5.5 The Force of Gravity and Weight

5.5 _~ THE FORCE OF GRAVITY AND WEIGHT

We are well aware that all objects are attracted to the Earth. The attractive force
exerted by the Earth on an object is called the force of gravity F,. This force is
directed toward the center of the Earth,® and its magnitude is called the weight
of the object.

We saw in Section 2.6 that a freely falling object experiences an acceleration g
acting toward the center of the Earth. Applying Newton’s second law %F = ma to a
freely falling object of mass m, with a = g and XF = F,, we obtain

F, = mg (5.6)

Thus, the weight of an object, being defined as the magnitude of F, is mg. (You
should not confuse the italicized symbol g for gravitational acceleration with the
nonitalicized symbol g used as the abbreviation for “gram.”)

Because it depends on g weight varies with geographic location. Hence,
weight, unlike mass, is not an inherent property of an object. Because g decreases
with increasing distance from the center of the Earth, bodies weigh less at higher
altitudes than at sea level. For example, a 1000-kg palette of bricks used in the
construction of the Empire State Building in New York City weighed about 1 N less
by the time it was lifted from sidewalk level to the top of the building. As another
example, suppose an object has a mass of 70.0 kg. Its weight in a location where
g=9.80 m/s%is F, = mg = 686 N (about 150 Ib). At the top of a mountain, how-
ever, where g = 9.77 m/s?, its weight is only 684 N. Therefore, if you want to lose
weight without going on a diet, climb a mountain or weigh yourself at 30 000 ft
during an airplane flight!

Because weight = F, = mg, we can compare the masses of two objects by mea-
suring their weights on a spring scale. At a given location, the ratio of the weights
of two objects equals the ratio of their masses.

The life-support unit strapped to the back
of astronaut Edwin Aldrin weighed 300 1b
on the Earth. During his training, a 50-Ib
mock-up was used. Although this effectively
simulated the reduced weight the unit
would have on the Moon, it did not cor-
rectly mimic the unchanging mass. It was
just as difficult to accelerate the unit (per-
haps by jumping or twisting suddenly) on
the Moon as on the Earth.

3 This statement ignores the fact that the mass distribution of the Earth is not perfectly spherical.
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Definition of weight

QuickLab >~

Drop a pen and your textbook simul-
taneously from the same height and
watch as they fall. How can they have
the same acceleration when their
weights are so different?
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CONCEPTUAL EXAMPLE 5.2

You have most likely had the experience of standing in an el-
evator that accelerates upward as it moves toward a higher
floor. In this case, you feel heavier. In fact, if you are standing
on a bathroom scale at the time, the scale measures a force
magnitude that is greater than your weight. Thus, you have
tactile and measured evidence that leads you to believe you
are heavier in this situation. Areyou heavier?

The Laws of Motion

How Much Do You Weigh in an Elevator?

Solution No, your weight is unchanged. To provide the
acceleration upward, the floor or scale must exert on your
feet an upward force that is greater in magnitude than your
weight. It is this greater force that you feel, which you inter-
pret as feeling heavier. The scale reads this upward force, not
your weight, and so its reading increases.

| Quick Quiz 5.3 4

A baseball of mass m is thrown upward with some initial speed. If air resistance is neglected,
what forces are acting on the ball when it reaches (a) half its maximum height and (b) its

maximum height?

9.6 _~ NEWTON’S THIRD LAW

(@’ If you press against a corner of this textbook with your fingertip, the book pushes

45 back and makes a small dent in your skin. If you push harder, the book does the
same and the dent in your skin gets a little larger. This simple experiment illus-
trates a general principle of critical importance known as Newton’s third law:

If two objects interact, the force Fyy exerted by object 1 on object 2 is equal in
magnitude to and opposite in direction to the force Fo; exerted by object 2 on

object 1:

Newton’s third law

F12 = _F21 (5.7)

This law, which is illustrated in Figure 5.6a, states that a force that affects the mo-
tion of an object must come from a second, external, object. The external object, in
turn, is subject to an equal-magnitude but oppositely directed force exerted on it.

(b)

Figure 5.6 Newton’s third law. (a) The force Fyy exerted by object 1 on object 2 is equal in
magnitude to and opposite in direction to the force Fy; exerted by object 2 on object 1. (b) The
force Fy,,, exerted by the hammer on the nail is equal to and opposite the force F,;, exerted by

the nail on the hammer.



5.6 Newton’s Third Law

This is equivalent to stating that a single isolated force cannot exist. The force
that object 1 exerts on object 2 is sometimes called the action force, while the force
object 2 exerts on object 1 is called the reaction force. In reality, either force can be
labeled the action or the reaction force. The action force is equal in magnitude
to the reaction force and opposite in direction. In all cases, the action and
reaction forces act on different objects. For example, the force acting on a
freely falling projectile is F, = mg, which is the force of gravity exerted by the
Earth on the projectile. The reaction to this force is the force exerted by the pro-
jectile on the Earth, F, = —F,. The reaction force F, accelerates the Earth toward
the projectile just as the action force F, accelerates the projectile toward the Earth.
However, because the Earth has such a great mass, its acceleration due to this reac-
tion force is negligibly small.

Another example of Newton’s third law is shown in Figure 5.6b. The force ex-
erted by the hammer on the nail (the action force Fy,;) is equal in magnitude and
opposite in direction to the force exerted by the nail on the hammer (the reaction
force F;,). It is this latter force that causes the hammer to stop its rapid forward
motion when it strikes the nail.

You experience Newton’s third law directly whenever you slam your fist against
a wall or kick a football. You should be able to identify the action and reaction
forces in these cases.

A person steps from a boat toward a dock. Unfortunately, he forgot to tie the boat to the
dock, and the boat scoots away as he steps from it. Analyze this situation in terms of New-
ton’s third law.

The force of gravity F, was defined as the attractive force the Earth exerts on
an object. If the object is a TV at rest on a table, as shown in Figure 5.7a, why does
the TV not accelerate in the direction of F,? The TV does not accelerate because
the table holds it up. What is happening is that the table exerts on the TV an up-
ward force n called the normal force.* The normal force is a contact force that
prevents the TV from falling through the table and can have any magnitude
needed to balance the downward force Fg, up to the point of breaking the table. If
someone stacks books on the TV, the normal force exerted by the table on the TV
increases. If someone lifts up on the TV, the normal force exerted by the table on
the TV decreases. (The normal force becomes zero if the TV is raised off the table.)

The two forces in an action-reaction pair always act on different objects.
For the hammer-and-nail situation shown in Figure 5.6b, one force of the pair acts
on the hammer and the other acts on the nail. For the unfortunate person step-
ping out of the boat in Quick Quiz 5.4, one force of the pair acts on the person,
and the other acts on the boat.

For the TV in Figure 5.7, the force of gravity Fg and the normal force n are not
an action—reaction pair because they act on the same body—the TV. The two re-
action forces in this situation—F, and n’ —are exerted on objects other than the
TV. Because the reaction to F, is the force F, exerted by the TV on the Earth and
the reaction to n is the force n’ exerted by the TV on the table, we conclude that

Fg=—Fé and n=-—-n

4 Normalin this context means perpendicular.
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Compression of a football as the
force exerted by a player’s foot sets
the ball in motion.

Definition of normal force
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The Laws of Motion

(a) (b)

Figure 5.7 When a TV is at rest on a table, the forces acting on the TV are the normal force n
and the force of gravity F,, as illustrated in part (b). The reaction to n is the force n’ exerted by
the TV on the table. The reaction to F, is the force F;exerted by the TV on the Earth.

The forces n and n’ have the same magnitude, which is the same as that of Fg until
the table breaks. From the second law, we see that, because the TV is in equilib-
rium (a = 0), it follows® that Fy=n=mg

| Quick Quiz 5.5 4

If a fly collides with the windshield of a fast-moving bus, (a) which experiences the greater im-
pact force: the fly or the bus, or is the same force experienced by both? (b) Which experiences
the greater acceleration: the fly or the bus, or is the same acceleration experienced by both?

CONCEPTUAL EXAMPLE 5.3

A large man and a small boy stand facing each other on fric-
tionless ice. They put their hands together and push against
each other so that they move apart. (a) Who moves away with
the higher speed?

Solution This situation is similar to what we saw in Quick
Quiz 5.5. According to Newton’s third law, the force exerted
by the man on the boy and the force exerted by the boy on
the man are an action—reaction pair, and so they must be
equal in magnitude. (A bathroom scale placed between their
hands would read the same, regardless of which way it faced.)

You Push Me and I'll Push You

Therefore, the boy, having the lesser mass, experiences the
greater acceleration. Both individuals accelerate for the same
amount of time, but the greater acceleration of the boy over
this time interval results in his moving away from the interac-
tion with the higher speed.

(b) Who moves farther while their hands are in contact?
Solution Because the boy has the greater acceleration, he

moves farther during the interval in which the hands are in
contact.

5 Technically, we should write this equation in the component form Fy, = ny = mg,. This component
notation is cumbersome, however, and so in situations in which a vector is parallel to a coordinate axis,

we usually do not include the subscript for that axis because there is no other component.
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5.7 _~ SOME APPLICATIONS OF NEWTON’S LAWS

2) In this section we apply Newton’s laws to objects that are either in equilibrium
46 (a = 0) or accelerating along a straight line under the action of constant external
forces. We assume that the objects behave as particles so that we need not worry
about rotational motion. We also neglect the effects of friction in those problems
involving motion; this is equivalent to stating that the surfaces are frictionless. Fi-
nally, we usually neglect the mass of any ropes involved. In this approximation, the
magnitude of the force exerted at any point along a rope is the same at all points
along the rope. In problem statements, the synonymous terms light, lightweight, and
of negligible mass are used to indicate that a mass is to be ignored when you work
the problems.

When we apply Newton’s laws to an object, we are interested only in ex-
ternal forces that act on the object. For example, in Figure 5.7 the only external
forces acting on the TV are n and Fg. The reactions to these forces, n’ and F/,, act
on the table and on the Earth, respectively, and therefore do not appear in New-
ton’s second law applied to the TV.

When a rope attached to an object is pulling on the object, the rope exerts a
force T on the object, and the magnitude of that force is called the tension in the
rope. Because it is the magnitude of a vector quantity, tension is a scalar quantity.

Consider a crate being pulled to the right on a frictionless, horizontal surface,
as shown in Figure 5.8a. Suppose you are asked to find the acceleration of the
crate and the force the floor exerts on it. First, note that the horizontal force be-
ing applied to the crate acts through the rope. Use the symbol T to denote the
force exerted by the rope on the crate. The magnitude of T is equal to the tension
in the rope. A dotted circle is drawn around the crate in Figure 5.8a to remind you
that you are interested only in the forces acting on the crate. These are illustrated
in Figure 5.8b. In addition to the force T, this force diagram for the crate includes
the force of gravity F, and the normal force n exerted by the floor on the crate.
Such a force diagram, referred to as a free-body diagram, shows all external
forces acting on the object. The construction of a correct free-body diagram is an
important step in applying Newton’s laws. The reactions to the forces we have
listed —namely, the force exerted by the crate on the rope, the force exerted by
the crate on the Earth, and the force exerted by the crate on the floor—are not in-
cluded in the free-body diagram because they act on other bodies and not on the
crate.

We can now apply Newton’s second law in component form to the crate. The
only force acting in the x direction is T. Applying 2F, = ma, to the horizontal mo-
tion gives

2 F,=T= ma, or

ay = —
m
No acceleration occurs in the y direction. Applying 2F, = ma, with a, =0
yields

n=F

n + (—Fg) =0 or P

That is, the normal force has the same magnitude as the force of gravity but is in
the opposite direction.

If T is a constant force, then the acceleration a, = T/m also is constant.
Hence, the constant-acceleration equations of kinematics from Chapter 2 can be
used to obtain the crate’s displacement Ax and velocity v, as functions of time. Be-
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Tension

(b)

Figure 5.8 (a) A crate being
pulled to the right on a frictionless
surface. (b) The free-body diagram
representing the external forces
acting on the crate.
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Figure 5.9 When one object
pushes downward on another ob-
ject with a force F, the normal
force n is greater than the force of
gravity: n = F, + F.

T =T

Figure 5.10 (a) A lamp sus-
pended from a ceiling by a chain of
negligible mass. (b) The forces act-
ing on the lamp are the force of
gravity F,and the force exerted by
the chain T. (c) The forces acting
on the chain are the force exerted
by the lamp T’ and the force ex-
erted by the ceiling T".

CHAPTER 5 The Laws of Motion

cause a, = T/m = constant, Equations 2.8 and 2.11 can be written as

T
Uyr = Uy + ; t

T

1

Ax = vt + 2<—>t2
m

In the situation just described, the magnitude of the normal force n is equal to
the magnitude of F,, but this is not always the case. For example, suppose a book
is lying on a table and you push down on the book with a force F, as shown in Fig-
ure 5.9. Because the book is at rest and therefore not accelerating, EFJ, = 0, which
gives n — F, — F= 0, or n= F, + F. Other examples in which n # F, are pre-
sented later.

Consider a lamp suspended from a light chain fastened to the ceiling, as in
Figure 5.10a. The free-body diagram for the lamp (Figure 5.10b) shows that the
forces acting on the lamp are the downward force of gravity F, and the upward
force T exerted by the chain. If we apply the second law to the lamp, noting that
a = 0, we see that because there are no forces in the x direction, 3F, = 0 provides
no helpful information. The condition %F, = ma, = 0 gives

SFE=T-F,=0 o T=F,
Again, note that T and F, are not an action—reaction pair because they act on the
same object—the lamp. The reaction force to T is T', the downward force exerted
by the lamp on the chain, as shown in Figure 5.10c. The ceiling exerts on the
chain a force T” that is equal in magnitude to the magnitude of T’ and points in
the opposite direction.

Problem-Solving Hints
Applying Newton's Laws

The following procedure is recommended when dealing with problems involv-
ing Newton’s laws:

® Draw a simple, neat diagram of the system.

¢ Isolate the object whose motion is being analyzed. Draw a free-body diagram
for this object. For systems containing more than one object, draw separate
free-body diagrams for each object. Do not include in the free-body diagram
forces exerted by the object on its surroundings. Establish convenient coor-
dinate axes for each object and find the components of the forces along
these axes.

* Apply Newton’s second law, 2F = ma, in component form. Check your di-
mensions to make sure that all terms have units of force.

® Solve the component equations for the unknowns. Remember that you must
have as many independent equations as you have unknowns to obtain a
complete solution.

® Make sure your results are consistent with the free-body diagram. Also check
the predictions of your solutions for extreme values of the variables. By do-
ing so, you can often detect errors in your results.
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EXAMPLE 5.4 A Traffic Light at Rest

A traffic light weighing 125 N hangs from a cable tied to two
other cables fastened to a support. The upper cables make
angles of 37.0° and 53.0° with the horizontal. Find the ten-
sion in the three cables.

Solution Figure 5.11a shows the type of drawing we might
make of this situation. We then construct two free-body dia-
grams—one for the traffic light, shown in Figure 5.11b, and
one for the knot that holds the three cables together, as seen
in Figure 5.11c. This knot is a convenient object to choose be-
cause all the forces we are interested in act through it. Be-
cause the acceleration of the system is zero, we know that the
net force on the light and the net force on the knot are both
zero.

In Figure 5.11b the force Tj exerted by the vertical cable

supports the light, and so T3 = F,= 125N. Next, we

choose the coordinate axes shown in Figure 5.11c and resolve
the forces acting on the knot into their components:

Force x Component y Component
T, — Ty cos 87.0° T, sin 37.0°
Ty Ty cos 53.0° Ty sin 53.0°
Ts 0 —125N

Knowing that the knot is in equilibrium (a = 0) allows us to
write

Figure 5.11

125

(1) X F,=—T cos37.0° + Tycos53.0° = 0

(2) X F,= Tysin37.0° + Tysin 53.0°
+ (125 N) = 0

From (1) we see that the horizontal components of T} and Ty
must be equal in magnitude, and from (2) we see that the
sum of the vertical components of T; and Ty must balance
the weight of the light. We solve (1) for 75 in terms of 7; to
obtain

T = T(cos?>7.0°> — 1337
2 \ cos 53.0° ' !

This value for 7 is substituted into (2) to yield

Ty sin 37.0° + (1.3377) (sin 53.0°) — 125N =0

T,= 751N

Ty 99.9 N

1887, =

This problem is important because it combines what we have
learned about vectors with the new topic of forces. The gen-
eral approach taken here is very powerful, and we will repeat
it many times.

Exercise In what situation does T} = Ty?

Answer When the two cables attached to the support make
equal angles with the horizontal.

37.09

(b) (©)

(a) A traffic light suspended by cables. (b) Free-body diagram for the traf-

fic light. (c) Free-body diagram for the knot where the three cables are joined.
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CONCEPTUAL EXAMPLE 5.5

In a train, the cars are connected by couplers, which are under
tension as the locomotive pulls the train. As you move down
the train from locomotive to caboose, does the tension in the
couplers increase, decrease, or stay the same as the train
speeds up? When the engineer applies the brakes, the cou-
plers are under compression. How does this compression
force vary from locomotive to caboose? (Assume that only the
brakes on the wheels of the engine are applied.)

Solution As the train speeds up, the tension decreases
from the front of the train to the back. The coupler between

The Laws of Motion

Forces Between Cars in a Train

the locomotive and the first car must apply enough force to
accelerate all of the remaining cars. As you move back along
the train, each coupler is accelerating less mass behind it.
The last coupler has to accelerate only the caboose, and so it
is under the least tension.

When the brakes are applied, the force again decreases
from front to back. The coupler connecting the locomotive
to the first car must apply a large force to slow down all the
remaining cars. The final coupler must apply a force large
enough to slow down only the caboose.

EXAMPLE 5.6 Crate on a Frictionless Incline

A crate of mass m is placed on a frictionless inclined plane of
angle 0. (a) Determine the acceleration of the crate after it is
released.

Solution Because we know the forces acting on the crate,
we can use Newton’s second law to determine its accelera-
tion. (In other words, we have classified the problem; this
gives us a hint as to the approach to take.) We make a sketch
as in Figure 5.12a and then construct the free-body diagram
for the crate, as shown in Figure 5.12b. The only forces acting
on the crate are the normal force n exerted by the inclined
plane, which acts perpendicular to the plane, and the force
of gravity F, = mg, which acts vertically downward. For prob-
lems involving inclined planes, it is convenient to choose the
coordinate axes with x downward along the incline and y per-
pendicular to it, as shown in Figure 5.12b. (It is possible to
solve the problem with “standard” horizontal and vertical
axes. You may want to try this, just for practice.) Then, we re-

mg cos 0

0\7/ mg

~
/ ~
~

(a) (b)

Figure 5.12 (a) A crate of mass m sliding down a frictionless in-
cline. (b) The free-body diagram for the crate. Note that its accelera-
tion along the incline is gsin 6.

place the force of gravity by a component of magnitude
mg sin 0 along the positive x axis and by one of magnitude
mg cos 0 along the negative y axis.

Now we apply Newton’s second law in component form,
noting that a, = 0:

(1) EF,C= mgsin 0 = ma,
(2) EFy= n — mgcos 6 =0

Solving (1) for a,, we see that the acceleration along the incline
is caused by the component of Fy directed down the incline:

(3) a, = gsin 0

Note that this acceleration component is independent of the
mass of the crate! It depends only on the angle of inclination
and on g.

From (2) we conclude that the component of F, perpendic-
ular to the incline is balanced by the normal force; that is, n =
mg cos 6. This is one example of a situation in which the nor-
mal force is not equal in magnitude to the weight of the object.

Special Cases Looking over our results, we see that in the
extreme case of 6 = 90°, a, = g and n = 0. This condition
corresponds to the crate’s being in free fall. When 6 = 0,
a, = 0 and n = mg (its maximum value); in this case, the
crate is sitting on a horizontal surface.

(b) Suppose the crate is released from rest at the top of
the incline, and the distance from the front edge of the crate
to the bottom is d. How long does it take the front edge to
reach the bottom, and what is its speed just as it gets there?

Solution Because a, = constant, we can apply Equation
211, xp— x; = vyt + %axtg, to analyze the crate’s motion.
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With the displacement x; — x; = d and v,; = 0, we obtain

d= %axt2

O
Ay gsin 6

Using Equation 2.12, vfo =uv,2+ 2a(x;— x;), with v,; = 0,
we find that

vfo = 2a,d
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(5)  uy="2a,d= \2gdsin 6

We see from equations (4) and (5) that the time ¢ needed to
reach the bottom and the speed vy, like acceleration, are in-
dependent of the crate’s mass. This suggests a simple method
you can use to measure g, using an inclined air track: Mea-
sure the angle of inclination, some distance traveled by a cart
along the incline, and the time needed to travel that dis-
tance. The value of gcan then be calculated from (4).

EXAMPLE 5.7 One Block Pushes Another

Two blocks of masses m; and mg are placed in contact with
each other on a frictionless horizontal surface. A constant
horizontal force F is applied to the block of mass m;. (a) De-
termine the magnitude of the acceleration of the two-block
system.

Solution Common sense tells us that both blocks must ex-
perience the same acceleration because they remain in con-
tact with each other. Just as in the preceding example, we
make a labeled sketch and free-body diagrams, which are
shown in Figure 5.13. In Figure 5.13a the dashed line indi-
cates that we treat the two blocks together as a system. Be-
cause F is the only external horizontal force acting on the sys-
tem (the two blocks), we have

EFx(system) =F= (m + mo)a,

F
(1) Uy = """
my + mo
F /// \\\
—— M m2| )
(a)
m
Dy
y
F P’ P
— —
X
my Mo
mg 28

(b) (c)
Figure 5.13

Treating the two blocks together as a system simplifies the
solution but does not provide information about internal
forces.

(b) Determine the magnitude of the contact force be-
tween the two blocks.

Solution To solve this part of the problem, we must treat
each block separately with its own free-body diagram, as in
Figures 5.13b and 5.13c. We denote the contact force by P.
From Figure 5.13c, we see that the only horizontal force act-
ing on block 2 is the contact force P (the force exerted by
block 1 on block 2), which is directed to the right. Applying
Newton’s second law to block 2 gives

@) Y F.=P=mga,

Substituting into (2) the value of a, given by (1), we obtain

my
(3) P=moa, = |—2—|F
my A mo

From this result, we see that the contact force P exerted by
block 1 on block 2 is less than the applied force F. This is con-
sistent with the fact that the force required to accelerate
block 2 alone must be less than the force required to pro-
duce the same acceleration for the two-block system.

It is instructive to check this expression for P by consider-
ing the forces acting on block 1, shown in Figure 5.13b. The
horizontal forces acting on this block are the applied force F
to the right and the contact force P’ to the left (the force ex-
erted by block 2 on block 1). From Newton’s third law, P’ is
the reaction to P, so that |P’| = |P|. Applying Newton’s sec-
ond law to block 1 produces

(4)  YF,=F-P =F—P=ma,



