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Abstract. Vertical oscillations of three loads of different masses 

connected by nonlinear viscoelastic springs (suspensions) are 

considered in the paper. An account for rheological properties of 

the suspension, an integral model with the Koltunov-Rzhanitsyn 

relaxation kernel is used. Effective computational algorithms have 

been developed for solving problems based on the use of 

quadrature formulas. The effect of rheological properties of 

suspension on the mass displacement from the position of static 

equilibrium is investigated as well as the influence of nonlinear 

properties of the suspension on the mode of vibration and 

frequency.  

 

1 Intorduction 

An account for several modes of vibration in nonlinear viscoelastic 

systems is much more complicated than in the systems with one degree of 

freedom, but the results of such an analysis are of undoubted interest. Note 

that one of the important applications of the effect of change in dissipative 

characteristics of mechanical systems is the problem of viscoelastic systems 

with several degrees of freedom. 

2 Problem statement  

mailto:xkarim_60@mail.ru


Let us consider the vertical oscillations of three loads (Fig. 1) of masses  𝑚1,  
𝑚2  and  𝑚3 connected by nonlinear viscoelastic suspensions. Denote the 

displacements of masses 𝑚1,  𝑚2  and  𝑚3  from the position of static 

equilibrium by 𝑥1,  𝑥2  and  𝑥3, and the action force on the suspension mass - 

by F (z). Using the d'Alembert principle and considering the mass fictitious 

equilibrium (Fig. 2), to which the inertial forces and restoring forces are 

applied, we obtain [1, 2]: 

                                       𝑚1𝑥̈1 + 𝐹(𝑥1) − 𝐹(𝑥2 − 𝑥1) = 0, 

𝑚2𝑥̈2 + 𝐹(𝑥2 − 𝑥1) − 𝐹(𝑥3 − 𝑥2) = 0,                                          (1) 

                                                   𝑚3𝑥̈3 + 𝐹(𝑥3 − 𝑥2) = 0. 

 For function 𝐹(𝑧) the following expression is used [3-6]:            

𝐹(𝑧) = 𝑘 {𝑧(1 + 𝛾𝑧2) − ∫ 𝑅(𝑡, 𝜏)𝑧(𝜏)[1 +
𝑡

0

𝛾𝑧2(𝜏)𝑑𝜏]},                                       (2) 

where 𝑘 is the stiffness of suspension; γ  is the coefficient of nonlinearity, 

depending on physical properties of the suspension material; R (t, τ) is the 

relaxation kernel.  

   

 

 

 

 

 

                  

 

 

 

Fig. 1. Vertical oscillations of three loads 
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Fig. 2. The mass fictitious equilibrium 

If 𝑘1,  𝑘2  and  𝑘3 are the stiffness of the first, second and third suspension, 

then, with (2), the system (1) has the form[3,4]: 

𝑥̈1 + 𝜔1
2𝑥1 = 𝜔21

2 (𝑥2 − 𝑥1)[1 + 𝛾2(𝑥2 − 𝑥1)2] − 𝜔1
2𝛾1𝑥1

2 + 

+𝜔1
2 ∫ 𝑅1(𝑡, 𝜏)𝑥1(𝜏)[1 + 𝛾1𝑥1

2(𝜏)]𝑑𝜏

𝑡

0

− 

−𝜔21
2 ∫ 𝑅2(𝑡, 𝜏)[𝑥2(𝜏) − 𝑥1(𝜏)]{1 + 𝛾2[𝑥2(𝜏) − 𝑥1(𝜏)]2}𝑑𝜏

𝑡

0

, 

𝑥̈2 + 𝜔2
2𝑥2 = 𝜔2

2𝑥1[1 + 𝛾2(𝑥2 − 𝑥1)2] + 𝜔32
2 (𝑥3 − 𝑥2)[1 + 𝛾3(𝑥3 −

𝑥2)2] −  (3) 

−𝜔2
2𝛾2𝑥2(𝑥2 − 𝑥1)2

+ 𝜔2
2 ∫ 𝑅2(𝑡, 𝜏)[𝑥2(𝜏) − 𝑥1(𝜏)]

𝑡

0

∙ {1 + 𝛾2[𝑥2(𝜏) − 𝑥1(𝜏)]2}𝑑𝜏 − 

𝑚3𝑥̈3 

 

 

F(x2 - x1) 

F(x3 – x2) 

𝑚1𝑥̈1  

𝑚2𝑥̈2 



−𝜔32
2 ∫ 𝑅3(𝑡, 𝜏)[𝑥3(𝜏) − 𝑥2(𝜏)] ∙ {1 + 𝛾3[𝑥3(𝜏) − 𝑥2(𝜏)]2}𝑑𝜏

𝑡

0

, 

𝑥̈3 + 𝜔3
2𝑥3 = 𝜔3

2𝑥2[1 + 𝛾3(𝑥3 − 𝑥2)2] − 𝜔3
2𝛾3𝑥3(𝑥3 − 𝑥2)2 + 

+𝜔3
2 ∫ 𝑅3(𝑡, 𝜏)[𝑥3(𝜏) − 𝑥2(𝜏)]{1 + 𝛾3[𝑥3(𝜏) − 𝑥2(𝜏)]2}𝑑𝜏

𝑡

0

, 

where    𝜔𝑖
2 =

𝑘𝑖

𝑚𝑖
,     𝑖 = 1,2,3;    𝜔21

2 =
𝑘2

𝑚1
,   𝜔32

2 =
𝑘3

𝑚2
. 

Let the initial values of the mass displacements and their velocity be given as 

𝑥𝑖(0) = 𝑥𝑖0,   𝑥̇𝑖(0) = 𝜗𝑖0,  𝑖 = 1,2,3.  

3 Methods 

System (3) is solved by the methods based on the use of the quadrature 

formula [7-20]. Integrating system (3) twice over t on the interval [0; t] 

we have: 

 𝑥1(𝑡) = 𝑥10 + 𝜗10𝑡 + ∫ (𝑡 − 𝑠){𝜔21
2 [𝑥2(𝑠) − 𝑥1(𝑠)][1 +

𝑡

0

𝛾2[𝑥2(𝑠) − 𝑥1(𝑠)]2] − 

 −𝜔1
2𝑥1(𝑠) − 𝜔1

2𝛾1𝑥1
2(𝑠)}𝑑𝑠 + 𝜔1

2 ∫ Г1(𝑡 − 𝑠)𝑥1(𝑠)[1 +
𝑡

0

𝛾1𝑥1
2(𝑠)]𝑑𝑠 − 

 −𝜔21
2 ∫ Г2(𝑡 − 𝑠)[𝑥2(𝑠) − 𝑥1(𝑠)]{1 + 𝛾2[𝑥2(𝑠) − 𝑥1(𝑠)]2}𝑑𝑠,

𝑡

0
 

 𝑥2(𝑡) = 𝑥20 + 𝜗20𝑡 + ∫ (𝑡 − 𝑠){𝜔2
2𝑥1(𝑠)[1 + 𝛾2[𝑥2(𝑠) −

𝑡

0

𝑥1(𝑠)]2] − 𝜔2
2𝑥2(𝑠) + 

 +𝜔32
2 [𝑥3(𝑠) − 𝑥2(𝑠)]{1 + 𝛾3[𝑥3(𝑠) − 𝑥2(𝑠)]2} −

𝜔2
2𝛾2𝑥2(𝑠)[𝑥2(𝑠) − 𝑥1(𝑠)]2}𝑑𝑠 + 

 +𝜔2
2 ∫ Г2(𝑡 − 𝑠)[𝑥2(𝑠) − 𝑥1(𝑠)]{1 + 𝛾2[𝑥2(𝑠) − 𝑥1(𝑠)]2}𝑑𝑠 −

𝑡

0
 

 −𝜔32
2 ∫ Г3(𝑡 − 𝑠)[𝑥3(𝑠) − 𝑥2(𝑠)]{1 + 𝛾3[𝑥3(𝑠) − 𝑥2(𝑠)]2}𝑑𝑠,

𝑡

0
 



 𝑥3(𝑡) = 𝑥30 + 𝜗30𝑡 + ∫ (𝑡 − 𝑠){𝜔2
2𝑥2(𝑠)[1 + 𝛾3[𝑥3(𝑠) −

𝑡

0

𝑥2(𝑠)]2] − 𝜔3
2𝑥3(𝑠) − 

 −𝜔3
2𝛾3𝑥3(𝑠)[𝑥3(𝑠) − 𝑥2(𝑠)]2}𝑑𝑠 + 𝜔3

2 ∫ Г3(𝑡 − 𝑠)[𝑥3(𝑠) −
𝑡

0

𝑥2(𝑠)][1 + 𝛾3[𝑥3(𝑠) − 𝑥2(𝑠)]2]𝑑𝑠, 

 where 

Г𝑖(𝑡 − 𝑠) = ∫ (𝑡 − 𝑠 − 𝜏)𝑅𝑖(𝜏)𝑑𝜏

𝑡−𝑠

0

,   (𝑖 = 1,3);     𝑅𝑖(𝑡)

= 𝜀𝑖𝑒−𝛽𝑖𝑡 ∙ 𝑡𝛼𝑖−1. 

In the latter system, replacing the integrals with the quadrature formulas of 

the trapezoid, to determine the load displacement from the position of static 

equilibrium 𝑥1𝑖 = 𝑥1(𝑡𝑖), 𝑥2𝑖 = 𝑥2(𝑡𝑖) и 𝑥3𝑖 = 𝑥3(𝑡𝑖) (𝑖 = 1,2,3, … ), we 

have the following recurrent ratio: 

 𝑥1𝑛 = 𝑥10 + 𝜗10𝑡𝑛 + ∑ 𝐴𝑖(𝑡𝑛 − 𝑡𝑖)𝑛−1
𝑖=0 {𝜔21

2 (𝑥2𝑖 − 𝑥1𝑖)[1 +

𝛾2(𝑥2𝑖 − 𝑥1𝑖)2] − 𝜔1
2𝑥1𝑖 − 𝜔1

2𝛾1𝑥1𝑖
2 } + 

 +𝜔1
2 ∑ 𝐴𝑖Г1(𝑡𝑛 − 𝑡𝑖)𝑛−1

𝑖=0 𝑥1𝑖(1 + 𝛾1𝑥1𝑖
2 ) − 𝜔21

2 ∑ 𝐴𝑖Г2(𝑡𝑛 −𝑛−1
𝑖=0

𝑡𝑖) (𝑥2𝑖 − 𝑥1𝑖)[1 + 𝛾2(𝑥2𝑖 − 𝑥1𝑖)2], 

 𝑥2𝑛 = 𝑥20 + 𝜗20𝑡𝑛 + ∑ 𝐴𝑖(𝑡𝑛 − 𝑡𝑖)𝑛−1
𝑖=0 {𝜔2

2𝑥1𝑖[1 + 𝛾2(𝑥2𝑖 −
𝑥1𝑖)2] − 𝜔2

2𝑥2𝑖 + 

 +𝜔32
2 (𝑥3𝑖 − 𝑥2𝑖)[1 + 𝛾3(𝑥3𝑖 − 𝑥2𝑖)2] − 𝜔2

2𝛾2𝑥2𝑖(𝑥2𝑖 − 𝑥1𝑖)2} + 

 +𝜔2
2 ∑ 𝐴𝑖Г2(𝑡𝑛 − 𝑡𝑖)𝑛−1

𝑖=0 (𝑥2𝑖 − 𝑥1𝑖)[1 + 𝛾2(𝑥2𝑖 − 𝑥1𝑖)2] − 

 −𝜔32
2 ∑ 𝐴𝑖Г3(𝑡𝑛 − 𝑡𝑖)𝑛−1

𝑖=0 (𝑥3𝑖 − 𝑥2𝑖)[1 + 𝛾3(𝑥3𝑖 − 𝑥2𝑖)2], 

 𝑥3𝑛 = 𝑥30 + 𝜗30𝑡𝑛 + ∑ 𝐴𝑖(𝑡𝑛 − 𝑡𝑖)𝑛−1
𝑖=0 {𝜔3

2𝑥2𝑖[1 + 𝛾3(𝑥3𝑖 −
𝑥2𝑖)2] − 𝜔3

2𝑥3𝑖 − 

 −𝜔3
2𝛾3𝑥3𝑖(𝑥3𝑖 − 𝑥2𝑖)2} + 𝜔3

2 ∑ 𝐴𝑖Г3(𝑡𝑛 − 𝑡𝑖)𝑛−1
𝑖=0 (𝑥3𝑖 − 𝑥2𝑖)[1 +

𝛾3(𝑥3𝑖 − 𝑥2𝑖)2], 

 where  𝐴0 = 𝐴𝑛 =
∆𝑡

2
;   𝐴𝑗 = ∆𝑡, 𝑗 = 1, 𝑛 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . 

 



4 Results and summary 

To conduct a computational experiment, a computer program was 

developed, in which the results obtained are reflected in the form of graphs. 

In calculations, the following initial data were used: : 𝑥10 = 𝑥20 = 0;  𝑥30 =
1; 𝜗10 = 𝜗20 = 𝜗30 = 0; 𝜔1

2 = 𝜔2
2 = 𝜔3

2 = 𝜔21
2 = 𝜔32

2 = 1; 𝛼1 = 𝛼2 =
𝛼3 = 0.25; 𝛽1 = 𝛽2 = 𝛽3 = 0.05; 𝜀1 = 𝜀2 = 𝜀3 = 0.05; 𝛾1 = 𝛾2 = 𝛾3 =
0.462.  Figures 3, 4, 5 show nonlinear (𝛾𝑖 = 0.462) oscillations of loads of 

masses 𝑚1,  𝑚2  and  𝑚3 from the position of static equilibrium, where 𝜀𝑖= 0 

(a solid line), 𝜀𝑖= 0.01 (a dashed line) and 𝜀𝑖= 0.05 (a dotted line). The graph 

shows that an account for rheological property of a suspension leads to a 

decrease in load amplitude from the position of static equilibrium. A 

decrease in the load oscillation frequency leads to a phase shift. Over time, 

the viscoelastic properties of the suspension significantly affect the 

amplitudes and frequencies. 

   

 

Fig. 3. Modes of nonlinear oscillations of the loads of mass 𝑚1. 



 

Fig. 4. Modes of nonlinear oscillations of the loads of mass 𝑚2. 

 

Fig. 5. Modes of nonlinear oscillations of the loads of mass 𝑚3 

The effect of nonlinear suspension properties on the load displacement from 

the position of static equilibrium is investigated. Fig. 6 shows the influence 

of nonlinear properties of suspension on the mode of vibration of load of 

mass 𝑚1. Here 𝛾1 = 𝛾2 = 𝛾3 = 0  (a solid line) and 𝛾1 = 𝛾2 = 𝛾3 =0.462 (a 



dashed line); 𝛾1 = 𝛾2 = 𝛾3 = 0.645 (a dotted line). The graph shows that, 

with an increase in nonlinear property of suspension, the frequency that 

comes to the phase shift increases. The effect of nonlinearity on the 

amplitude of the mass oscillations is insignificant. 

 

Fig. 6. The influence of nonlinear properties of suspension on the mode of 

vibration of  load of mass 𝑚1. 

How do rheological parameters affect the mode of viscoelastic mass 

oscillation? The change in the parameter α (Fig. 7) and the parameter β (Fig. 

8) by the mode of oscillations is studied. The graph shows that a small 

change in these parameters considerably affects the change in oscillation 

frequency. The dependence of the parameter α and the frequency is 

proportional; the dependence of the parameter β and the frequency is 

inversely proportional. This is explained by the fact that with an increase in 

parameter α, the suspension material becomes more viscous, and with an 

increase in parameter β, less viscous(Sharipov et al., 2019). 



 

Fig. 7. The effect of the parameter α on the mode of vibration of load of 

mass 𝑚1. Solid line (α = 0.1), dashed line (α = 0.25), dotted line (α = 0.4). 

𝛾𝑖 = 0.462, 𝜀𝑖 = 0.05. 

 

Fig. 8. The effect of the parameter ε on the mode of vibration of load of 

mass 𝑚1.  

Solid line (ε = 0.005), dashed line (ε = 0.05), dotted line (ε = 0.1). 
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