4.1 The Displacement, Velocity, and Acceleration Vectors

n this chapter we deal with the kinematics of a particle moving in two dimen-
sions. Knowing the basics of two-dimensional motion will allow us to examine —
in future chapters—a wide variety of motions, ranging from the motion of satel-

lites in orbit to the motion of electrons in a uniform electric field. We begin by
studying in greater detail the vector nature of displacement, velocity, and accelera-
tion. As in the case of one-dimensional motion, we derive the kinematic equations
for two-dimensional motion from the fundamental definitions of these three quan-
tities. We then treat projectile motion and uniform circular motion as special cases
of motion in two dimensions. We also discuss the concept of relative motion,
which shows why observers in different frames of reference may measure different
displacements, velocities, and accelerations for a given particle.

4.1 _~ THE DISPLACEMENT, VELOCITY, AND
ACCELERATION VECTORS

In Chapter 2 we found that the motion of a particle moving along a straight line is
completely known if its position is known as a function of time. Now let us extend
this idea to motion in the xy plane. We begin by describing the position of a parti-
cle by its position vector r, drawn from the origin of some coordinate system to the
particle located in the xy plane, as in Figure 4.1. At time ¢; the particle is at point
®, and at some later time { it is at point ®. The path from ® to ® is not neces-
sarily a straight line. As the particle moves from ® to in the time interval
At = tp— 1, its position vector changes from r; to ry. As we learned in Chapter 2,
displacement is a vector, and the displacement of the particle is the difference be-
tween its final position and its initial position. We now formally define the dis-
placement vector Ar for the particle of Figure 4.1 as being the difference be-
tween its final position vector and its initial position vector:

Ar=r,—r, (4.1)

The direction of Ar is indicated in Figure 4.1. As we see from the figure, the mag-
nitude of Ar is less than the distance traveled along the curved path followed by
the particle.

As we saw in Chapter 2, it is often useful to quantify motion by looking at the
ratio of a displacement divided by the time interval during which that displace-
ment occurred. In two-dimensional (or three-dimensional) kinematics, everything
is the same as in one-dimensional kinematics except that we must now use vectors
rather than plus and minus signs to indicate the direction of motion.

We define the average velocity of a particle during the time interval At as the
displacement of the particle divided by that time interval:
Ar
At

(4.2)

v

Multiplying or dividing a vector quantity by a scalar quantity changes only the mag-
nitude of the vector, not its direction. Because displacement is a vector quantity
and the time interval is a scalar quantity, we conclude that the average velocity is a
vector quantity directed along Ar.

Note that the average velocity between points is independent of the path taken.
This is because average velocity is proportional to displacement, which depends
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Figure 4.1 A particle moving in
the xy plane is located with the po-
sition vector r drawn from the ori-
gin to the particle. The displace-
ment of the particle as it moves
from ® to ® in the time interval
At = t;— (;is equal to the vector
Ar =1/ — ;.
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Y Direction of v at ® Figure 4.2  As a particle moves be-
tween two points, its average velocity is
in the direction of the displacement vec-
tor Ar. As the end point of the path is
moved from ® to ®’ to ®", the respec-
tive displacements and corresponding
time intervals become smaller and
smaller. In the limit that the end point
approaches ®, At approaches zero, and
the direction of Ar approaches that of
the line tangent to the curve at ®. By
definition, the instantaneous velocity at
® is in the direction of this tangent
line.

only on the initial and final position vectors and not on the path taken. As we did
with one-dimensional motion, we conclude that if a particle starts its motion at
some point and returns to this point via any path, its average velocity is zero for
this trip because its displacement is zero.

Consider again the motion of a particle between two points in the xy plane, as
shown in Figure 4.2. As the time interval over which we observe the motion be-
comes smaller and smaller, the direction of the displacement approaches that of
the line tangent to the path at ®.

The instantaneous velocity v is defined as the limit of the average velocity
Ar/Atas At approaches zero:

Ar dr
= — 4.
0l (4.3)

v= lim —
A—0 At

That is, the instantaneous velocity equals the derivative of the position vector with
respect to time. The direction of the instantaneous velocity vector at any point in a
particle’s path is along a line tangent to the path at that point and in the direction
of motion (Fig. 4.3).

The magnitude of the instantaneous velocity vector v = |v| is called the speed,
which, as you should remember, is a scalar quantity.

Figure 4.3 A particle moves
from position @ to position ®.
Its velocity vector changes from
v; to vy. The vector diagrams at
the upper right show two ways
of determining the vector Av
from the initial and final
velocities.




4.2 Two-Dimensional Motion with Constant Acceleration

As a particle moves from one point to another along some path, its instanta-
neous velocity vector changes from v; at time {; to v, at time #. Knowing the veloc-
ity at these points allows us to determine the average acceleration of the particle:

The average acceleration of a particle as it moves from one position to an-
other is defined as the change in the instantaneous velocity vector Av divided by
the time A¢ during which that change occurred:

V/ -V; _ Av

a

tr—t At

(4.4) Average acceleration

Because it is the ratio of a vector quantity Av and a scalar quantity A¢, we conclude
that average acceleration a is a vector quantity directed along Av. As indicated in
Figure 4.3, the direction of Av is found by adding the vector — v; (the negative of
v;) to the vector vy, because by definition Av = ViV

When the average acceleration of a particle changes during different time in-
tervals, it is useful to define its instantaneous acceleration a:

The instantaneous acceleration a is defined as the limiting value of the ratio
Av/Atas Atapproaches zero:

. Av dv

m —— = (4.5) Instantaneous acceleration
At—0 At

a= —
di

(@ In other words, the instantaneous acceleration equals the derivative of the velocity
35 vector with respect to time.

It is important to recognize that various changes can occur when a particle ac-
celerates. First, the magnitude of the velocity vector (the speed) may change with
time as in straight-line (one-dimensional) motion. Second, the direction of the ve-
locity vector may change with time even if its magnitude (speed) remains constant,
as in curved-path (two-dimensional) motion. Finally, both the magnitude and the
direction of the velocity vector may change simultaneously.

The gas pedal in an automobile is called the accelerator. (a) Are there any other controls in an
automobile that can be considered accelerators? (b) When is the gas pedal not an accelerator?

4.2 _~ TWO-DIMENSIONAL MOTION WITH
CONSTANT ACCELERATION

Let us consider two-dimensional motion during which the acceleration remains
constant in both magnitude and direction.
The position vector for a particle moving in the xy plane can be written

r = xi+ yj (4.6)

where %, y, and r change with time as the particle moves while i and j remain con-
stant. If the position vector is known, the velocity of the particle can be obtained
from Equations 4.3 and 4.6, which give

v =u,d+ vj (4.7)



