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Abstract. Vertical oscillations of three loads of different masses connected by nonlinear 

viscoelastic springs (suspensions) are considered in the paper. An account for rheological 

properties of the suspension, an integral model with the Koltunov-Rzhanitsyn relaxation kernel 

is used. Effective computational algorithms have been developed for solving problems based 

on the use of quadrature formulas. The effect of rheological properties of suspension on the 

mass displacement from the position of static equilibrium is investigated as well as the 

influence of nonlinear properties of the suspension on the mode of vibration and frequency. 

1.  Introduction 

An account for several modes of vibration in nonlinear viscoelastic systems is much more complicated 

than in the systems with one degree of freedom, but the results of such an analysis are of undoubted 

interest. Note that one of the important applications of the effect of change in dissipative 

characteristics of mechanical systems is the problem of viscoelastic systems with several degrees of 

freedom. 

2.  Problem statement 

Let us consider the vertical oscillations of three loads (Fig. 1) of masses  𝑚1,  𝑚2  and  𝑚3 connected 

by nonlinear viscoelastic suspensions. Denote the displacements of masses 𝑚1,  𝑚2  and  𝑚3  from the 

position of static equilibrium by 𝑥1,  𝑥2  and  𝑥3, and the action force on the suspension mass - by F 

(z). Using the d'Alembert principle and considering the mass fictitious equilibrium (Fig. 2), to which 

the inertial forces and restoring forces are applied, we obtain [1, 2]: 

                                       𝑚1𝑥̈1 + 𝐹(𝑥1) − 𝐹(𝑥2 − 𝑥1) = 0, 

𝑚2𝑥̈2 + 𝐹(𝑥2 − 𝑥1) − 𝐹(𝑥3 − 𝑥2) = 0,                                          (1) 

                                                   𝑚3𝑥̈3 + 𝐹(𝑥3 − 𝑥2) = 0. 

For function 𝐹(𝑧) the following expression is used [3-6]:             



MPCPE 2020

IOP Conf. Series: Materials Science and Engineering 896 (2020) 012118

IOP Publishing

doi:10.1088/1757-899X/896/1/012118

2

 

 

 

 

 

 

𝐹(𝑧) = 𝑘 {𝑧(1 + 𝛾𝑧2) − ∫ 𝑅(𝑡, 𝜏)𝑧(𝜏)[1 + 𝛾𝑧2(𝜏)𝑑𝜏]

𝑡

0

},                                       (2) 

where 𝑘 is the stiffness of suspension; γ  is the coefficient of nonlinearity, depending on physical 

properties of the suspension material; R (t, τ) is the relaxation kernel.  

   

 

 

 

 

 

                  

 

 

 

Figure 1. Vertical oscillations of three loads 

 

 

 

 

 

 

 

 

 

Figure 2. The mass fictitious equilibrium 

If 𝑘1,  𝑘2  and  𝑘3 are the stiffness of the first, second and third suspension, then, with (2), the 

system (1) has the form[3,4]: 

𝑥̈1 + 𝜔1
2𝑥1 = 𝜔21

2 (𝑥2 − 𝑥1)[1 + 𝛾2(𝑥2 − 𝑥1)2] − 𝜔1
2𝛾1𝑥1

2 + 

+𝜔1
2 ∫ 𝑅1(𝑡, 𝜏)𝑥1(𝜏)[1 + 𝛾1𝑥1

2(𝜏)]𝑑𝜏

𝑡
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−𝜔21
2 ∫ 𝑅2(𝑡, 𝜏)[𝑥2(𝜏) − 𝑥1(𝜏)]{1 + 𝛾2[𝑥2(𝜏) − 𝑥1(𝜏)]2}𝑑𝜏

𝑡

0

, 

𝑥̈2 + 𝜔2
2𝑥2 = 𝜔2

2𝑥1[1 + 𝛾2(𝑥2 − 𝑥1)2] + 𝜔32
2 (𝑥3 − 𝑥2)[1 + 𝛾3(𝑥3 − 𝑥2)2] −  (3) 

−𝜔2
2𝛾2𝑥2(𝑥2 − 𝑥1)2 + 𝜔2

2 ∫ 𝑅2(𝑡, 𝜏)[𝑥2(𝜏) − 𝑥1(𝜏)] ∙ {1 + 𝛾2[𝑥2(𝜏) − 𝑥1(𝜏)]2}𝑑𝜏

𝑡

0

− 

−𝜔32
2 ∫ 𝑅3(𝑡, 𝜏)[𝑥3(𝜏) − 𝑥2(𝜏)] ∙ {1 + 𝛾3[𝑥3(𝜏) − 𝑥2(𝜏)]2}𝑑𝜏

𝑡

0

, 

𝑥̈3 + 𝜔3
2𝑥3 = 𝜔3

2𝑥2[1 + 𝛾3(𝑥3 − 𝑥2)2] − 𝜔3
2𝛾3𝑥3(𝑥3 − 𝑥2)2 + 

+𝜔3
2 ∫ 𝑅3(𝑡, 𝜏)[𝑥3(𝜏) − 𝑥2(𝜏)]{1 + 𝛾3[𝑥3(𝜏) − 𝑥2(𝜏)]2}𝑑𝜏

𝑡

0

, 

where    𝜔𝑖
2 =

𝑘𝑖

𝑚𝑖
,     𝑖 = 1,2,3;    𝜔21

2 =
𝑘2

𝑚1
,   𝜔32

2 =
𝑘3

𝑚2
. 

Let the initial values of the mass displacements and their velocity be given as 

𝑥𝑖(0) = 𝑥𝑖0,   𝑥̇𝑖(0) = 𝜗𝑖0,  𝑖 = 1,2,3.  

3.  Methods 

System (3) is solved by the methods based on the use of the quadrature formula [7-20]. Integrating 

system (3) twice over t on the interval [0; t] we have: 

𝑥1(𝑡) = 𝑥10 + 𝜗10𝑡 + ∫(𝑡 − 𝑠){𝜔21
2 [𝑥2(𝑠) − 𝑥1(𝑠)][1 + 𝛾2[𝑥2(𝑠) − 𝑥1(𝑠)]2] −

𝑡

0

 

−𝜔1
2𝑥1(𝑠) − 𝜔1

2𝛾1𝑥1
2(𝑠)}𝑑𝑠 + 𝜔1

2 ∫ Г1(𝑡 − 𝑠)𝑥1(𝑠)[1 + 𝛾1𝑥1
2(𝑠)]𝑑𝑠 −

𝑡

0

 

−𝜔21
2 ∫ Г2(𝑡 − 𝑠)[𝑥2(𝑠) − 𝑥1(𝑠)]{1 + 𝛾2[𝑥2(𝑠) − 𝑥1(𝑠)]2}𝑑𝑠,

𝑡

0

 

𝑥2(𝑡) = 𝑥20 + 𝜗20𝑡 + ∫(𝑡 − 𝑠){𝜔2
2𝑥1(𝑠)[1 + 𝛾2[𝑥2(𝑠) − 𝑥1(𝑠)]2] − 𝜔2

2𝑥2(𝑠) +

𝑡

0

 

+𝜔32
2 [𝑥3(𝑠) − 𝑥2(𝑠)]{1 + 𝛾3[𝑥3(𝑠) − 𝑥2(𝑠)]2} − 𝜔2

2𝛾2𝑥2(𝑠)[𝑥2(𝑠) − 𝑥1(𝑠)]2}𝑑𝑠 + 

+𝜔2
2 ∫ Г2(𝑡 − 𝑠)[𝑥2(𝑠) − 𝑥1(𝑠)]{1 + 𝛾2[𝑥2(𝑠) − 𝑥1(𝑠)]2}𝑑𝑠 −

𝑡

0
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−𝜔32
2 ∫ Г3(𝑡 − 𝑠)[𝑥3(𝑠) − 𝑥2(𝑠)]{1 + 𝛾3[𝑥3(𝑠) − 𝑥2(𝑠)]2}𝑑𝑠,

𝑡

0

 

𝑥3(𝑡) = 𝑥30 + 𝜗30𝑡 + ∫(𝑡 − 𝑠){𝜔2
2𝑥2(𝑠)[1 + 𝛾3[𝑥3(𝑠) − 𝑥2(𝑠)]2] − 𝜔3

2𝑥3(𝑠) −

𝑡

0

 

−𝜔3
2𝛾3𝑥3(𝑠)[𝑥3(𝑠) − 𝑥2(𝑠)]2}𝑑𝑠 + 𝜔3

2 ∫ Г3(𝑡 − 𝑠)[𝑥3(𝑠) − 𝑥2(𝑠)][1 + 𝛾3[𝑥3(𝑠) − 𝑥2(𝑠)]2]𝑑𝑠,

𝑡

0

 

where 

Г𝑖(𝑡 − 𝑠) = ∫ (𝑡 − 𝑠 − 𝜏)𝑅𝑖(𝜏)𝑑𝜏

𝑡−𝑠

0

,   (𝑖 = 1,3);     𝑅𝑖(𝑡) = 𝜀𝑖𝑒−𝛽𝑖𝑡 ∙ 𝑡𝛼𝑖−1. 

In the latter system, replacing the integrals with the quadrature formulas of the trapezoid, to 

determine the load displacement from the position of static equilibrium 𝑥1𝑖 = 𝑥1(𝑡𝑖), 𝑥2𝑖 =
𝑥2(𝑡𝑖) и 𝑥3𝑖 = 𝑥3(𝑡𝑖) (𝑖 = 1,2,3, … ), we have the following recurrent ratio: 

𝑥1𝑛 = 𝑥10 + 𝜗10𝑡𝑛 + ∑ 𝐴𝑖(𝑡𝑛 − 𝑡𝑖)

𝑛−1

𝑖=0

{𝜔21
2 (𝑥2𝑖 − 𝑥1𝑖)[1 + 𝛾2(𝑥2𝑖 − 𝑥1𝑖)2] − 𝜔1

2𝑥1𝑖 − 𝜔1
2𝛾1𝑥1𝑖

2 }

+ 

+𝜔1
2 ∑ 𝐴𝑖Г1(𝑡𝑛 − 𝑡𝑖)

𝑛−1

𝑖=0

𝑥1𝑖(1 + 𝛾1𝑥1𝑖
2 ) − 𝜔21

2 ∑ 𝐴𝑖Г2(𝑡𝑛 − 𝑡𝑖)

𝑛−1

𝑖=0

(𝑥2𝑖 − 𝑥1𝑖)[1 + 𝛾2(𝑥2𝑖 − 𝑥1𝑖)2], 

𝑥2𝑛 = 𝑥20 + 𝜗20𝑡𝑛 + ∑ 𝐴𝑖(𝑡𝑛 − 𝑡𝑖)

𝑛−1

𝑖=0

{𝜔2
2𝑥1𝑖[1 + 𝛾2(𝑥2𝑖 − 𝑥1𝑖)2] − 𝜔2

2𝑥2𝑖 + 

+𝜔32
2 (𝑥3𝑖 − 𝑥2𝑖)[1 + 𝛾3(𝑥3𝑖 − 𝑥2𝑖)2] − 𝜔2

2𝛾2𝑥2𝑖(𝑥2𝑖 − 𝑥1𝑖)2} + 

+𝜔2
2 ∑ 𝐴𝑖Г2(𝑡𝑛 − 𝑡𝑖)

𝑛−1

𝑖=0

(𝑥2𝑖 − 𝑥1𝑖)[1 + 𝛾2(𝑥2𝑖 − 𝑥1𝑖)2] − 

−𝜔32
2 ∑ 𝐴𝑖Г3(𝑡𝑛 − 𝑡𝑖)

𝑛−1

𝑖=0

(𝑥3𝑖 − 𝑥2𝑖)[1 + 𝛾3(𝑥3𝑖 − 𝑥2𝑖)2], 

𝑥3𝑛 = 𝑥30 + 𝜗30𝑡𝑛 + ∑ 𝐴𝑖(𝑡𝑛 − 𝑡𝑖)

𝑛−1

𝑖=0

{𝜔3
2𝑥2𝑖[1 + 𝛾3(𝑥3𝑖 − 𝑥2𝑖)2] − 𝜔3

2𝑥3𝑖 − 

−𝜔3
2𝛾3𝑥3𝑖(𝑥3𝑖 − 𝑥2𝑖)2} + 𝜔3

2 ∑ 𝐴𝑖Г3(𝑡𝑛 − 𝑡𝑖)𝑛−1
𝑖=0 (𝑥3𝑖 − 𝑥2𝑖)[1 + 𝛾3(𝑥3𝑖 − 𝑥2𝑖)2], 

where  𝐴0 = 𝐴𝑛 =
∆𝑡

2
;   𝐴𝑗 = ∆𝑡, 𝑗 = 1, 𝑛 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . 
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4.  Results and discussion 

To conduct a computational experiment, a computer program was developed, in which the results 

obtained are reflected in the form of graphs. In calculations, the following initial data were used: : 

𝑥10 = 𝑥20 = 0;  𝑥30 = 1; 𝜗10 = 𝜗20 = 𝜗30 = 0; 𝜔1
2 = 𝜔2

2 = 𝜔3
2 = 𝜔21

2 = 𝜔32
2 = 1; 𝛼1 = 𝛼2 = 𝛼3 =

0.25; 𝛽1 = 𝛽2 = 𝛽3 = 0.05; 𝜀1 = 𝜀2 = 𝜀3 = 0.05; 𝛾1 = 𝛾2 = 𝛾3 = 0.462. Figures 3, 4, 5 show 

nonlinear (𝛾𝑖 = 0.462) oscillations of loads of masses 𝑚1,  𝑚2  and  𝑚3 from the position of static 

equilibrium, where 𝜀𝑖= 0 (a solid line), 𝜀𝑖= 0.01 (a dashed line) and 𝜀𝑖= 0.05 (a dotted line). The graph 

shows that an account for rheological property of a suspension leads to a decrease in load amplitude 

from the position of static equilibrium. A decrease in the load oscillation frequency leads to a phase 

shift. Over time, the viscoelastic properties of the suspension significantly affect the amplitudes and 

frequencies. 

 

Figure 3. Modes of nonlinear oscillations of the loads of mass 𝑚1. 

 

Figure 4. Modes of nonlinear oscillations of the loads of mass 𝑚2. 
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Figure 5. Modes of nonlinear oscillations of the loads of mass 𝑚3 

The effect of nonlinear suspension properties on the load displacement from the position of static 

equilibrium is investigated. Fig. 6 shows the influence of nonlinear properties of suspension on the 

mode of vibration of load of mass 𝑚1. Here 𝛾1 = 𝛾2 = 𝛾3 = 0  (a solid line) and 𝛾1 = 𝛾2 =
𝛾3 =0.462 (a dashed line); 𝛾1 = 𝛾2 = 𝛾3 = 0.645 (a dotted line). The graph shows that, with an 

increase in nonlinear property of suspension, the frequency that comes to the phase shift increases. 

The effect of nonlinearity on the amplitude of the mass oscillations is insignificant. 

 

Figure 6. The influence of nonlinear properties of suspension on the mode of vibration of load of 

mass 𝑚1 

How do rheological parameters affect the mode of viscoelastic mass oscillation? The change in the 

parameter α (Fig. 7) and the parameter β (Fig. 8) by the mode of oscillations is studied. The graph 

shows that a small change in these parameters considerably affects the change in oscillation frequency. 

The dependence of the parameter α and the frequency is proportional; the dependence of the parameter 

β and the frequency is inversely proportional. This is explained by the fact that with an increase in 

parameter α, the suspension material becomes more viscous, and with an increase in parameter β, less 

viscous (Sharipov et al., 2019). 
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Figure 7. The effect of the parameter α on the mode of vibration of load of mass 𝑚1. Solid line (α = 

0.1), dashed line (α = 0.25), dotted line (α = 0.4). 𝛾𝑖 = 0.462, 𝜀𝑖 = 0.05. 

 

Figure 8. The effect of the parameter ε on the mode of vibration of load of mass 𝑚1. 

Solid line (ε = 0.005), dashed line (ε = 0.05), dotted line (ε = 0.1). 

Conclusions 

Effective computational algorithms have been developed for solving problems based on the use of 

quadrature formulas. The effect of rheological properties of suspension on the mass displacement from 

the position of static equilibrium is investigated as well as the influence of nonlinear properties of the 

suspension on the mode of vibration and frequency. 

References 

[1] Bondar N G 1972 Nonlinear autonomous systems in engineering mechanics (Moscow: 

Stroyizdat) 

[2] Bondar N G 1967 Oscillations of nonlinear conservative systems with several  degrees of 

freedom PM 3(5) 1-8 

[3] Ilyushin A A and Ogibalov P M 1962 Quasilinear theory of viscoelasticity and the  method of 

small parameter Mechanics of Polymers 2 170-189 



MPCPE 2020

IOP Conf. Series: Materials Science and Engineering 896 (2020) 012118

IOP Publishing

doi:10.1088/1757-899X/896/1/012118

8

 

 

 

 

 

 

[4] Cauderer G 1961 Nonlinear mechanics (Moscow: Mir) 

[5] Aldoshin G T 2013 Theory of linear and nonlinear oscillations (St.Petersburg: LAN Publishing 

House) 

[6] Starzhinsky V M 1977 Applied methods of nonlinear oscillations (Moscow: Nauka) 

[7] Badalov F B, Eshmatov H and Yusupov M 1986 On some methods for solving systems of 

integro-differential equations encountered in  problems of viscoelasticity (Moscow: PMM)  

[8] Akhmedov A B, Badalov F B and Yusupov M 1989 III Republican conference Integral 

equations in applied modeling (Odessa) 

[9] Yusupov M 2009 Collection of theses "Integral Equations –2009" (Kiev) 

[10] Badalov F B 1987 Methods for solving integral and integro-differential equations of the 

hereditary theory of viscoelasticity (Tashkent: Mehnat) 

[11] Gavurin M K 1971 Lectures on methods of computing (Moscow: Science) 

[12] Bakhvalov N S 1975 Numerical methods (Moscow: Science) 

[13] Dyachenko V 1972 Basic concepts of computational mathematics (Moscow: Science) 

[14] Kalitkin N N 1978 Numerical method (Moscow: Science) 

[15] Eshmatov H, Yusupov M, Aynaqulov Sh and Khodzhaev D 2007 Mathematical modeling 

(Tashkent., TIMI) 

[16] Pontryagin L S 1988 Differential equations and their applications (Moscow: Nauka) 

[17] Eshmatov H, Verlan A F and Lukyanenko S A 2010 Numerical methods in modeling (Tashkent: 

“Uzbekistan”) 

[18] G’ulomov S S and Begalov B A 2010 Informatics and Information Technology (Tashkent: Fan) 


