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Abstract. The paper is devoted to the development of a numerical algorithm for solving 

nonlinear integro-differential equations based on the use of quadrature formulas. The Koltunov-

Rzhanitsyn kernel with weakly singular features of the Abel type is used as a kernel. To conduct 

a computational experiment, a computer program was developed; the results obtained by this 

program are reflected in the form of tables and graphs. A test example was solved, and the 

obtained approximate numerical results were compared with exact solutions. The influence of 

nonlinearity and integral parts on the nature of oscillatory process of a viscoelastic body was 

investigated.  
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1 Intorduction 

For the modern construction of hydraulic structures, various designs are used, which their 

materials have pronounced rheological properties. The use of these designs provides cost-effectiveness, 

longevity, durability and safety of structures. Therefore, taking into account the rheological properties 

of materials for the design of construction is attracting the increasing interest of specialists. 

We remind you that numerous hydraulic problems in mathematical models are described by systems of 

differential, integral or integro-differential equations. For linear and nonlinear systems of differential 

equations, there are a number of recommended numerical and analytical methods for solving [1-

3,10,11,15,16]. 

Recently, the materials combining elastic, viscous and plastic properties have been widely used 

in modern technology. Such materials have relaxation properties — their strain processes depends on 

time. Such materials include polymers, concretes, alloys, metals (at high temperatures), etc. Some 

structures under load (for example, shock-absorbing and vibro-protective devices) generally behave as 

a viscoelastic system. The basic physical equations relating stresses and strains of viscoelastic media 

contain a time factor. A hereditary theory of viscoelasticity is accepted as a theory describing the 

processes of strain over time [2,8,9,11]; it is based on the Boltzmann-Volterra principle. As a result, 

such problems are reduced to solving the systems of integro-differential equation (IDE) of Volterra type. 

The most common methods for solving the integral equation are the asymptotic methods [4-8]. These 

methods are applicable in cases where the viscosity of the medium is sufficiently small, and it is possible 

to introduce a small parameter and construct solutions that are asymptotically exact. Asymptotic 

methods can be used to solve problems of mechanics, the hereditary properties of the material are 

insignificant in comparison with elastic ones, i.e., there is a sufficiently small parameter in the integral 



term of the equation of state. It should be noted that, over time, the error of these methods increases 

significantly. 

A number of methods have been developed for solving linear IDE, one of them is given in [12], 

where an exact analytical solution of linear IDE of Volterra-type for the Yu.N. Rabotnov kernel was 

constructed, as an elaboration of the F. Trikomi’s method [13]. The addition theorems were proved. 

The use of new composite materials in engineering practice, the design and creation of strong, 

lightweight and reliable structures requires further improvement of the theories of deformable bodies 

and the development of methods for their calculation with account for real properties of structure 

materials. Therefore, the development of effective methods for solving nonlinear IDE is relevant in the 

hereditary mechanics of a deformable rigid body. 

2 Problem statement  

Let us find a solution to equation 

𝑥̈(𝑡) + 𝜔2(1 − 𝑅∗)[𝑥(𝑡) + 𝛾 ∙ 𝐿[𝑥(𝑡)]] = 𝑓(𝑡)                               (1) 

at the following values of initial conditions 

𝑥(0) = 𝑥0;      𝑥̇(0) = 𝑥̇0,                                             (2) 

where x (t) are the unknown functions, 𝐿[𝑥(𝑡)] is the nonlinear part of the equation, f (t) is the 

given function, γ is the nonlinearity coefficient, 𝜔2, 𝑥0, 𝑥̇0 are the given numbers, 𝑅∗ is the 

integral operator with relaxation kernel 𝑅(𝑡) = 𝜀𝑡𝛼−1𝑒−𝛽𝑡: 

𝑅∗𝜑 = ∫ 𝑅(𝑡 − 𝜏)𝜑(𝜏)𝑑𝜏

𝑡

0

 . 

3 Methods 

Integrating equation (1) twice over time in the interval [0; t] and taking into account the initial 

condition (2), we have: 

𝑥(𝑡) − 𝑥0 − 𝑥̇0𝑡 + 𝜔2 ∫ 𝐺(𝑡 − 𝑠)[𝑥(𝑠) + 𝐿[𝑥(𝑠)]]𝑑𝑠
𝑡

0
= ∫ (𝑡 − 𝑠)𝑓(𝑠)𝑑𝑠

𝑡

0
 ,             (3) 

where    𝐺(𝑡 − 𝑠) = 𝑡 − 𝑠 − ∫ (𝑡 − 𝑠 − 𝜏)
𝑡−𝑠

0
𝑅(𝜏)𝑑𝜏. 

 Setting  𝑡𝑛 = 𝑛 ∙ ∆𝑡, 𝑛 = 1,2,3, … (∆𝑡 -time step) in (3), and replacing the integrals with quadrature 

trapezoid formulas, we have: 

𝑥𝑛 = 𝑥0 + 𝑥̇0𝑡𝑛 − 𝜔2 ∑ 𝐴𝑖𝐺(𝑡𝑛 − 𝑡𝑖)

𝑛−1

𝑖=0

[𝑥𝑖 + 𝐿(𝑥𝑖)] + ∑ 𝐴𝑖(𝑡𝑛 − 𝑡𝑖)𝑓(𝑡𝑖)

𝑛−1

𝑖=0

 

where  𝑥𝑛 = 𝑥(𝑡𝑛),   𝐴0 =
∆𝑡

2
, 𝐴𝑗 = ∆𝑡,  𝑗 = 1, 𝑛 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . 

Test case. Testing the algorithms and corresponding computer program was carried out when 

solving the following problem: 

𝑥̈(𝑡) + 𝜔2(1 − 𝑅∗)[𝑥(𝑡) + 𝛾 ∙ 𝑥3(𝑡)] = 𝑒−𝛽𝑡 {𝛽2 + 𝜔2(1 + 𝛾𝑒−2𝛽𝑡) − 𝜔2𝜀 [𝑡 +
𝛾

2𝛽
(1 − 𝑒−2𝛽𝑡)]} 

𝑥(0) = 1;  𝑥̇(0) = −𝛽   

which has an exact solution: 

𝑥(𝑡) = 𝑒−𝛽𝑡. 

The numerical results obtained are shown in Table 1. The following initial data were used in 

calculations: :  𝜔2 = 8;  𝛾 = 0.36;  𝛼 = 1;   𝛽 = 0.05;    𝜀 = 0.01;   ∆𝑡 = 0.05. 
 

 The exact solution and the obtained numerical approximate solution for various values of the 

quadrature formula step at certain time intervals are given in Table 1. 

                                                                             Table 1. 

t Exact solution 
Approximate solution 

∆𝑡 = 0.01 ∆𝑡 = 0.05 ∆𝑡 = 0.1 



1 0.9512294 0.9512296 0.9512346 0.9512496 

2 0.9048374 0.9048371 0.9048273 0.9047971 

3 0.8607080 0.8607087 0.8607220 0.8607630 

4 0.8187308 0.8187304 0.8187146 0.8186652 

5 0.7788008 0.7788020 0.7788185 0.7788705 

6 0.7408182 0.7408183 0.7408024 0.7407513 

7 0.7046881 0.7046896 0.7047032 0.7047477 

8 0.6703200 0.6703209 0.6703107 0.6702757 

9 0.6376282 0.6376299 0.6376355 0.6376571 

10 0.6065307 0.6065325 0.6065318 0.6065246 

The table shows that the proposed algorithm for solving nonlinear integro-differential equations 

has a high accuracy. This gives us the opportunity to apply this approach (the mathematical model is 

described in (1), (2)) to specific applied mechanical problems.  

4 Results and conclusions 

Mathematical models of the problem of free and forced oscillation of a viscoelastic body, are 

described in (1) and (2). The effect of viscoelastic properties of the material, and parameters entering 

(1) and (2) on the oscillatory process of a viscoelastic body, is studied. Figure 1 shows the influence of 

the nonlinearity parameter γ on the behavior of the mode of oscillation of a viscoelastic body under 

constant external load. The graph shows that the oscillatory process occurs close to the creep curve. 

With increasing parameter γ, the oscillation frequency increases, and the amplitude of oscillations of a 

viscoelastic body decreases. 

 

 
𝐅𝐢𝐠 𝟏.    𝝎𝟐 = 𝟏𝟎. 𝟒𝟓;  𝒙𝟎 = 𝒙̇𝟎 = 𝟎;   𝒇(𝒕) = 𝟑. 𝟓;    𝜶 = 𝟎. 𝟐𝟓;    𝜷 = 𝟎. 𝟎𝟓;   𝜺 = 𝟎. 𝟎𝟓; 

  𝜸 = 𝟎 (𝐚 𝐬𝐨𝐥𝐢𝐝 𝐥𝐢𝐧𝐞);     𝜸 = 𝟎, 𝟑 (𝐚 𝐝𝐚𝐬𝐡𝐞𝐝 𝐥𝐢𝐧𝐞);    𝜸 = 𝟎, 𝟕 (𝐚 𝐝𝐨𝐭𝐭𝐞𝐝 𝐥𝐢𝐧𝐞). 
 

The influence of the parameter ε on the modes of oscillation of a nonlinear viscoelastic body 

under constant load is studied (Fig. 2). The graph shows that, with an increase in parameter ε, the 

frequency and amplitude of oscillations decreases. 



 
𝐅𝐢𝐠 𝟐.    𝝎𝟐 = 𝟏𝟎. 𝟒𝟓;   𝒙𝟎 = 𝒙̇𝟎 = 𝟎;     𝒇(𝒕) = 𝟑. 𝟓;     𝜸 = 𝟎. 𝟑;    𝜶 = 𝟎. 𝟐𝟓;    𝜷 = 𝟎. 𝟎𝟓;    

 𝜺 = 𝟎 (𝐚 𝐬𝐨𝐥𝐢𝐝 𝐥𝐢𝐧𝐞);      𝜺 = 𝟎. 𝟎𝟑 (𝐚 𝐝𝐚𝐬𝐡𝐞𝐝 𝐥𝐢𝐧𝐞);    𝜺 = 𝟎. 𝟎𝟓 (𝐚 𝐝𝐨𝐭𝐭𝐞𝐝 𝐥𝐢𝐧𝐞) 

 

How do the rheological parameters affect the mode of oscillation of a nonlinear viscoelastic body 

under constant load? The study of parameter α shows (Fig. 3), that with an increase in α, the oscillation 

frequency increases as well. The results of the study of parameter β effect on the oscillations process of 

a viscoelastic body are shown in Fig. 4. As seen from the figure, the parameter β does not significantly 

affect the amplitude and frequency of oscillations. (Sharipov et al., 2019) 

 

 
𝐅𝐢𝐠 𝟑.    𝝎𝟐 = 𝟏𝟎. 𝟒𝟓;  𝒙𝟎 = 𝒙̇𝟎 = 𝟎;   𝒇(𝒕) = 𝟑. 𝟓;    𝜸 = 𝟎. 𝟑;    𝜷 = 𝟎. 𝟎𝟓;   𝜺 = 𝟎. 𝟎𝟓; 
  𝜶 = 𝟎. 𝟏 (𝐚 𝐬𝐨𝐥𝐢𝐝 𝐥𝐢𝐧𝐞);     𝜶 = 𝟎. 𝟐𝟓 (𝐚 𝐝𝐚𝐬𝐡𝐞𝐝 𝐥𝐢𝐧𝐞);    𝜶 = 𝟎. 𝟓 (𝐚 𝐝𝐨𝐭𝐭𝐞𝐝 𝐥𝐢𝐧𝐞) 

 



 
𝐅𝐢𝐠. 𝟒.    𝝎𝟐 = 𝟏𝟎. 𝟒𝟓;  𝒙𝟎 = 𝒙̇𝟎 = 𝟎;   𝒇(𝒕) = 𝟑. 𝟓;    𝜸 = 𝟎. 𝟑;    𝜶 = 𝟎. 𝟐𝟓;   𝜺 = 𝟎. 𝟎𝟓; 

  𝜷 = 𝟎. 𝟎𝟓 (𝐚 𝐬𝐨𝐥𝐢𝐝 𝐥𝐢𝐧𝐞);     𝜷 = 𝟎. 𝟓 (𝐚 𝐝𝐚𝐬𝐡𝐞𝐝 𝐥𝐢𝐧𝐞);    𝜷 = 𝟏 (𝐚 𝐝𝐨𝐭𝐭𝐞𝐝 𝐥𝐢𝐧𝐞) 

 

The effect of parameter γ on the oscillation modes of a viscoelastic body (Fig. 5), under external 

load acting according to the law 𝑓(𝑡) = 2(𝑠𝑖𝑛 𝜋𝑡 + 𝑐𝑜𝑠𝜋𝑡) is studied. Figure 6 shows the dependences 

of the oscillation modes of a viscoelastic body on parameter ε. 

 

 
𝐅𝐢𝐠 𝟓.    𝝎𝟐 = 𝟏;  𝒙𝟎 = 𝒙̇𝟎 = 𝟎;     𝜶 = 𝟎. 𝟐𝟓;    𝜷 = 𝟎. 𝟎𝟓;   𝜺 = 𝟎. 𝟎𝟓;     𝜸 = 𝟎 (𝐚 𝐬𝐨𝐥𝐢𝐝 𝐥𝐢𝐧𝐞); 

    𝜸 = 𝟎. 𝟑 (𝐚 𝐝𝐚𝐬𝐡𝐞𝐝 𝐥𝐢𝐧𝐞);    𝜸 = 𝟎. 𝟕 (𝐚 𝐝𝐨𝐭𝐭𝐞𝐝 𝐥𝐢𝐧𝐞) 



 
𝐅𝐢𝐠. 𝟔.    𝝎𝟐 = 𝟏;  𝒙𝟎 = 𝒙̇𝟎 = 𝟎;     𝜶 = 𝟎. 𝟐𝟓;    𝜷 = 𝟎. 𝟎𝟓;   𝜸 = 𝟎. 𝟎𝟓;      𝜺 = 𝟎 (𝐚 𝐬𝐨𝐥𝐢𝐝 𝐥𝐢𝐧𝐞); 

    𝜺 = 𝟎, 𝟎𝟓 (𝐚 𝐝𝐚𝐬𝐡𝐞𝐝 𝐥𝐢𝐧𝐞);    𝜺 = 𝟎. 𝟏 (𝐚 𝐝𝐨𝐭𝐭𝐞𝐝 𝐥𝐢𝐧𝐞) 

 

It should be noted that the above-stated methodology, the solutions of nonlinear IMUs, can be 

used to solve nonlinear problems of oscillations and dynamic stability of a viscoelastic pipe with a fluid 

flowing through it; tasks for the study of resonance phenomena in especially high-rise structures such 

as water and television towers; nonlinear problems of oscillations of viscoelastic rods and plates with 

variable stiffness; dynamic damper of hereditarily deformed systems, both of a finite degree of freedom 

and with distributed parameters. All these listed tasks have important practical interests in various fields 

of research. 
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