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Abstract. The paper is devoted to the development of a numerical algorithm for solving 

nonlinear integro-differential equations based on the use of quadrature formulas. The Koltunov-

Rzhanitsyn kernel with weakly singular features of the Abel type is used as a kernel. To conduct 

a computational experiment, a computer program was developed; the results obtained by this 

program are reflected in the form of tables and graphs. A test example was solved, and the 

obtained approximate numerical results were compared with exact solutions. The influence of 

nonlinearity and integral parts on the nature of oscillatory process of a viscoelastic body was 

investigated.  

1. Intorduction 
For the modern construction of hydraulic structures, various designs are used, which their materials have 

pronounced rheological properties. The use of these designs provides cost-effectiveness, longevity, 

durability and safety of structures. Therefore, taking into account the rheological properties of materials 

for the design of construction is attracting the increasing interest of specialists. 

We remind you that numerous hydraulic problems in mathematical models are described by systems 

of differential, integral or integro-differential equations. For linear and nonlinear systems of differential 

equations, there are a number of recommended numerical and analytical methods for solving [1-

3,10,11,15,16]. 

Recently, the materials combining elastic, viscous and plastic properties have been widely used in 

modern technology. Such materials have relaxation properties — their strain processes depends on time. 

Such materials include polymers, concretes, alloys, metals (at high temperatures), etc. Some structures 

under load (for example, shock-absorbing and vibro-protective devices) generally behave as a 

viscoelastic system. The basic physical equations relating stresses and strains of viscoelastic media 

contain a time factor. A hereditary theory of viscoelasticity is accepted as a theory describing the 

processes of strain over time [2,8,9,11]; it is based on the Boltzmann-Volterra principle. As a result, 

such problems are reduced to solving the systems of integro-differential equation (IDE) of Volterra type. 

The most common methods for solving the integral equation are the asymptotic methods [4-8]. These 

methods are applicable in cases where the viscosity of the medium is sufficiently small, and it is possible 

to introduce a small parameter and construct solutions that are asymptotically exact. Asymptotic 

methods can be used to solve problems of mechanics, the hereditary properties of the material are 

insignificant in comparison with elastic ones, i.e., there is a sufficiently small parameter in the integral 

term of the equation of state. It should be noted that, over time, the error of these methods increases 

significantly. 

A number of methods have been developed for solving linear IDE, one of them is given in [12], 

where an exact analytical solution of linear IDE of Volterra-type for the Yu.N. Rabotnov kernel was 

constructed, as an elaboration of the F. Trikomi’s method [13]. The addition theorems were proved. 
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The use of new composite materials in engineering practice, the design and creation of strong, 

lightweight and reliable structures requires further improvement of the theories of deformable bodies 

and the development of methods for their calculation with account for real properties of structure 

materials. Therefore, the development of effective methods for solving nonlinear IDE is relevant in the 

hereditary mechanics of a deformable rigid body. 

2. Problem statement  
Let us find a solution to equation 

�̈(�) + ��(1 − �∗)	�(�) + 
 ∙ �[�(�)] = �(�)             (1) 
at the following values of initial conditions 

�(0) = ��;     �̇(0) = �̇�,                                                (2) 
where x (t) are the unknown functions, �[�(�)] is the nonlinear part of the equation, f (t) is the given 

function, γ is the nonlinearity coefficient, ��, ��, �̇� are the given numbers, �∗ is the integral operator 
with relaxation kernel �(�) = ���������: 

�∗� = � �(� − �)�(�)��
�

�
 . 

3. Methods 
Integrating equation (1) twice over time in the interval [0; t] and taking into account the initial condition 
(2), we have: 

�(�) − �� − �̇�� + �� ∫ �(� − �)	�(�) + �[�(�)]���
� = ∫ (� − �)�(�)���

�  ,             (3) 

where    �(� − �) = � − � − ∫ (� − � − �)���
� �(�)��. 

Setting  �! = " ∙ ∆�, " = 1,2,3, … (∆� -time step) in (3), and replacing the integrals with quadrature 
trapezoid formulas, we have: 

�! = �� + �̇��! − �� $ %&�(�! − �&)
!��

&'�
[�& + �(�&)] + $ %&(�! − �&)�(�&)

!��

&'�
 

where  �! = �(�!),   %� = ∆�
� , %* = ∆�,  - = 1, " − 1//////////. 

Test case. Testing the algorithms and corresponding computer program was carried out when solving 
the following problem: 

�̈(�) + ��(1 − �∗)[�(�) + 
 ∙ �4(�)] = ���� 56� + ��71 + 
�����8 − ��� 9� + 

26 71 − �����8:< 

�(0) = 1;  �̇(0) = −6   

which has an exact solution: 
�(�) = ����. 

The numerical results obtained are shown in Table 1. The following initial data were used in 
calculations: :  �� = 8;  
 = 0.36;  @ = 1;   6 = 0.05;    � = 0.01;   ∆� = 0.05. 

The exact solution and the obtained numerical approximate solution for various values of the 
quadrature formula step at certain time intervals are given in Table 1. 

Table 1. Exact solution and the obtained numerical approximate solution 

t Exact solution 
Approximate solution 

∆� = 0.01 ∆� = 0.05 ∆� = 0.1 

1 0.9512294 0.9512296 0.9512346 0.9512496 

2 0.9048374 0.9048371 0.9048273 0.9047971 

3 0.8607080 0.8607087 0.8607220 0.8607630 

4 0.8187308 0.8187304 0.8187146 0.8186652 
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5 0.7788008 0.7788020 0.7788185 0.7788705 

6 0.7408182 0.7408183 0.7408024 0.7407513 

7 0.7046881 0.7046896 0.7047032 0.7047477 

8 0.6703200 0.6703209 0.6703107 0.6702757 

9 0.6376282 0.6376299 0.6376355 0.6376571 

10 0.6065307 0.6065325 0.6065318 0.6065246 

The table shows that the proposed algorithm for solving nonlinear integro-differential equations has 
a high accuracy. This gives us the opportunity to apply this approach (the mathematical model is 
described in (1), (2)) to specific applied mechanical problems.  

4. Results and conclusions 
Mathematical models of the problem of free and forced oscillation of a viscoelastic body are described 
in (1) and (2). The effect of viscoelastic properties of the material, and parameters entering (1) and (2) 
on the oscillatory process of a viscoelastic body is studied. Figure 1 shows the influence of the 
nonlinearity parameter γ on the behavior of the mode of oscillation of a viscoelastic body under constant 
external load. The graph shows that the oscillatory process occurs close to the creep curve. With 
increasing parameter γ, the oscillation frequency increases, and the amplitude of oscillations of a 
viscoelastic body decreases. 

 

 
Figure 1.   �� = 10.45;  �� = �̇� = 0;   �(�) = 3.5;    @ = 0.25;    6 = 0.05;   � = 0.05; 

  
 = 0 (a solid line);     
 = 0.3 (a dashed line);    
 = 0.7 (a dotted line). 
 

The influence of the parameter ε on the modes of oscillation of a nonlinear viscoelastic body under 
constant load is studied (Fig. 2). The graph shows that, with an increase in parameter ε, the frequency 
and amplitude of oscillations decreases. 
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Figure 2.  �� = 10.45;   �� = �̇� = 0;     �(�) = 3.5;     
 = 0.3;    @ = 0.25;    6 = 0.05;    

 � = 0 (a solid line);      � = 0.03 (a dashed line);    � = 0.05 (a dotted line) 
 

How do the rheological parameters affect the mode of oscillation of a nonlinear viscoelastic body 
under constant load? The study of parameter α shows (Fig. 3), that with an increase in α, the oscillation 
frequency increases as well. The results of the study of parameter β effect on the oscillations process of 
a viscoelastic body are shown in Fig. 4. As seen from the figure, the parameter β does not significantly 
affect the amplitude and frequency of oscillations (Sharipov et al., 2019). 

 

 
Figure 3.  �� = 10.45;  �� = �̇� = 0;   �(�) = 3.5;    
 = 0.3;    6 = 0.05;   � = 0.05; 

  @ = 0.1 (a solid line);     @ = 0.25 (a dashed line);    @ = 0.5 (a dotted line) 
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Figure 4.  �� = 10.45;  �� = �̇� = 0;   �(�) = 3.5;    
 = 0.3;    @ = 0.25;   � = 0.05; 

  6 = 0.05 (a solid line);     6 = 0.5 (a dashed line);    6 = 1 (a dotted line) 
 

The effect of parameter γ on the oscillation modes of a viscoelastic body (Fig. 5), under external load 
acting according to the law �(�) = 2(�D" E� + FG�E�) is studied. Figure 6 shows the dependences of 
the oscillation modes of a viscoelastic body on parameter ε. 

 

 
Figure 5.  �� = 1;  �� = �̇� = 0;     @ = 0.25;    6 = 0.05;   � = 0.05;     
 = 0 (a solid line); 

    
 = 0.3 (a dashed line);    
 = 0.7 (a dotted line) 
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Figure 6. �� = 1 ;   �� = �̇� = 0 ;     @ = 0.25 ;    6 = 0.05 ;   
 = 0.05 ;      � = 0 (a solid line) ;     

 � = 0,05 (a dashed line);    � = 0.1 (a dotted line) 
 
Conclusions 
It should be noted that the above-stated methodology, the solutions of nonlinear IMUs, can be used to 
solve nonlinear problems of oscillations and dynamic stability of a viscoelastic pipe with a fluid flowing 
through it; tasks for the study of resonance phenomena in especially high-rise structures such as water 
and television towers; nonlinear problems of oscillations of viscoelastic rods and plates with variable 
stiffness; dynamic damper of hereditarily deformed systems, both of a finite degree of freedom and with 
distributed parameters. All these listed tasks have important practical interests in various fields of 

research. 
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