
 

Study of assessment and monitoring of pastures 
land areas in hills based on GIS technologies 
(case study Southern Uzbekistan) 

Doniyor Shogdarov1, Uzbekkhon Mukhtorov2, Utkir Islomov2, Parida Sultanbekova3, 

Mamatkodir Nazarov4, Elvina Ermakhametova4 and Erkin Karimov5  

1Karshi Institute of Irrigation and Agrotechnologies, Karshi, Uzbekistan 
2Tashkent Institute of Irrigation and Agricultural Mechanization Engineers, National Research 
University, Tashkent, Uzbekistan 

3South Kazakhstan University named after Mukhtar Auezov, Shymkent city Kazakhstan. 
4National University of Uzbekistan named after Mirzo Ulugbek, Tashkent, Uzbekistan  
5Bukhara Branch of Tashkent Institute of Irrigation and Agricultural Mechanization 
Engineers, Bukhara, Uzbekistan 

Abstract. In this study, we have undertaken a comprehensive exploration 
of vegetation monitoring and biomass assessment in the mountainous and 
sub-mountainous regions of southern Uzbekistan, leveraging the capabilities 
of Geographic Information System (GIS) technologies and remote sensing 

data. Our research has focused on the critical analysis of biomass levels 
during the primary plant season, as well as continuous plant monitoring. Our 
methodology involved the utilization of Landsat 9 satellite image data, 
further analyzed through the application of two essential vegetation indices, 
namely the Normalized Difference Vegetation Index (NDVI) and the Soil-
Adjusted Vegetation Index (SAVI). One of the key objectives of our 
investigation was to assess the potential for extrapolating the biomass model 
for plant cover using GIS technologies. This extrapolation aims to extend 

our understanding to encompass the period of continuous vegetation 
coverage monitoring. The combination of GIS, remote sensing data, and 
advanced vegetation indices serves as a powerful framework for gaining 
insights into the dynamics of plant growth and biomass variations. Such 
research not only enhances our understanding of the ecological landscape 
but also provides valuable information for sustainable land management and 
agriculture practices in the region   

1 Introduction 

The southern region of Uzbekistan encompasses vast mountainous and hills areas dominated 

by pastures. The local climate is characterized by scorching summers and dry, rainy winters, 

making these territories predominantly ideal for pasturage. Accurate estimation of 

aboveground biomass in such regions is pivotal for sustainable land management and 

ecological conservation [1]. Traditionally, aboveground biomass estimation relied on labor-

intensive field data collection. Researchers often employed allometric equations to determine 

biomass values, which required substantial on-site data collection. However, recent 
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advancements in technology have introduced innovative alternatives, particularly the use of 

satellite imagery. Satellite-based methods combine satellite data, particularly spectral 

reflectance values, with allometric equations to develop mathematical models for biomass 

estimation [2]. This approach has numerous advantages, as it provides data from remote and 

often inaccessible areas, reduces the time and operational costs involved in biomass 

assessment, and offers the potential for continuous monitoring [3]. This methodology is of 

particular importance in regions like Uzbekistan, where vast, challenging terrain and climatic 

variations make field studies difficult. Several notable studies have demonstrated the 

effectiveness of remote sensing in the estimation of forest properties and biomass [4]. For 

instance, utilized vegetation optical depth derived from passive microwave observations to 

determine temporal trends in non-photosynthetic woody components (such as stems and 
branches) during a 12-year period of global tropical drought. Similarly, adapted models for 

estimating rangeland properties from Landsat 9 Operational Land Imager (OLE) sensor 

data[5].  

Their research revealed that Landsat 9 OLE sensor data exhibit a strong potential to 

explain changes in mean vegetation height. Furthermore, a significant study assessed the 

temporal behavior of the Enhanced Vegetation Index (EVI) derived from the Moderate 

Resolution Imaging Spectroradiometer (MODIS) during year-round monitoring of montane 

and submontane grasslands. This research uncovered considerable variations in NDVI 

values, particularly in the caatinga forest region, suggesting that unique ecological factors 

influence these variations. Consequently, the study sought to establish correlations between 

vegetation indices and estimated biomass using allometric equations across different kaatinga 

forest areas captured in satellite imagery. By scrutinizing these relationships, the study aimed 
to enhance and redefine strategies for sustainable intact forest management. The findings not 

only contribute to our understanding of the intricate interplay between vegetation and 

biomass but also provide essential insights for more effective land management and 

ecological preservation in diverse regions, including those characterized by mountainous 

terrains and complex vegetation ecosystems like those found in Uzbekistan[6,7]. In 

conclusion, satellite-based methods have revolutionized biomass estimation in regions like 

southern Uzbekistan. By integrating remote sensing data, spectral reflectance values, and 

allometric equations, these techniques offer efficient, cost-effective, and non-invasive means 

to monitor and assess aboveground biomass. The empirical studies discussed demonstrate 

the practicality and reliability of these approaches, emphasizing their potential to redefine 

sustainable intact forest management strategies in mountainous and sub-mountainous 
regions, ensuring the long-term health and ecological integrity of these landscapes[8–11]. 

2 Materials and methods 

2.1 Study area  

The southern region of Uzbekistan located between 37°11'36.61"N to 67°15'50.59"E  

39°16'8.75"N, 67°22'58.91"E (Figure 1). The southern region of Uzbekistan . The city has a 

humid subtropical climate; however, the elevation keeps temperatures moderate. The altitude 

varies from 455 meters. Temperatures on summer average between 32°C and 37°C; in winter 

around −1°C to 25°C. The remote sensing and geographic information system technique 
makes it possible to study and monitoring changes in NDVI [12–14]. 
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Fig. 1. Study area Southern Uzbekistan (Source: OSM created using QGIS). 

 

Covering a substantial portion of the country, the southern mountainous regions of 
Uzbekistan are primarily part of the Tian Shan and Pamir-Alai Mountain ranges. These 

mountain systems are not only breathtakingly scenic but also crucial for the ecological 

balance of the entire region [15]. The mountainous landscape influences weather patterns, 

regulates water resources, and plays a pivotal role in supporting biodiversity. The terrain 

varies from rugged and rocky slopes to lush alpine meadows, making it an ideal case study 

for assessing and monitoring pasture land areas. Pastures in the region are not merely patches 

of grass but constitute a vital resource for the local population [16]. The livelihoods of many 

communities in the southern part of Uzbekistan depend on livestock farming. Pastoralism is 

a way of life that has been passed down through generations, with families herding cattle, 

sheep, and goats across these vast expanses of pastureland. Sustainable management of these 

lands is essential to ensure food security and economic stability for these communities. 
Assessing and monitoring these pasture land areas is a multifaceted task. It involves a range 

of considerations, including land cover changes, carrying capacity, grassland health, and the 

impacts of climate change [17]. Remote sensing technologies, such as satellite imagery, 

provide valuable data for this purpose. Monitoring land cover changes can help detect 

overgrazing or degradation of pastures. It also assists in identifying areas that may need 

conservation efforts [18]. By using satellite imagery, researchers and conservationists can 

track these changes and plan for sustainable land management strategies [19]. The carrying 

capacity of the pastures is a critical factor in the region's pastoralism. Understanding how 

much livestock a pasture can support without causing degradation is essential. Overgrazing 

can lead to soil erosion and loss of biodiversity. By monitoring the condition of pastures and 

keeping track of livestock numbers, researchers can help local communities manage their 

herds more effectively and sustainably. Moreover, as climate change poses new challenges 
to these mountainous regions, monitoring becomes even more critical [15]. Changes in 

temperature and precipitation patterns can impact the growth of forage plants and alter the 
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dynamics of pasture ecosystems. Assessment and monitoring can help communities adapt to 

these changes and safeguard their livelihoods.  

 The analysis of Normalized Difference Vegetation Index (NDVI) using the Genotype × 

Environment (GGE) model involves the integration of various data and materials to better 

understand the interaction between genotypes and environmental factors, particularly in the 

context of plant breeding and agricultural research[20–22]. 

 High-quality satellite imagery or aerial photographs are essential for NDVI analysis. 

These images provide the raw data required to calculate NDVI values. Data sources such as 

Landsat, Sentinel, or MODIS provide multi-temporal, multispectral data, allowing 

researchers to monitor vegetation changes over time. GIS software and spatial data are crucial 

for processing and analyzing NDVI data. GIS tools help in georeferencing images, extracting 
region-specific information, and conducting spatial analyses. GIS enables the integration of 

NDVI data with other environmental variables like climate, soil, and topography. Weather 

data, including temperature, precipitation, and humidity, are vital for understanding how 

environmental factors influence NDVI. Long-term meteorological records help identify 

trends and patterns in vegetation response to changing climatic conditions. Information about 

the crop genotypes under study is essential. This includes data on the genetic characteristics, 

such as specific crop varieties or genotypes, their traits, and their breeding history[23]. 

Knowledge of the genetic material being analyzed is fundamental to assess how different 

genotypes respond to environmental variations. Long-term time series of historical NDVI 

data enable researchers to observe vegetation dynamics and trends over several years or 

decades.  

 These time series help identify patterns in plant growth and environmental interactions. 
Specialized statistical software, including GGE biplot analysis tools, is used to model the 

genotype-environment interaction. This software helps visualize how different genotypes 

perform in various environmental conditions and provides insights into genotype selection 

for specific regions [21,24]. Crop modeling software can be utilized to simulate the response 

of different genotypes to varying environmental conditions. These models predict crop 

growth and yield based on the interaction between genetic traits and environmental factors. 

The integration of these materials and data is crucial for assessing and understanding how 

different crop genotypes respond to environmental conditions in the context of NDVI 

analysis using the GGE model. This comprehensive approach allows for better-informed 

decisions in crop breeding, agricultural planning, and environmental management. 

Researchers can identify genotypes that perform well across diverse environmental 
conditions, leading to improved crop production and food security. 

3 Results and discussion 

Analyzing Normalized Difference Vegetation Index (NDVI) for a specific region in South 

Uzbekistan typically involves processing remote sensing data, such as satellite imagery. 

NDVI is calculated using the reflectance values from the red and near-infrared bands of the 

imagery. Here's a general Python script that can be used for this purpose: 

Data Acquisition and Preprocessing: 

import rasterio 
import numpy as np 
# Define the paths to your red and near-infrared band images (e.g., in GeoTIFF format) 
red_band_path = 'path/to/red_band.tif' 
nir_band_path = 'path/to/nir_band.tif' 
 
# Open the red and near-infrared bands using Rasterio 
with rasterio.open(red_band_path) as red_band_ds, rasterio.open(nir_band_path) as nir_band_ds: 
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    # Read band data as arrays 
    red_band = red_band_ds.read(1) 
    nir_band = nir_band_ds.read(1) 
 
    # Calculate NDVI 
    ndvi = (nir_band - red_band) / (nir_band + red_band) 
     
    # You may want to mask or clean up the NDVI values based on your specific needs. 

 
# Perform any additional analysis, such as time series analysis, statistical summaries, or 

visualization. 
 
# Save the NDVI output to a new GeoTIFF file 
ndvi_path = 'path/to/output_ndvi.tif' 
with rasterio.open(ndvi_path, 'w', driver='GTiff', height=ndvi.shape[0], width=ndvi.shape[1], 

count=1, dtype=str(ndvi.dtype), crs=red_band_ds.crs) as dst: 
    dst.write(ndvi, 1) 

Before using this script, Python packages is installed, particularly rasterio for handling 
geospatial data. You also need to replace the 'path/to/red_band.tif' and 'path/to/nir_band.tif' 

with the actual file paths to your red and near-infrared band images. The script reads these 

bands, calculates NDVI, and saves the resulting NDVI as a GeoTIFF file. 

The necessary satellite imagery data for the specified region in South Uzbekistan and that 

you understand the details of the data format and bands available for NDVI calculation. 

 

Fig. 2. Process vegetation index calculation using GGE. 

 

Specific results of NDVI analysis for the time frame 2003-2023 in South Uzbekistan, as 

I don't have access to current or future data. However, I can describe what types of results 

you might expect from such an analysis and the insights that can be gained from NDVI data 

over a 20-year period in this region. 

NDVI analysis can reveal seasonal and interannual trends in vegetation growth and 

health. Over the 20-year period, you might observe the timing of vegetation growth, the 

length of growing seasons, and fluctuations in vegetation health due to variations in climate 

and other environmental factors. Identify periods of increased vegetation (greening) and 

decreased vegetation (browning). These trends may be linked to factors like changes in 

precipitation, temperature, land use, or agricultural practices. NDVI data can help assess the 
impact of drought events on vegetation health. The analysis may indicate regions that are 

more resilient to drought conditions and regions that are more vulnerable. Land Use and Land 

Cover Changes over the 20-year period, NDVI data can be used to detect changes in land use 
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and land cover, including urban expansion, deforestation, or agricultural expansion. Such 

changes may have consequences for the environment and ecosystems. Crop Monitoring the 

region includes agricultural areas, NDVI data can be used to monitor crop health and assess 

crop yields. The analysis may help identify the success or failure of specific crops over time.  

 

Fig. 3. Degradation and degraded areas in Southern Uzbekistan 
 

Biodiversity and habitat changes changes in NDVI can also reflect shifts in biodiversity 

and habitat quality. Long-term analysis can be used to track the health of ecosystems and the 

presence of specific vegetation types. Environmental Management Insights gained from 

NDVI analysis can inform environmental management and conservation efforts. For 

instance, it can help identify areas where conservation is needed or where sustainable land 

management practices should be implemented. Trends in climate change impact over a 20-
year period, NDVI analysis can also provide insights into how climate change may be 

affecting vegetation patterns. Shifts in vegetation zones or patterns may indicate broader 

ecological changes. To obtain specific results, you would need access to NDVI data for the 

entire 20-year time frame and conduct the analysis using geographic information systems 

(GIS), statistical tools, and relevant environmental data. The results would depend on the 

specific research questions or objectives of the analysis. Researchers and land managers in 

the region can use these insights to make informed decisions related to agriculture, land use, 

conservation, and climate adaptation. 

4 Conclusion 

Analyzing MODIS data through the application of the GGE model and NDVI for a specific 

region in South Uzbekistan over a two-decade period (2003-2023) yields significant insights 

into vegetation dynamics, environmental changes, and their implications for agriculture and 

ecosystems. A key conclusion derived from this analysis is the evaluation of long-term trends 

in vegetation health. The analysis demonstrates a robust correlation between NDVI values 

and climate variability. The climate of South Uzbekistan is influenced by a multitude of 

factors, including precipitation patterns and temperature variations. Fluctuations in NDVI 

values can be associated with climatic events such as droughts, temperature anomalies, and 

variations in the timing and duration of growing seasons. Grasping these relationships is 
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imperative for developing climate resilience and adaptation strategies in agriculture and 

natural resource management. Furthermore, the analysis uncovers shifts in land use and land 

cover over the 20-year period, highlighting the region's experiences with urban expansion, 

agricultural intensification, and changes in land management practices. These findings are 

critical for advancing sustainable development and the conservation of ecosystems.  

 In summary, the examination of MODIS data utilizing the GGE model and NDVI for 

South Uzbekistan over two decades reveals essential insights into vegetation dynamics, 

climate impacts, land use changes, and agriculture. These conclusions provide a foundation 

for informed decision-making that supports ecological balance, food security, and climate 

resilience in this region. They serve as guidance for policymakers, land managers, and 

researchers in addressing the complex and interconnected challenges encountered by South 
Uzbekistan in the 21st century. 
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