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KIRCHHOFF’S RULES
As we saw in the preceding section, we can analyze simple circuits using the ex-
pression �V � IR and the rules for series and parallel combinations of resistors.
Very often, however, it is not possible to reduce a circuit to a single loop. The pro-
cedure for analyzing more complex circuits is greatly simplified if we use two prin-
ciples called Kirchhoff ’s rules:

28.3

Suppose that all the bulbs in a 50-bulb miniature-light
string are operating. A 2.4-V potential drop occurs across each
bulb because the bulbs are in series. The power input to this
style of bulb is 0.34 W, so the total power supplied to the
string is only 17 W. We calculate the filament resistance at 
the operating temperature to be (2.4 V)2/(0.34 W) � 17 �.
When the bulb fails, the resistance across its terminals is re-
duced to zero because of the alternate jumper connection
mentioned in the preceding paragraph. All the other bulbs
not only stay on but glow more brightly because the total resis-
tance of the string is reduced and consequently the current in
each bulb increases.

Let us assume that the operating resistance of a bulb re-
mains at 17 � even though its temperature rises as a result of
the increased current. If one bulb fails, the potential drop
across each of the remaining bulbs increases to 2.45 V, the
current increases from 0.142 A to 0.145 A, and the power in-
creases to 0.354 W. As more lights fail, the current keeps ris-
ing, the filament of each bulb operates at a higher tempera-
ture, and the lifetime of the bulb is reduced. It is therefore a
good idea to check for failed (nonglowing) bulbs in such a
series-wired string and replace them as soon as possible, in or-
der to maximize the lifetimes of all the bulbs.

it failed, each bulb would represent a parallel circuit; in this
circuit, the current would flow through the alternate connec-
tion, forming a short circuit, and the bulb would not glow.)
When the filament breaks in one of these miniature light-
bulbs, 120 V appears across the bulb because no current is
present in the bulb and therefore no drop in potential occurs
across the other bulbs. Inside the lightbulb, a small loop cov-
ered by an insulating material is wrapped around the fila-
ment leads. An arc burns the insulation and connects the fila-
ment leads when 120 V appears across the bulb—that is,
when the filament fails. This “short” now completes the cir-
cuit through the bulb even though the filament is no longer
active (Fig. 28.10).
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Figure 28.10 (a) Schematic diagram of
a modern “miniature” holiday lightbulb,
with a jumper connection to provide a cur-
rent path if the filament breaks. (b) A
Christmas-tree lightbulb.

(b)

13.4

1. The sum of the currents entering any junction in a circuit must equal the
sum of the currents leaving that junction:

(28.9)�I in � �Iout



Kirchhoff’s first rule is a statement of conservation of electric charge. All cur-
rent that enters a given point in a circuit must leave that point because charge can-
not build up at a point. If we apply this rule to the junction shown in Figure
28.11a, we obtain

Figure 28.11b represents a mechanical analog of this situation, in which water
flows through a branched pipe having no leaks. The flow rate into the pipe equals
the total flow rate out of the two branches on the right.

Kirchhoff’s second rule follows from the law of conservation of energy. Let us
imagine moving a charge around the loop. When the charge returns to the start-
ing point, the charge–circuit system must have the same energy as when the
charge started from it. The sum of the increases in energy in some circuit ele-
ments must equal the sum of the decreases in energy in other elements. The po-
tential energy decreases whenever the charge moves through a potential drop �IR
across a resistor or whenever it moves in the reverse direction through a source of
emf. The potential energy increases whenever the charge passes through a battery
from the negative terminal to the positive terminal. Kirchhoff’s second rule ap-
plies only for circuits in which an electric potential is defined at each point; this
criterion may not be satisfied if changing electromagnetic fields are present, as we
shall see in Chapter 31.

In justifying our claim that Kirchhoff’s second rule is a statement of conserva-
tion of energy, we imagined carrying a charge around a loop. When applying this
rule, we imagine traveling around the loop and consider changes in electric potential,
rather than the changes in potential energy described in the previous paragraph.
You should note the following sign conventions when using the second rule:

• Because charges move from the high-potential end of a resistor to the low-
potential end, if a resistor is traversed in the direction of the current, the
change in potential �V across the resistor is �IR (Fig. 28.12a).

• If a resistor is traversed in the direction opposite the current, the change in po-
tential �V across the resistor is � IR (Fig. 28.12b).

• If a source of emf (assumed to have zero internal resistance) is traversed in the
direction of the emf (from � to �), the change in potential �V is �� (Fig.
28.12c). The emf of the battery increases the electric potential as we move
through it in this direction.

• If a source of emf (assumed to have zero internal resistance) is traversed in the
direction opposite the emf (from � to �), the change in potential �V is ��
(Fig. 28.12d). In this case the emf of the battery reduces the electric potential as
we move through it.

Limitations exist on the numbers of times you can usefully apply Kirchhoff’s
rules in analyzing a given circuit. You can use the junction rule as often as you
need, so long as each time you write an equation you include in it a current that
has not been used in a preceding junction-rule equation. In general, the number
of times you can use the junction rule is one fewer than the number of junction

I1 � I2 � I3
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2. The sum of the potential differences across all elements around any closed
circuit loop must be zero:

(28.10)�
closed
loop

 �V � 0

QuickLab
Draw an arbitrarily shaped closed
loop that does not cross over itself.
Label five points on the loop a, b, c, d,
and e, and assign a random number
to each point. Now start at a and
work your way around the loop, cal-
culating the difference between each
pair of adjacent numbers. Some of
these differences will be positive, and
some will be negative. Add the differ-
ences together, making sure you accu-
rately keep track of the algebraic
signs. What is the sum of the differ-
ences all the way around the loop?

Gustav Kirchhoff (1824– 1887)
Kirchhoff, a professor at Heidelberg,
Germany, and Robert Bunsen in-
vented the spectroscope and founded
the science of spectroscopy, which
we shall study in Chapter 40. They
discovered the elements cesium and
rubidium and invented astronomical
spectroscopy. Kirchhoff formulated
another Kirchhoff’s rule, namely, “a
cool substance will absorb light of the
same wavelengths that it emits when
hot.” (AIP ESVA/W. F. Meggers Collection)
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points in the circuit. You can apply the loop rule as often as needed, so long as a
new circuit element (resistor or battery) or a new current appears in each new
equation. In general, in order to solve a particular circuit problem, the num-
ber of independent equations you need to obtain from the two rules equals
the number of unknown currents.

Complex networks containing many loops and junctions generate great num-
bers of independent linear equations and a correspondingly great number of un-
knowns. Such situations can be handled formally through the use of matrix alge-
bra. Computer programs can also be written to solve for the unknowns.

The following examples illustrate how to use Kirchhoff’s rules. In all cases, it is
assumed that the circuits have reached steady-state conditions—that is, the cur-
rents in the various branches are constant. Any capacitor acts as an open circuit;
that is, the current in the branch containing the capacitor is zero under steady-
state conditions.
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Figure 28.11 (a) Kirchhoff’s
junction rule. Conservation of
charge requires that all current en-
tering a junction must leave that
junction. Therefore, 
(b) A mechanical analog of the
junction rule: the amount of water
flowing out of the branches on the
right must equal the amount flow-
ing into the single branch on the
left.

I 1 � I 2 � I 3 .
Figure 28.12 Rules for determin-
ing the potential changes across a
resistor and a battery. (The battery
is assumed to have no internal re-
sistance.) Each circuit element is
traversed from left to right.

Problem-Solving Hints
Kirchhoff’s Rules
• Draw a circuit diagram, and label all the known and unknown quantities.

You must assign a direction to the current in each branch of the circuit. Do
not be alarmed if you guess the direction of a current incorrectly; your re-
sult will be negative, but its magnitude will be correct. Although the assignment
of current directions is arbitrary, you must adhere rigorously to the assigned
directions when applying Kirchhoff’s rules.

• Apply the junction rule to any junctions in the circuit that provide new rela-
tionships among the various currents.
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A Single-Loop CircuitEXAMPLE 28.7

Solving for I and using the values given in Figure 28.13, we
obtain

The negative sign for I indicates that the direction of the cur-
rent is opposite the assumed direction.

(b) What power is delivered to each resistor? What power
is delivered by the 12-V battery?

Solution

Hence, the total power delivered to the resistors is

The 12-V battery delivers power Half of this
power is delivered to the two resistors, as we just calculated.
The other half is delivered to the 6-V battery, which is being
charged by the 12-V battery. If we had included the internal
resistances of the batteries in our analysis, some of the power
would appear as internal energy in the batteries; as a result,
we would have found that less power was being delivered to
the 6-V battery.

I�2 � 4.0 W.
�1 � �2 � 2.0 W.

1.1 W�2 � I 2R 2 � (0.33 A)2(10 �) �

0.87 W�1 � I 2R 1 � (0.33 A)2(8.0 �) �

�0.33 AI �
�1 � �2

R 1 � R 2
�

6.0 V � 12 V
8.0 � � 10 �

�

�1 � IR 1 � �2 � IR 2 � 0

 �  �V � 0A single-loop circuit contains two resistors and two batteries,
as shown in Figure 28.13. (Neglect the internal resistances of
the batteries.) (a) Find the current in the circuit.

Solution We do not need Kirchhoff’s rules to analyze this
simple circuit, but let us use them anyway just to see how they
are applied. There are no junctions in this single-loop circuit;
thus, the current is the same in all elements. Let us assume
that the current is clockwise, as shown in Figure 28.13. Tra-
versing the circuit in the clockwise direction, starting at a, we
see that a : b represents a potential change of ��1 , b : c
represents a potential change of �IR1 , c : d represents a po-
tential change of ��2 , and d : a represents a potential
change of �IR2 . Applying Kirchhoff’s loop rule gives

Applying Kirchhoff’s RulesEXAMPLE 28.8
We now have one equation with three unknowns— I1 , I2 , and
I3 . There are three loops in the circuit—abcda, befcb, and
aefda. We therefore need only two loop equations to deter-
mine the unknown currents. (The third loop equation would
give no new information.) Applying Kirchhoff’s loop rule to
loops abcda and befcb and traversing these loops clockwise, we
obtain the expressions

(2) abcda 10 V � (6 �)I1 � (2 �)I3 � 0

(3) befcb � 14 V � (6 �)I1 � 10 V � (4 �)I2 � 0

Find the currents I1 , I2 , and I3 in the circuit shown in Figure
28.14.

Solution Notice that we cannot reduce this circuit to a
simpler form by means of the rules of adding resistances in
series and in parallel. We must use Kirchhoff’s rules to ana-
lyze this circuit. We arbitrarily choose the directions of the
currents as labeled in Figure 28.14. Applying Kirchhoff’s
junction rule to junction c gives

(1) I1 � I2 � I3

• Apply the loop rule to as many loops in the circuit as are needed to solve for
the unknowns. To apply this rule, you must correctly identify the change in
potential as you imagine crossing each element in traversing the closed loop
(either clockwise or counterclockwise). Watch out for errors in sign!

• Solve the equations simultaneously for the unknown quantities.

a b
I

cd

  1 = 6.0 V

+–

R 1 = 8.0 ΩR 2 = 10 Ω

  2 = 12 V

+–
ε

ε

Figure 28.13 A series circuit containing two batteries and two re-
sistors, where the polarities of the batteries are in opposition.
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Figure 28.14 A circuit containing three loops.

A Multiloop CircuitEXAMPLE 28.9

Because our value for I2 is negative, we conclude that the di-
rection of I2 is from c to f through the 3.00-� resistor. Despite

�0.364 AI2 � �
4.00 V
11.0 �

�
(a) Under steady-state conditions, find the unknown currents
I1 , I2 , and I3 in the multiloop circuit shown in Figure 28.15.

Solution First note that because the capacitor represents
an open circuit, there is no current between g and b along
path ghab under steady-state conditions. Therefore, when the
charges associated with I1 reach point g, they all go through
the 8.00-V battery to point b ; hence, Labeling the
currents as shown in Figure 28.15 and applying Equation 28.9
to junction c, we obtain

(1)

Equation 28.10 applied to loops defcd and cfgbc, traversed
clockwise, gives

(2) defcd 4.00 V � (3.00 �)I2 � (5.00 �)I3 � 0

(3) cfgbc (3.00 �)I2 � (5.00 �)I1 � 8.00 V � 0

From Equation (1) we see that which, when
substituted into Equation (3), gives

(4) (8.00 �)I2 � (5.00 �)I3 � 8.00 V � 0

Subtracting Equation (4) from Equation (2), we eliminate I3
and find that

I1 � I3 � I2 ,

I1 � I2 � I3

I gb � I1 .

Note that in loop befcb we obtain a positive value when travers-
ing the 6-� resistor because our direction of travel is opposite
the assumed direction of I1 .

Expressions (1), (2), and (3) represent three independent
equations with three unknowns. Substituting Equation (1)
into Equation (2) gives

(4) 10 V � (8 �)I1 � (2 �)I2

Dividing each term in Equation (3) by 2 and rearranging
gives

10 V � (6 �)I1 � (2 �) (I1 � I2) � 0

(5)

Subtracting Equation (5) from Equation (4) eliminates I2 ,
giving

Using this value of I1 in Equation (5) gives a value for I2 :

Finally,

The fact that I2 and I3 are both negative indicates only that
the currents are opposite the direction we chose for them.
However, the numerical values are correct. What would have
happened had we left the current directions as labeled in Fig-
ure 28.14 but traversed the loops in the opposite direction?

Exercise Find the potential difference between points b
and c .

Answer 2 V.

�1 AI3 � I1 � I2 �

�3 A I2 �

(2 �)I2 � (3 �)I1 � 12 V � (3 �) (2 A) � 12 V � �6 V

2 A I1 �

22 V � (11 �)I1

�12 V � �(3 �)I1 � (2 �)I2

4.00 V
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Figure 28.15 A multiloop circuit. Kirchhoff’s loop rule can be ap-
plied to any closed loop, including the one containing the capacitor.


