are labeled " mF " for microfarads and "mmF" for micromicrofarads or, equivalently, " pF " for picofarads.

[^0]

A collection of capacitors used in a variety of applications.

Let us consider a capacitor formed from a pair of parallel plates, as shown in Figure 26.2. Each plate is connected to one terminal of a battery (not shown in Fig. 26.2), which acts as a source of potential difference. If the capacitor is initially uncharged, the battery establishes an electric field in the connecting wires when the connections are made. Let us focus on the plate connected to the negative terminal of the battery. The electric field applies a force on electrons in the wire just outside this plate; this force causes the electrons to move onto the plate. This movement continues until the plate, the wire, and the terminal are all at the same electric potential. Once this equilibrium point is attained, a potential difference no longer exists between the terminal and the plate, and as a result no electric field is present in the wire, and the movement of electrons stops. The plate now carries a negative charge. A similar process occurs at the other capacitor plate, with electrons moving from the plate to the wire, leaving the plate positively charged. In this final configuration, the potential difference across the capacitor plates is the same as that between the terminals of the battery.

Suppose that we have a capacitor rated at 4 pF . This rating means that the capacitor can store 4 pC of charge for each volt of potential difference between the two conductors. If a $9-\mathrm{V}$ battery is connected across this capacitor, one of the conductors ends up with a net charge of -36 pC and the other ends up with a net charge of +36 pC .

26.2 CALCULATING CAPACITANCE

We can calculate the capacitance of a pair of oppositely charged conductors in the following manner: We assume a charge of magnitude Q, and we calculate the potential difference using the techniques described in the preceding chapter. We then use the expression $C=Q / \Delta V$ to evaluate the capacitance. As we might expect, we can perform this calculation relatively easily if the geometry of the capacitor is simple.

We can calculate the capacitance of an isolated spherical conductor of radius R and charge Q if we assume that the second conductor making up the capacitor is a concentric hollow sphere of infinite radius. The electric potential of the sphere of radius R is simply $k_{e} Q / R$, and setting $V=0$ at infinity as usual, we have

$$
\begin{equation*}
C=\frac{Q}{\Delta V}=\frac{Q}{k_{e} Q / R}=\frac{R}{k_{e}}=4 \pi \epsilon_{0} R \tag{26.2}
\end{equation*}
$$

This expression shows that the capacitance of an isolated charged sphere is proportional to its radius and is independent of both the charge on the sphere and the potential difference.

Figure 26.2 A parallel-plate capacitor consists of two parallel conducting plates, each of area A, separated by a distance d. When the capacitor is charged, the plates carry equal amounts of charge. One plate carries positive charge, and the other carries negative charge.

QuickLab

Roll some socks into balls and stuff them into a shoebox. What determines how many socks fit in the box? Relate how hard you push on the socks to ΔV for a capacitor. How does the size of the box influence its "sock capacity"?

The capacitance of a pair of conductors depends on the geometry of the conductors. Let us illustrate this with three familiar geometries, namely, parallel plates, concentric cylinders, and concentric spheres. In these examples, we assume that the charged conductors are separated by a vacuum. The effect of a dielectric material placed between the conductors is treated in Section 26.5.

Parallel-Plate Capacitors

Two parallel metallic plates of equal area A are separated by a distance d, as shown in Figure 26.2. One plate carries a charge Q, and the other carries a charge $-Q$. Let us consider how the geometry of these conductors influences the capacity of the combination to store charge. Recall that charges of like sign repel one another. As a capacitor is being charged by a battery, electrons flow into the negative plate and out of the positive plate. If the capacitor plates are large, the accumulated charges are able to distribute themselves over a substantial area, and the amount of charge that can be stored on a plate for a given potential difference increases as the plate area is increased. Thus, we expect the capacitance to be proportional to the plate area A.

Now let us consider the region that separates the plates. If the battery has a constant potential difference between its terminals, then the electric field between the plates must increase as d is decreased. Let us imagine that we move the plates closer together and consider the situation before any charges have had a chance to move in response to this change. Because no charges have moved, the electric field between the plates has the same value but extends over a shorter distance. Thus, the magnitude of the potential difference between the plates $\Delta V=E d$ (Eq. 25.6) is now smaller. The difference between this new capacitor voltage and the terminal voltage of the battery now exists as a potential difference across the wires connecting the battery to the capacitor. This potential difference results in an electric field in the wires that drives more charge onto the plates, increasing the potential difference between the plates. When the potential difference between the plates again matches that of the battery, the potential difference across the wires falls back to zero, and the flow of charge stops. Thus, moving the plates closer together causes the charge on the capacitor to increase. If d is increased, the charge decreases. As a result, we expect the device's capacitance to be inversely proportional to d.

Figure 26.3 (a) The electric field between the plates of a parallel-plate capacitor is uniform near the center but nonuniform near the edges. (b) Electric field pattern of two oppositely charged conducting parallel plates. Small pieces of thread on an oil surface align with the electric field.

We can verify these physical arguments with the following derivation. The surface charge density on either plate is $\sigma=Q / A$. If the plates are very close together (in comparison with their length and width), we can assume that the electric field is uniform between the plates and is zero elsewhere. According to the last paragraph of Example 24.8, the value of the electric field between the plates is

$$
E=\frac{\sigma}{\epsilon_{0}}=\frac{Q}{\epsilon_{0} A}
$$

Because the field between the plates is uniform, the magnitude of the potential difference between the plates equals $E d$ (see Eq. 25.6); therefore,

$$
\Delta V=E d=\frac{Q d}{\epsilon_{0} A}
$$

Substituting this result into Equation 26.1, we find that the capacitance is

$$
\begin{align*}
& C=\frac{Q}{\Delta V}=\frac{Q}{Q d / \epsilon_{0} A} \\
& C=\frac{\epsilon_{0} A}{d} \tag{26.3}
\end{align*}
$$

That is, the capacitance of a parallel-plate capacitor is proportional to the area of its plates and inversely proportional to the plate separation, just as we expect from our conceptual argument.

A careful inspection of the electric field lines for a parallel-plate capacitor reveals that the field is uniform in the central region between the plates, as shown in Figure 26.3a. However, the field is nonuniform at the edges of the plates. Figure 26.3 b is a photograph of the electric field pattern of a parallel-plate capacitor. Note the nonuniform nature of the electric field at the ends of the plates. Such end effects can be neglected if the plate separation is small compared with the length of the plates.

Quick Quiz 26. 1

Many computer keyboard buttons are constructed of capacitors, as shown in Figure 26.4. When a key is pushed down, the soft insulator between the movable plate and the fixed plate is compressed. When the key is pressed, the capacitance (a) increases, (b) decreases, or (c) changes in a way that we cannot determine because the complicated electric circuit connected to the keyboard button may cause a change in ΔV.

Figure 26.4 One type of computer keyboard button.

EXAMPLE 26.1 Parallel-Plate Capacitor

A parallel-plate capacitor has an area $A=2.00 \times 10^{-4} \mathrm{~m}^{2}$ and a plate separation $d=1.00 \mathrm{~mm}$. Find its capacitance.

$$
=1.77 \times 10^{-12} \mathrm{~F}=1.77 \mathrm{pF}
$$

Solution From Equation 26.3, we find that

$$
C=\epsilon_{0} \frac{A}{d}=\left(8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N} \cdot \mathrm{~m}^{2}\right)\left(\frac{2.00 \times 10^{-4} \mathrm{~m}^{2}}{1.00 \times 10^{-3} \mathrm{~m}}\right)
$$

Exercise What is the capacitance for a plate separation of 3.00 mm ?

Answer 0.590 pF .

Cylindrical and Spherical Capacitors

From the definition of capacitance, we can, in principle, find the capacitance of any geometric arrangement of conductors. The following examples demonstrate the use of this definition to calculate the capacitance of the other familiar geometries that we mentioned: cylinders and spheres.

EXAMPLE 26.2 The Cylindrical Capacitor

A solid cylindrical conductor of radius a and charge Q is coaxial with a cylindrical shell of negligible thickness, radius $b>a$, and charge $-Q$ (Fig. 26.5a). Find the capacitance of this cylindrical capacitor if its length is ℓ.

Solution It is difficult to apply physical arguments to this configuration, although we can reasonably expect the capacitance to be proportional to the cylinder length ℓ for the same reason that parallel-plate capacitance is proportional to plate area: Stored charges have more room in which to be distributed. If we assume that ℓ is much greater than a and b, we can neglect end effects. In this case, the electric field is perpendicular to the long axis of the cylinders and is confined to the region between them (Fig. 26.5b). We must first calculate the potential difference between the two cylinders, which is given in general by

$$
V_{b}-V_{a}=-\int_{a}^{b} \mathbf{E} \cdot d \mathbf{s}
$$

where \mathbf{E} is the electric field in the region $a<r<b$. In Chapter 24 , we showed using Gauss's law that the magnitude of the electric field of a cylindrical charge distribution having linear charge density λ is $E_{r}=2 k_{e} \lambda / r$ (Eq. 24.7). The same result applies here because, according to Gauss's law, the charge on the outer cylinder does not contribute to the electric field inside it. Using this result and noting from Figure 26.5 b that \mathbf{E} is along r, we find that

$$
V_{b}-V_{a}=-\int_{a}^{b} E_{r} d r=-2 k_{e} \lambda \int_{a}^{b} \frac{d r}{r}=-2 k_{e} \lambda \ln \left(\frac{b}{a}\right)
$$

Substituting this result into Equation 26.1 and using the fact that $\lambda=Q / \ell$, we obtain

$$
\begin{equation*}
C=\frac{Q}{\Delta V}=\frac{Q}{\frac{2 k_{e} Q}{\ell} \ln \left(\frac{b}{a}\right)}=\frac{\ell}{2 k_{e} \ln \left(\frac{b}{a}\right)} \tag{26.4}
\end{equation*}
$$

where ΔV is the magnitude of the potential difference, given
by $\Delta V=\left|V_{b}-V_{a}\right|=2 k_{e} \lambda \ln (b / a)$, a positive quantity. As predicted, the capacitance is proportional to the length of the cylinders. As we might expect, the capacitance also depends on the radii of the two cylindrical conductors. From Equation 26.4, we see that the capacitance per unit length of a combination of concentric cylindrical conductors is

$$
\begin{equation*}
\frac{C}{\ell}=\frac{1}{2 k_{e} \ln \left(\frac{b}{a}\right)} \tag{26.5}
\end{equation*}
$$

An example of this type of geometric arrangement is a coaxial cable, which consists of two concentric cylindrical conductors separated by an insulator. The cable carries electrical signals in the inner and outer conductors. Such a geometry is especially useful for shielding the signals from any possible external influences.

Figure 26.5 (a) A cylindrical capacitor consists of a solid cylindrical conductor of radius a and length ℓ surrounded by a coaxial cylindrical shell of radius b. (b) End view. The dashed line represents the end of the cylindrical gaussian surface of radius r and length ℓ.

EXAMPLE 26.3 The Spherical Capacitor

A spherical capacitor consists of a spherical conducting shell of radius b and charge $-Q$ concentric with a smaller conducting sphere of radius a and charge Q (Fig. 26.6). Find the capacitance of this device.

Solution As we showed in Chapter 24, the field outside a spherically symmetric charge distribution is radial and given by the expression $k_{e} Q / r^{2}$. In this case, this result applies to the field between the spheres $(a<r<b)$. From

Gauss's law we see that only the inner sphere contributes to this field. Thus, the potential difference between the spheres is

$$
\begin{aligned}
V_{b}-V_{a} & =-\int_{a}^{b} E_{r} d r=-k_{e} Q \int_{a}^{b} \frac{d r}{r^{2}}=k_{e} Q\left[\frac{1}{r}\right]_{a}^{b} \\
& =k_{e} Q\left(\frac{1}{b}-\frac{1}{a}\right)
\end{aligned}
$$

The magnitude of the potential difference is

$$
\Delta V=\left|V_{b}-V_{a}\right|=k_{e} Q \frac{(b-a)}{a b}
$$

Substituting this value for ΔV into Equation 26.1, we obtain

$$
\begin{equation*}
C=\frac{Q}{\Delta V}=\frac{a b}{k_{e}(b-a)} \tag{26.6}
\end{equation*}
$$

Figure 26.6 A spherical capacitor consists of an inner sphere of radius a surrounded by a concentric spherical shell of radius b. The electric field between the spheres is directed radially outward when the inner sphere is positively charged.

Exercise Show that as the radius b of the outer sphere approaches infinity, the capacitance approaches the value $a / k_{e}=4 \pi \epsilon_{0} a$.

Quick Quiz 26.2

What is the magnitude of the electric field in the region outside the spherical capacitor described in Example 26.3?

26.3 COMBINATIONS OF CAPACITORS

Two or more capacitors often are combined in electric circuits. We can calculate the equivalent capacitance of certain combinations using methods described in this section. The circuit symbols for capacitors and batteries, as well as the color codes used for them in this text, are given in Figure 26.7. The symbol for the capacitor reflects the geometry of the most common model for a capacitor-a pair of parallel plates. The positive terminal of the battery is at the higher potential and is represented in the circuit symbol by the longer vertical line.

Parallel Combination

Two capacitors connected as shown in Figure 26.8a are known as a parallel combination of capacitors. Figure 26.8 b shows a circuit diagram for this combination of capacitors. The left plates of the capacitors are connected by a conducting wire to the positive terminal of the battery and are therefore both at the same electric potential as the positive terminal. Likewise, the right plates are connected to the negative terminal and are therefore both at the same potential as the negative terminal. Thus, the individual potential differences across capacitors connected in parallel are all the same and are equal to the potential difference applied across the combination.

In a circuit such as that shown in Figure 26.8, the voltage applied across the combination is the terminal voltage of the battery. Situations can occur in which

Figure 26.7 Circuit symbols for capacitors, batteries, and switches. Note that capacitors are in blue and batteries and switches are in red.

Figure 26.8 (a) A parallel combination of two capacitors in an electric circuit in which the potential difference across the battery terminals is ΔV. (b) The circuit diagram for the parallel combination. (c) The equivalent capacitance is $C_{\text {eq }}=C_{1}+C_{2}$.
the parallel combination is in a circuit with other circuit elements; in such situations, we must determine the potential difference across the combination by analyzing the entire circuit.

When the capacitors are first connected in the circuit shown in Figure 26.8, electrons are transferred between the wires and the plates; this transfer leaves the left plates positively charged and the right plates negatively charged. The energy source for this charge transfer is the internal chemical energy stored in the battery, which is converted to electric potential energy associated with the charge separation. The flow of charge ceases when the voltage across the capacitors is equal to that across the battery terminals. The capacitors reach their maximum charge when the flow of charge ceases. Let us call the maximum charges on the two capacitors Q_{1} and Q_{2}. The total charge Q stored by the two capacitors is

$$
\begin{equation*}
Q=Q_{1}+Q_{2} \tag{26.7}
\end{equation*}
$$

That is, the total charge on capacitors connected in parallel is the sum of the charges on the individual capacitors. Because the voltages across the capacitors are the same, the charges that they carry are

$$
Q_{1}=C_{1} \Delta V \quad Q_{2}=C_{2} \Delta V
$$

Suppose that we wish to replace these two capacitors by one equivalent capacitor having a capacitance $C_{\text {eq }}$, as shown in Figure 26.8c. The effect this equivalent capacitor has on the circuit must be exactly the same as the effect of the combination of the two individual capacitors. That is, the equivalent capacitor must store Q units of charge when connected to the battery. We can see from Figure 26.8c that the voltage across the equivalent capacitor also is ΔV because the equivalent capac-
itor is connected directly across the battery terminals. Thus, for the equivalent capacitor,

$$
Q=C_{\mathrm{eq}} \Delta V
$$

Substituting these three relationships for charge into Equation 26.7, we have

$$
\begin{aligned}
C_{\mathrm{eq}} \Delta V & =C_{1} \Delta V+C_{2} \Delta V \\
C_{\mathrm{eq}} & =C_{1}+C_{2} \quad\binom{\text { parallel }}{\text { combination }}
\end{aligned}
$$

If we extend this treatment to three or more capacitors connected in parallel, we find the equivalent capacitance to be

$$
\begin{equation*}
C_{\mathrm{eq}}=C_{1}+C_{2}+C_{3}+\cdots \quad \text { (parallel combination) } \tag{26.8}
\end{equation*}
$$

Thus, the equivalent capacitance of a parallel combination of capacitors is greater than any of the individual capacitances. This makes sense because we are essentially combining the areas of all the capacitor plates when we connect them with conducting wire.

Series Combination

Two capacitors connected as shown in Figure 26.9a are known as a series combination of capacitors. The left plate of capacitor 1 and the right plate of capacitor 2 are connected to the terminals of a battery. The other two plates are connected to each other and to nothing else; hence, they form an isolated conductor that is initially uncharged and must continue to have zero net charge. To analyze this combination, let us begin by considering the uncharged capacitors and follow what happens just after a battery is connected to the circuit. When the battery is con-

(a)

(b)

Figure 26.9 (a) A series combination of two capacitors. The charges on the two capacitors are the same. (b) The capacitors replaced by a single equivalent capacitor. The equivalent capacitance can be calculated from the relationship

$$
\frac{1}{C_{\mathrm{eq}}}=\frac{1}{C_{1}}+\frac{1}{C_{2}}
$$

nected, electrons are transferred out of the left plate of C_{1} and into the right plate of C_{2}. As this negative charge accumulates on the right plate of C_{2}, an equivalent amount of negative charge is forced off the left plate of C_{2}, and this left plate therefore has an excess positive charge. The negative charge leaving the left plate of C_{2} travels through the connecting wire and accumulates on the right plate of C_{1}. As a result, all the right plates end up with a charge $-Q$, and all the left plates end up with a charge $+Q$. Thus, the charges on capacitors connected in series are the same.

From Figure 26.9a, we see that the voltage ΔV across the battery terminals is split between the two capacitors:

$$
\begin{equation*}
\Delta V=\Delta V_{1}+\Delta V_{2} \tag{26.9}
\end{equation*}
$$

where ΔV_{1} and ΔV_{2} are the potential differences across capacitors C_{1} and C_{2}, respectively. In general, the total potential difference across any number of capacitors connected in series is the sum of the potential differences across the individual capacitors.

Suppose that an equivalent capacitor has the same effect on the circuit as the series combination. After it is fully charged, the equivalent capacitor must have a charge of $-Q$ on its right plate and a charge of $+Q$ on its left plate. Applying the definition of capacitance to the circuit in Figure 26.9 b, we have

$$
\Delta V=\frac{Q}{C_{\mathrm{eq}}}
$$

Because we can apply the expression $Q=C \Delta V$ to each capacitor shown in Figure 26.9a, the potential difference across each is

$$
\Delta V_{1}=\frac{Q}{C_{1}} \quad \Delta V_{2}=\frac{Q}{C_{2}}
$$

Substituting these expressions into Equation 26.9 and noting that $\Delta V=Q / C_{\text {eq }}$, we have

$$
\frac{Q}{C_{\mathrm{eq}}}=\frac{Q}{C_{1}}+\frac{Q}{C_{2}}
$$

Canceling Q, we arrive at the relationship

$$
\frac{1}{C_{\mathrm{eq}}}=\frac{1}{C_{1}}+\frac{1}{C_{2}} \quad\binom{\text { series }}{\text { combination }}
$$

When this analysis is applied to three or more capacitors connected in series, the relationship for the equivalent capacitance is

$$
\begin{equation*}
\frac{1}{C_{\mathrm{eq}}}=\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}}+\cdots \quad\binom{\text { series }}{\text { combination }} \tag{26.10}
\end{equation*}
$$

This demonstrates that the equivalent capacitance of a series combination is always less than any individual capacitance in the combination.

EXAMPLE 26.4 Equivalent Capacitance

Find the equivalent capacitance between a and b for the combination of capacitors shown in Figure 26.10a. All capacitances are in microfarads.

Solution Using Equations 26.8 and 26.10, we reduce the combination step by step as indicated in the figure. The $1.0-\mu \mathrm{F}$ and $3.0-\mu \mathrm{F}$ capacitors are in parallel and combine ac-
cording to the expression $C_{\mathrm{eq}}=C_{1}+C_{2}=4.0 \mu \mathrm{~F}$. The $2.0-\mu \mathrm{F}$ and $6.0-\mu \mathrm{F}$ capacitors also are in parallel and have an equivalent capacitance of $8.0 \mu \mathrm{~F}$. Thus, the upper branch in Figure 26.10 b consists of two $4.0-\mu \mathrm{F}$ capacitors in series, which combine as follows:

$$
\begin{aligned}
\frac{1}{C_{\mathrm{eq}}} & =\frac{1}{C_{1}}+\frac{1}{C_{2}}=\frac{1}{4.0 \mu \mathrm{~F}}+\frac{1}{4.0 \mu \mathrm{~F}}=\frac{1}{2.0 \mu \mathrm{~F}} \\
C_{\mathrm{eq}} & =\frac{1}{1 / 2.0 \mu \mathrm{~F}}=2.0 \mu \mathrm{~F}
\end{aligned}
$$

The lower branch in Figure 26.10 b consists of two $8.0-\mu \mathrm{F}$ capacitors in series, which combine to yield an equivalent capacitance of $4.0 \mu \mathrm{~F}$. Finally, the $2.0-\mu \mathrm{F}$ and $4.0-\mu \mathrm{F}$ capacitors in Figure 26.10c are in parallel and thus have an equivalent capacitance of $6.0 \mu \mathrm{~F}$.

Exercise Consider three capacitors having capacitances of $3.0 \mu \mathrm{~F}, 6.0 \mu \mathrm{~F}$, and $12 \mu \mathrm{~F}$. Find their equivalent capacitance when they are connected (a) in parallel and (b) in series.

Answer (a) $21 \mu \mathrm{~F}$; (b) $1.7 \mu \mathrm{~F}$.

Figure 26.10 To find the equivalent capacitance of the capacitors in part (a), we reduce the various combinations in steps as indicated in parts (b), (c), and (d), using the series and parallel rules described in the text.

26.4 ENERGY STORED IN A CHARGED CAPACITOR

Almost everyone who works with electronic equipment has at some time verified that a capacitor can store energy. If the plates of a charged capacitor are connected by a conductor, such as a wire, charge moves between the plates and the connecting wire until the capacitor is uncharged. The discharge can often be observed as a visible spark. If you should accidentally touch the opposite plates of a charged capacitor, your fingers act as a pathway for discharge, and the result is an electric shock. The degree of shock you receive depends on the capacitance and on the voltage applied to the capacitor. Such a shock could be fatal if high voltages are present, such as in the power supply of a television set. Because the charges can be stored in a capacitor even when the set is turned off, unplugging the television does not make it safe to open the case and touch the components inside.

Consider a parallel-plate capacitor that is initially uncharged, such that the initial potential difference across the plates is zero. Now imagine that the capacitor is connected to a battery and develops a maximum charge Q. (We assume that the capacitor is charged slowly so that the problem can be considered as an electrostatic system.) When the capacitor is connected to the battery, electrons in the wire just outside the plate connected to the negative terminal move into the plate to give it a negative charge. Electrons in the plate connected to the positive terminal move out of the plate into the wire to give the plate a positive charge. Thus, charges move only a small distance in the wires.

To calculate the energy of the capacitor, we shall assume a different processone that does not actually occur but gives the same final result. We can make this

QuickLab

Here's how to find out whether your calculator has a capacitor to protect values or programs during battery changes: Store a number in your calculator's memory, remove the calculator battery for a moment, and then quickly replace it. Was the number that you stored preserved while the battery was out of the calculator? (You may want to write down any critical numbers or programs that are stored in the calculator before trying this!)

Energy stored in a charged capacitor
assumption because the energy in the final configuration does not depend on the actual charge-transfer process. We imagine that we reach in and grab a small amount of positive charge on the plate connected to the negative terminal and apply a force that causes this positive charge to move over to the plate connected to the positive terminal. Thus, we do work on the charge as we transfer it from one plate to the other. At first, no work is required to transfer a small amount of charge $d q$ from one plate to the other. ${ }^{3}$ However, once this charge has been transferred, a small potential difference exists between the plates. Therefore, work must be done to move additional charge through this potential difference. As more and more charge is transferred from one plate to the other, the potential difference increases in proportion, and more work is required.

Suppose that q is the charge on the capacitor at some instant during the charging process. At the same instant, the potential difference across the capacitor is $\Delta V=q / C$. From Section 25.2, we know that the work necessary to transfer an increment of charge $d q$ from the plate carrying charge $-q$ to the plate carrying charge q (which is at the higher electric potential) is

$$
d W=\Delta V d q=\frac{q}{C} d q
$$

This is illustrated in Figure 26.11. The total work required to charge the capacitor from $q=0$ to some final charge $q=Q$ is

$$
W=\int_{0}^{Q} \frac{q}{C} d q=\frac{1}{C} \int_{0}^{Q} q d q=\frac{Q^{2}}{2 C}
$$

The work done in charging the capacitor appears as electric potential energy U stored in the capacitor. Therefore, we can express the potential energy stored in a charged capacitor in the following forms:

$$
\begin{equation*}
U=\frac{Q^{2}}{2 C}=\frac{1}{2} Q \Delta V=\frac{1}{2} C(\Delta V)^{2} \tag{26.11}
\end{equation*}
$$

This result applies to any capacitor, regardless of its geometry. We see that for a given capacitance, the stored energy increases as the charge increases and as the potential difference increases. In practice, there is a limit to the maximum energy

Figure 26.11 A plot of potential difference versus charge for a capacitor is a straight line having a slope $1 / C$. The work required to move charge $d q$ through the potential difference ΔV across the capacitor plates is given by the area of the shaded rectangle. The total work required to charge the capacitor to a final charge Q is the triangular area under the straight line, $W=\frac{1}{2} Q \Delta V$. (Don't forget that $1 \mathrm{~V}=1 \mathrm{~J} / \mathrm{C}$; hence, the unit for the area is the joule.)

[^1](or charge) that can be stored because, at a sufficiently great value of ΔV, discharge ultimately occurs between the plates. For this reason, capacitors are usually labeled with a maximum operating voltage.

Ouick Quiz 26.3

You have three capacitors and a battery. How should you combine the capacitors and the battery in one circuit so that the capacitors will store the maximum possible energy?

We can consider the energy stored in a capacitor as being stored in the electric field created between the plates as the capacitor is charged. This description is reasonable in view of the fact that the electric field is proportional to the charge on the capacitor. For a parallel-plate capacitor, the potential difference is related to the electric field through the relationship $\Delta V=E d$. Furthermore, its capacitance is $C=\epsilon_{0} A / d$ (Eq. 26.3). Substituting these expressions into Equation 26.11, we obtain

$$
\begin{equation*}
U=\frac{1}{2} \frac{\epsilon_{0} A}{d}\left(E^{2} d^{2}\right)=\frac{1}{2}\left(\epsilon_{0} A d\right) E^{2} \tag{26.12}
\end{equation*}
$$

Because the volume V (volume, not voltage!) occupied by the electric field is $A d$, the energy per unit volume $u_{E}=U / V=U / A d$, known as the energy density, is

$$
\begin{equation*}
u_{E}=\frac{1}{2} \epsilon_{0} E^{2} \tag{26.13}
\end{equation*}
$$

Although Equation 26.13 was derived for a parallel-plate capacitor, the expression is generally valid. That is, the energy density in any electric field is proportional to the square of the magnitude of the electric field at a given point.

This bank of capacitors stores electrical energy for use in the particle accelerator at FermiLab, located outside Chicago. Because the electric utility company cannot provide a large enough burst of energy to operate the equipment, these capacitors are slowly charged up, and then the energy is rapidly "dumped" into the accelerator. In this sense, the setup is much like a fireprotection water tank on top of a building. The tank collects water and stores it for situations in which a lot of water is needed in a short time.

Energy stored in a parallel-plate capacitor

EXAMPLE 26.5 Rewiring Two Charged Capacitors

Two capacitors C_{1} and C_{2} (where $C_{1}>C_{2}$) are charged to the same initial potential difference ΔV_{i}, but with opposite polarity. The charged capacitors are removed from the battery, and their plates are connected as shown in Figure 26.12a. The switches S_{1} and S_{2} are then closed, as shown in Figure 26.12b. (a) Find the final potential difference ΔV_{f} between a and b after the switches are closed.

Solution Let us identify the left-hand plates of the capacitors as an isolated system because they are not connected to the right-hand plates by conductors. The charges on the lefthand plates before the switches are closed are

$$
Q_{1 i}=C_{1} \Delta V_{i} \quad \text { and } \quad Q_{2 i}=-C_{2} \Delta V_{i}
$$

The negative sign for $Q_{2 i}$ is necessary because the charge on the left plate of capacitor C_{2} is negative. The total charge Q in the system is

$$
\text { (1) } Q=Q_{1 i}+Q_{2 i}=\left(C_{1}-C_{2}\right) \Delta V_{i}
$$

After the switches are closed, the total charge in the system remains the same:

$$
\text { (2) } \quad Q=Q_{1 f}+Q_{2 f}
$$

The charges redistribute until the entire system is at the same potential ΔV_{f}. Thus, the final potential difference across C_{1} must be the same as the final potential difference across C_{2}. To satisfy this requirement, the charges on the capacitors after the switches are closed are

$$
Q_{1 f}=C_{1} \Delta V_{f} \quad \text { and } \quad Q_{2 f}=C_{2} \Delta V_{f}
$$

Dividing the first equation by the second, we have

$$
\begin{aligned}
\frac{Q_{1 f}}{Q_{2 f}} & =\frac{C_{1} \Delta V_{f}}{C_{2} \Delta V_{f}}=\frac{C_{1}}{C_{2}} \\
Q_{1 f} & =\frac{C_{1}}{C_{2}} Q_{2 f}
\end{aligned}
$$

Combining Equations (2) and (3), we obtain

$$
\begin{aligned}
Q & =Q_{1 f}+Q_{2 f}=\frac{C_{1}}{C_{2}} Q_{2 f}+Q_{2 f}=Q_{2 f}\left(1+\frac{C_{1}}{C_{2}}\right) \\
Q_{2 f} & =Q\left(\frac{C_{2}}{C_{1}+C_{2}}\right)
\end{aligned}
$$

Using Equation (3) to find $Q_{1 f}$ in terms of Q, we have

$$
Q_{1 f}=\frac{C_{1}}{C_{2}} Q_{2 f}=\frac{C_{1}}{C_{2}} Q\left(\frac{C_{2}}{C_{1}+C_{2}}\right)=Q\left(\frac{C_{1}}{C_{1}+C_{2}}\right)
$$

Finally, using Equation 26.1 to find the voltage across each capacitor, we find that

$$
\Delta V_{1 f}=\frac{Q_{1 f}}{C_{1}}=\frac{Q\left(\frac{C_{1}}{C_{1}+C_{2}}\right)}{C_{1}}=\frac{Q}{C_{1}+C_{2}}
$$

Figure 26.12

$$
\Delta V_{2 f}=\frac{Q_{2 f}}{C_{2}}=\frac{Q\left(\frac{C_{2}}{C_{1}+C_{2}}\right)}{C_{2}}=\frac{Q}{C_{1}+C_{2}}
$$

As noted earlier, $\Delta V_{1 f}=\Delta V_{2 f}=\Delta V_{f}$.
To express ΔV_{f} in terms of the given quantities C_{1}, C_{2}, and ΔV_{i}, we substitute the value of Q from Equation (1) to obtain

$$
\Delta V_{f}=\left(\frac{C_{1}-C_{2}}{C_{1}+C_{2}}\right) \Delta V_{i}
$$

(b) Find the total energy stored in the capacitors before and after the switches are closed and the ratio of the final energy to the initial energy.

Solution Before the switches are closed, the total energy stored in the capacitors is

$$
U_{i}=\frac{1}{2} C_{1}\left(\Delta V_{i}\right)^{2}+\frac{1}{2} C_{2}\left(\Delta V_{i}\right)^{2}=\frac{1}{2}\left(C_{1}+C_{2}\right)\left(\Delta V_{i}\right)^{2}
$$

After the switches are closed, the total energy stored in the capacitors is

$$
\begin{aligned}
U_{f} & =\frac{1}{2} C_{1}\left(\Delta V_{f}\right)^{2}+\frac{1}{2} C_{2}\left(\Delta V_{f}\right)^{2}=\frac{1}{2}\left(C_{1}+C_{2}\right)\left(\Delta V_{f}\right)^{2} \\
& =\frac{1}{2}\left(C_{1}+C_{2}\right)\left(\frac{Q}{C_{1}+C_{2}}\right)^{2}=\frac{1}{2} \frac{Q^{2}}{C_{1}+C_{2}}
\end{aligned}
$$

Using Equation (1), we can express this as

$$
U_{f}=\frac{1}{2} \frac{Q^{2}}{\left(C_{1}+C_{2}\right)}=\frac{1}{2} \frac{\left(C_{1}-C_{2}\right)^{2}\left(\Delta V_{i}\right)^{2}}{\left(C_{1}+C_{2}\right)}
$$

Therefore, the ratio of the final energy stored to the initial energy stored is

$$
\frac{U_{f}}{U_{i}}=\frac{\frac{1}{2} \frac{\left(C_{1}-C_{2}\right)^{2}\left(\Delta V_{i}\right)^{2}}{\left(C_{1}+C_{2}\right)}}{\frac{1}{2}\left(C_{1}+C_{2}\right)\left(\Delta V_{i}\right)^{2}}=\left(\frac{C_{1}-C_{2}}{C_{1}+C_{2}}\right)^{2}
$$

This ratio is less than unity, indicating that the final energy is less than the initial energy. At first, you might think that the law of energy conservation has been violated, but this
is not the case. The "missing" energy is radiated away in the form of electromagnetic waves, as we shall see in Chapter 34.

Puick Puiz 26.4

You charge a parallel-plate capacitor, remove it from the battery, and prevent the wires connected to the plates from touching each other. When you pull the plates apart, do the following quantities increase, decrease, or stay the same? (a) C; (b) Q; (c) E between the plates; (d) ΔV; (e) energy stored in the capacitor.

Puick Puiz 26.5

Repeat Quick Quiz 26.4, but this time answer the questions for the situation in which the battery remains connected to the capacitor while you pull the plates apart.

One device in which capacitors have an important role is the defibrillator (Fig. 26.13). Up to 360 J is stored in the electric field of a large capacitor in a defibrillator when it is fully charged. The defibrillator can deliver all this energy to a patient in about 2 ms . (This is roughly equivalent to 3000 times the power output of a $60-\mathrm{W}$ lightbulb!) The sudden electric shock stops the fibrillation (random contractions) of the heart that often accompanies heart attacks and helps to restore the correct rhythm.

A camera's flash unit also uses a capacitor, although the total amount of energy stored is much less than that stored in a defibrillator. After the flash unit's capacitor is charged, tripping the camera's shutter causes the stored energy to be sent through a special lightbulb that briefly illuminates the subject being photographed.

Figure 26.13 In a hospital or at an emergency scene, you might see a patient being revived with a defibrillator. The defibrillator's paddles are applied to the patient's chest, and an electric shock is sent through the chest cavity. The aim of this technique is to restore the heart's normal rhythm pattern.

web

To learn more about defibrillators, visit www.physiocontrol.com

The capacitance of a filled capacitor is greater than that of an empty one by a factor κ.

26.5 CAPACITORS WITH DIELECTRICS

A dielectric is a nonconducting material, such as rubber, glass, or waxed paper. When a dielectric is inserted between the plates of a capacitor, the capacitance increases. If the dielectric completely fills the space between the plates, the capacitance increases by a dimensionless factor κ, which is called the dielectric constant. The dielectric constant is a property of a material and varies from one material to another. In this section, we analyze this change in capacitance in terms of electrical parameters such as electric charge, electric field, and potential difference; in Section 26.7, we shall discuss the microscopic origin of these changes.

We can perform the following experiment to illustrate the effect of a dielectric in a capacitor: Consider a parallel-plate capacitor that without a dielectric has a charge Q_{0} and a capacitance C_{0}. The potential difference across the capacitor is $\Delta V_{0}=Q_{0} / C_{0}$. Figure 26.14a illustrates this situation. The potential difference is measured by a voltmeter, which we shall study in greater detail in Chapter 28. Note that no battery is shown in the figure; also, we must assume that no charge can flow through an ideal voltmeter, as we shall learn in Section 28.5. Hence, there is no path by which charge can flow and alter the charge on the capacitor. If a dielectric is now inserted between the plates, as shown in Figure 26.14b, the voltmeter indicates that the voltage between the plates decreases to a value ΔV. The voltages with and without the dielectric are related by the factor κ as follows:

$$
\Delta V=\frac{\Delta V_{0}}{\kappa}
$$

Because $\Delta V<\Delta V_{0}$, we see that $\kappa>1$.
Because the charge Q_{0} on the capacitor does not change, we conclude that the capacitance must change to the value

$$
C=\frac{Q_{0}}{\Delta V}=\frac{Q_{0}}{\Delta V_{0} / \kappa}=\kappa \frac{Q_{0}}{\Delta V_{0}}
$$

$$
\begin{equation*}
C=\kappa C_{0} \tag{26.14}
\end{equation*}
$$

That is, the capacitance increases by the factor κ when the dielectric completely fills the region between the plates. ${ }^{4}$ For a parallel-plate capacitor, where $C_{0}=\epsilon_{0} A / d$ (Eq. 26.3), we can express the capacitance when the capacitor is filled with a dielectric as

$$
\begin{equation*}
C=\kappa \frac{\epsilon_{0} A}{d} \tag{26.15}
\end{equation*}
$$

From Equations 26.3 and 26.15 , it would appear that we could make the capacitance very large by decreasing d, the distance between the plates. In practice, the lowest value of d is limited by the electric discharge that could occur through the dielectric medium separating the plates. For any given separation d, the maximum voltage that can be applied to a capacitor without causing a discharge depends on the dielectric strength (maximum electric field) of the dielectric. If the magnitude of the electric field in the dielectric exceeds the dielectric strength, then the insulating properties break down and the dielectric begins to conduct. Insulating materials have values of κ greater than unity and dielectric strengths

[^2]

Figure 26.14 A charged capacitor (a) before and (b) after insertion of a dielectric between the plates. The charge on the plates remains unchanged, but the potential difference decreases from ΔV_{0} to $\Delta V=\Delta V_{0} / \kappa$. Thus, the capacitance increases from C_{0} to κC_{0}.
greater than that of air, as Table 26.1 indicates. Thus, we see that a dielectric provides the following advantages:

- Increase in capacitance
- Increase in maximum operating voltage
- Possible mechanical support between the plates, which allows the plates to be close together without touching, thereby decreasing d and increasing C

TABLE 26.1 Dielectric Constants and Dielectric Strengths of Various Materials at Room Temperature

Material	Dielectric Constant $\boldsymbol{\kappa}$	Dielectric Strength a (V/m)
Air (dry)	1.00059	3×10^{6}
Bakelite	4.9	24×10^{6}
Fused quartz	3.78	8×10^{6}
Neoprene rubber	6.7	12×10^{6}
Nylon	3.4	14×10^{6}
Paper	3.7	16×10^{6}
Polystyrene	2.56	24×10^{6}
Polyvinyl chloride	3.4	40×10^{6}
Porcelain	6	12×10^{6}
Pyrex glass	5.6	14×10^{6}
Silicone oil	2.5	15×10^{6}
Strontium titanate	233	8×10^{6}
Teflon	2.1	60×10^{6}
Vacuum	1.00000	-
Water	80	-

[^3]
(a) Kirlian photograph created by dropping a steel ball into a high-energy electric field. Kirlian photography is also known as electrophotography. (b) Sparks from static electricity discharge between a fork and four electrodes. Many sparks were used to create this image because only one spark forms for a given discharge. Note that the bottom prong discharges to both electrodes at the bottom right. The light of each spark is created by the excitation of gas atoms along its path.

Types of Capacitors

Commercial capacitors are often made from metallic foil interlaced with thin sheets of either paraffin-impregnated paper or Mylar as the dielectric material. These alternate layers of metallic foil and dielectric are rolled into a cylinder to form a small package (Fig. 26.15a). High-voltage capacitors commonly consist of a number of interwoven metallic plates immersed in silicone oil (Fig. 26.15b). Small capacitors are often constructed from ceramic materials. Variable capacitors (typically 10 to 500 pF) usually consist of two interwoven sets of metallic plates, one fixed and the other movable, and contain air as the dielectric.

Often, an electrolytic capacitor is used to store large amounts of charge at relatively low voltages. This device, shown in Figure 26.15c, consists of a metallic foil in contact with an electrolyte - a solution that conducts electricity by virtue of the motion of ions contained in the solution. When a voltage is applied between the foil and the electrolyte, a thin layer of metal oxide (an insulator) is formed on the foil,

Figure 26.15 Three commercial capacitor designs. (a) A tubular capacitor, whose plates are separated by paper and then rolled into a cylinder. (b) A high-voltage capacitor consisting of many parallel plates separated by insulating oil. (c) An electrolytic capacitor.
and this layer serves as the dielectric. Very large values of capacitance can be obtained in an electrolytic capacitor because the dielectric layer is very thin, and thus the plate separation is very small.

Electrolytic capacitors are not reversible as are many other capacitors-they have a polarity, which is indicated by positive and negative signs marked on the device. When electrolytic capacitors are used in circuits, the polarity must be aligned properly. If the polarity of the applied voltage is opposite that which is intended, the oxide layer is removed and the capacitor conducts electricity instead of storing charge.

Puick Puiz 26.6

If you have ever tried to hang a picture, you know it can be difficult to locate a wooden stud in which to anchor your nail or screw. A carpenter's stud-finder is basically a capacitor with its plates arranged side by side instead of facing one another, as shown in Figure 26.16. When the device is moved over a stud, does the capacitance increase or decrease?

(a)

(b)

Figure 26.16 A stud-finder. (a)The materials between the plates of the capacitor are the wallboard and air. (b) When the capacitor moves across a stud in the wall, the materials between the plates are the wallboard and the wood. The change in the dielectric constant causes a signal light to illuminate.

EXAMPLE 26.6 A Paper-Filled Capacitor

A parallel-plate capacitor has plates of dimensions 2.0 cm by 3.0 cm separated by a $1.0-\mathrm{mm}$ thickness of paper. (a) Find its capacitance.

Solution Because $\kappa=3.7$ for paper (see Table 26.1), we have

$$
\begin{aligned}
C & =\kappa \frac{\epsilon_{0} A}{d}=3.7\left(8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N} \cdot \mathrm{~m}^{2}\right)\left(\frac{6.0 \times 10^{-4} \mathrm{~m}^{2}}{1.0 \times 10^{-3} \mathrm{~m}}\right) \\
& =20 \times 10^{-12} \mathrm{~F}=20 \mathrm{pF}
\end{aligned}
$$

(b) What is the maximum charge that can be placed on the capacitor?

Solution From Table 26.1 we see that the dielectric strength of paper is $16 \times 10^{6} \mathrm{~V} / \mathrm{m}$. Because the thickness of
the paper is 1.0 mm , the maximum voltage that can be applied before breakdown is

$$
\begin{aligned}
\Delta V_{\max } & =E_{\max } d=\left(16 \times 10^{6} \mathrm{~V} / \mathrm{m}\right)\left(1.0 \times 10^{-3} \mathrm{~m}\right) \\
& =16 \times 10^{3} \mathrm{~V}
\end{aligned}
$$

Hence, the maximum charge is

$$
Q_{\max }=C \Delta V_{\max }=\left(20 \times 10^{-12} \mathrm{~F}\right)\left(16 \times 10^{3} \mathrm{~V}\right)=0.32 \mu \mathrm{C}
$$

Exercise What is the maximum energy that can be stored in the capacitor?

Answer $2.6 \times 10^{-3} \mathrm{~J}$.

EXAMPLE 26.7 Energy Stored Before and After

A parallel-plate capacitor is charged with a battery to a charge Q_{0}, as shown in Figure 26.17a. The battery is then removed, and a slab of material that has a dielectric constant κ is inserted between the plates, as shown in Figure 26.17b. Find the energy stored in the capacitor before and after the dielectric is inserted.

Solution The energy stored in the absence of the dielectric is (see Eq. 26.11):

$$
U_{0}=\frac{Q_{0}{ }^{2}}{2 C_{0}}
$$

After the battery is removed and the dielectric inserted, the charge on the capacitor remains the same. Hence, the energy stored in the presence of the dielectric is

$$
U=\frac{Q_{0}{ }^{2}}{2 C}
$$

But the capacitance in the presence of the dielectric is $C=\kappa C_{0}$, so U becomes

$$
U=\frac{Q_{0}{ }^{2}}{2 \kappa C_{0}}=\frac{U_{0}}{\kappa}
$$

Because $\kappa>1$, the final energy is less than the initial energy. We can account for the "missing" energy by noting that the dielectric, when inserted, gets pulled into the device (see the following discussion and Figure 26.18). An external agent must do negative work to keep the dielectric from accelerating. This work is simply the difference $U-U_{0}$. (Alternatively, the positive work done by the system on the external agent is $U_{0}-U$.)

Exercise Suppose that the capacitance in the absence of a dielectric is 8.50 pF and that the capacitor is charged to a potential difference of 12.0 V . If the battery is disconnected and a slab of polystyrene is inserted between the plates, what is $U_{0}-U$?

Answer 373 pJ .

(a)

(b)

Figure 26.17

As we have seen, the energy of a capacitor not connected to a battery is lowered when a dielectric is inserted between the plates; this means that negative work is done on the dielectric by the external agent inserting the dielectric into the capacitor. This, in turn, implies that a force that draws it into the capacitor must be acting on the dielectric. This force originates from the nonuniform nature of the electric field of the capacitor near its edges, as indicated in Figure 26.18. The horizontal component of this fringe field acts on the induced charges on the surface of the dielectric, producing a net horizontal force directed into the space between the capacitor plates.

Quick Quiz 26.7

A fully charged parallel-plate capacitor remains connected to a battery while you slide a dielectric between the plates. Do the following quantities increase, decrease, or stay the same? (a) C; (b) Q; (c) E between the plates; (d) ΔV; (e) energy stored in the capacitor.

[^0]: ${ }^{1}$ Although the total charge on the capacitor is zero (because there is as much excess positive charge on one conductor as there is excess negative charge on the other), it is common practice to refer to the magnitude of the charge on either conductor as "the charge on the capacitor."
 ${ }^{2}$ The proportionality between ΔV and Q can be proved from Coulomb's law or by experiment.

[^1]: ${ }^{3}$ We shall use lowercase q for the varying charge on the capacitor while it is charging, to distinguish it from uppercase Q, which is the total charge on the capacitor after it is completely charged.

[^2]: ${ }^{4}$ If the dielectric is introduced while the potential difference is being maintained constant by a battery, the charge increases to a value $Q=\kappa Q_{0}$. The additional charge is supplied by the battery, and the capacitance again increases by the factor κ.

[^3]: ${ }^{\text {a }}$ The dielectric strength equals the maximum electric field that can exist in a dielectric without electrical breakdown. Note that these values depend strongly on the presence of impurities and flaws in the materials.

