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Abstract

It is crucial to accurately and timely estimate crop yield within field variability for sustainable management and precision farming
applications. Various Earth observation systems have been developed for crop monitoring and yield prediction. However, there is a need
for further research that integrates multiplatform data, advances in satellite technology, and data processing to apply this knowledge to
agricultural practices. The integration of satellite imagery and environmental data has been used increasingly in recent years to predict
crop yields using machine learning techniques. In recent years, VIs derived from optical satellites, particularly Sentinel 2 (S2), have
gained popularity, but their availability is affected by weather conditions. On the other hand, the backscatter data from Sentinel 1
(S1) is less commonly used in agriculture due to its complex interpretation and processing, but it is not influenced by the weather. This
study aims to improve the accuracy of yield predictions by combining remote sensing data with environmental variables. The use of satel-
lite data S1 and S2 was used to identify the optimal phenological period, and a training model was developed using four machine learning
techniques, including Random Forest Regression (RF), K Nearest Neighbor (KNN), Multiple Linear Regression (MLR) and Decision
Tree (DT). The results showed that RF provided the highest values among the four techniques. The validation process using RF demon-
strated high accuracy rates, with R? ranging from 0.41 to 0.89, the mean square error of the root (RMSE) ranging from 0.122 to 0.224 t/
ha, and the mean absolute error (MAE) ranging from 0.089 to 0.163 t/ha. The integration of satellite data S1 and S2 with topographical
information may be useful for monitoring, mapping, and forecasting crop yields on small and fragmented farmlands. This approach can
provide farmers, agricultural businesses, and policymakers with accurate and timely predictions of crop yield, which can facilitate deci-
sion making and provide early warnings for potential crop losses.
© 2024 COSPAR. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

One of the most significant food crops in the world is

soybean, which receives significant attention in the global
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refineries, have a high protein content in their seeds, and
have the potential to enrich the soil through symbiotic fix-
ation of N2, which has significant economic benefits
(Sinclair et al., 2014). Soybean crops are crucial to ensure
national food security in many countries (She et al.,
2020). In the case of Hungary, due to government support,
both the area dedicated to soybean farming and the num-
ber of farmers has increased since 2015. Although the num-
ber of producers has increased to 5,000 ha, the production
area has grown from 42,000 to 772,000 ha (Sods et al.,
2022). Through technological improvements, a variety of
instruments can now be installed on combine harvesters,
such as a yield monitor that keeps records of the crop on
a parcel using information collected by various sensors
(Arslan and Colvin, 2002). Yield monitoring devices pro-
vide a novel and effective tool for zone management and
field comparisons in the sector of precision agriculture
(Pierce et al., 2015). Farmers can effectively plan their agri-
cultural activities for the future growing season by using
this to acquire new information by evaluating data for a
specific field (Pejak et al., 2022). The recent implementation
of the S2 (S2) satellite constellation by the European Space
Agency (ESA) has the potential to improve the application
of precision agriculture (PA) approaches, which present
challenges for small and medium-sized farmers
(Uribeetxebarria et al., 2023). Twin satellites (A and B)
of the S2 series in particular were designed to satisfy the
requirements of scientists and the agricultural industry
(Segarra et al., 2020). These satellites’ high-resolution
images, 13 multispectral bands, and rapid revisit rates are
all publicly available through the ESA’s Copernicus pro-
gram (accessed on March 13, 2023). Through various
bands of the sensor, several VIs can be calculated. Remote
sensing has been an important source of data for analyzing
crop development and forecasting final yields in large
regional circumstances since the 1980s. The basic point
behind the correlation between VIs and yield is that canopy
characteristics, such as biomass, chlorophyll content, and
canopy structure, determine crop growth (Zhao et al.,
2020). The vast majority of the research focused on the
NDVI (Normalized Difference Vegetation Index) (Shang
et al., 2015; Zhao et al., 2015). To accurately extract phe-
nology, the Normalized Difference Vegetation Index
(NDVI) is commonly implemented for monitoring crop
growth conditions (Becker-Reshef et al., 2010; Saeed
et al., 2017; Sehgal et al., 2011). Where the leaf area index
is moderately high, the Green Normalized Difference Vege-
tation Index (GNDVI) is more effective in evaluating leaf
chlorophyll variability (Gitelson et al., 1996). Given that
it was less impacted by saturation, GNDVI provided a pos-
itive indication for a number of vegetation performance
variables (Gianelle et al., 2009). To minimize the effect of
spectral VIs by using red and near-infrared bands, the Soil
Adjusted Vegetation Index (SAVI) is used (Qin et al.,
2021). The variation in water content in plant leaves is eval-
uated using the Normalized Differential Water Index
(NDWI) (Qin et al., 2021).
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Because S2 is limited by cloud coverage, the amount of
usable data available for certain areas and applications
may be restricted (Uribeetxebarria et al., 2023). Using
spaceborne microwave remote sensing, vegetation and soil
conditions can be monitored on a range of scales. Synthetic
aperture radars (SAR) produce observations with a high
spatial resolution of tens of meters to monitor crops
(Steele-Dunne et al., 2017). One of the key advantages of
using S1 data for crop yield prediction is its ability to pen-
etrate through clouds and obtain images regardless of
weather conditions, allowing year-round monitoring of
crop growth. In addition, SAR data can provide informa-
tion on crop structural properties, such as canopy height,
biomass, and density, which are essential factors to deter-
mine crop yield. A vertical transmit chain (V) and two par-
allel receive chains for the polarization of H and V
(horizontal and vertical, respectively) are used by S1 C-
band (5.405 GHz) SAR devices in Europe to facilitate the
operation in dual polarization (VV+VH) over the land
(Dstergaard et al., 2011).

Machine learning (ML) techniques have become
increasingly popular for yield prediction due to their ability
to handle complex data and model non-linear relationships
between predictor variables and crop yield. ML algorithms
can learn from historical data and use that knowledge to
make accurate predictions for future crop yields. With
the use of these technologies, huge volumes of data col-
lected from various sources, including satellite imaging,
drones, and Internet of Things (I0T) sensors, can be pro-
cessed and analyzed to produce precise and thorough pre-
dictions (Mishra et al.,, 2016). Supervised learning
algorithms can be used to predict crop yields or identify
patterns in crop growth. Other machine learning algo-
rithms that have been used to predict yield include k closest
neighbor (KNN), Decision Tree (DT), Random Forest
(RF) and Multiple Linear Regression (MLR) (Obsie
et al., 2020; Shao et al., 2015; Sharifi, 2021; Suominen
et al., 2013).

So far, several studies have been developed to predict
crop yield at different levels, for instance, Schwalbert
et al., (2020) presented in their study highlights strengths,
including the effective utilization of satellite and weather
data, integration of multiple variables for improved fore-
casting, exploration of time-ordered data using Long
short-term memory (LSTM), and high accuracy at the
municipality level. Weaknesses include challenges in crop
field detection, increased errors with early yield forecasts,
data limitations that lead to squared bias, and potential
regional applicability depending on data availability.
Another study by Herrero-Huerta et al., (2020) developed
two tree learning models, RF and eXtreme Gradient
Boosting (XGBoost), for soybean yield prediction using
unmanned aerial vehicle (UAV) based imagery. Strengths
of ML models in this study include their accurate fitting
of training data, quantitative assessment using various
error metrics, and the superior performance of XGBoost
compared to RF, particularly in handling overfitting. How-
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ever, there is a risk of overfitting, and the models tend to
exhibit underestimation at high yield values and overesti-
mation at low values, which can be influenced by the data
distribution and may require further refinement. Barbosa
dos Santos et al. (2022) evaluated the response of soybeans
in different irrigation supplementations and found that
higher water supply resulted in increased dry matter and
grain yield, leading to yield stability during the reproduc-
tive phases. The study effectively utilized thermal mapping
to gain insight into how climate impacts different stages of
soybean growth, enhancing the accuracy of predictive
modeling. In particular, RF showed robust performance
with a high R2 of 0.81 and a low RMSE, demonstrating
its precision in forecasting yields. Additionally, the study’s
comparison of machine learning algorithms highlighted
RF’s superiority for similar forecasting tasks. Further-
more, the models successfully captured regional variations
in yield, which is crucial for practical agricultural applica-
tions. On the other hand, the weaknesses observed include
the tendency of models like SVM_RBF and SVM_POLY
to underestimate yields in specific regions. The limited
number of data points in certain areas may have affected
the accuracy of predictions, particularly in years with
extreme weather conditions. Furthermore, the study missed
an opportunity to provide a broader perspective on model
performance by not comparing its results with traditional
forecasting methods.

Combining S1 and S2 datasets provides a more compre-
hensive view of the agricultural landscape, allowing better
prediction of soybean yield at the pixel level. Additionally,
the inclusion of light detection and classification (LiDAR)
data can provide information on soil characteristics and
topography, which can further improve the accuracy of
yield prediction models. Machine learning techniques can
be applied to these data sets to develop models that can
accurately predict soybean yield, which can be used to
inform agricultural management decisions and improve
crop yields. Due to the importance of yield predictions in
facilitating various decisions at different levels of the
agroindustrial soybean value chain, and the necessity to
revise yield predictions during the crop development phase.
The main objective of this research was to examine the
potential of SAR and multispectral satellite imagery, as
well as elevation data, to predict soybean yield at the pixel
level in Mezohegyes using ML techniques. To do this, the
following objectives were set: (1) to develop predictive
models that can determine the stage at which reliable pre-
dictions of harvest yield can be made based on soybean
yield in two years (eg 2020-2021) at the pixel level; (2) to
conduct a comprehensive and detailed investigation of
multiple ML techniques, using data from two years to fore-
cast soybean yield and determine the most appropriate
algorithm to predict year 2022. To achieve this objective,
the study will evaluate the effectiveness of various machine
learning algorithms, including KNN, RF, MLR, and DT,
in estimating soybean yield; (3) investigate the advantages
of combining satellite imagery with elevation data in pre-
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dicting soybean yield, and analyze how individual predic-
tors impact model performance. Since yield predictions at
the pixel level are most useful to farmers, this study also
aimed to (4) assess how spatially averaged field-level results
predict soybean yield. To achieve these objectives, remote
sensing data from Copernicus S1 SAR and S2 multispectral
satellites, which provide free of charge, high-resolution,
and frequent imagery, were analyzed.

2. Materials and methods
2.1. Study area

The study area for this research is Mezhegyes, located in
southeastern Hungary near the border with Romania (46°
19 N, 20° 49’ E). All soybean parcels from 2020 to 2023
were included in the study area (Fig. 1). Specifically, par-
cels from 2020 and 2021 were used for training, while those
from 2022 were used for testing, and their corresponding
details are presented in Fig. 2. Mezhegyes is a town that
spans 15,544 ha with a population of 4950 individuals.
The soil in the meadows and lowlands is predominantly
chernozem, a common soil type with high lime content that
is particularly suitable for agriculture, particularly cereal
and oil crops (Amankulova et al., 2021). The Mezhegyes
experimental farm, operated by Mezhegyesi Ménesbirtok
Zrt., is a significant contributor to agricultural activity in
Mezhegyes and neighbouring communities.

2.2. Satellite imagery

S1 is equipped with a C-band radar instrument that
allows it to capture images of the Earth’s surface day and
night, regardless of weather conditions. It uses the (SAR)
to capture images, which allows it to penetrate through
clouds, rain, and even vegetation. S1 provides images with
a spatial resolution of up to 5 m and a revisit time of up to
12 days.

S2 is an MSI that provides high-resolution imagery of
the Earth’s surface. It has 13 spectral bands that allow
observation of a wide range of features of land cover,
including vegetation, water bodies, and urban areas. S2
provides images with a spatial resolution of up to 10 m
and a revisit time of up to 5 days. Both S1 and S2 provide
free and open access data, which can be accessed through
various data portals such as the Copernicus Open Access
Hub or the Sentinel Hub. The data from Sentinel 1 and 2
data were acquired during the soybean cultivation period
between 1 April and 31 October in the years 2020, 2021,
and 2022 (Table 1).

In this research, we used (SAR) data obtained from the
S1 satellite in the Interferometric Wide (IW) mode of
acquisition. The SAR images have a resolution of
5 x 20 m and a swath width of 250 km, with two polariza-
tion types (VV and VH) providing backscatter intensity
information. These images were pre-processed at Level 1,
resulting in complex data in the slant range that is geolo-
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Fig. 1. The red, blue, and green colours indicate the year 2020, 2021, and 2022, respectively. The natural colour composite is based on S2 imagery, and the
RGB bands used were 4, 3, and 2. The acquisition date for the image was 8 August 2021.
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Fig. 2. Information about soybean fields for three years.

cated, radiometrically calibrated, and terrain-corrected.
The images obtained were processed using Sentinel Appli-
cation Platform (SNAP) version 8.0 software, developed by
the European Space Agency (ESA), to make them suitable
for further analysis. This involved adjusting the size of the
image tiles to match the study area and obtaining precise
orbit information by applying orbit files, since the meta-
data provided with the radar products are often insuffi-
ciently accurate. In addition, steps were taken to enhance
image quality by eliminating thermal noise and radiometric
artefacts from the edge edges of the image, calibrating the
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images for radiometrically calibrated backscatter, and
removing the granular noise caused by backscatter from
certain elements. The images were then assigned geograph-
ical coordinates and the backscatter values were converted
to decibels in the final step. For S1, VV/VH was calculated
(Veloso et al., 2017).
W/VH =VV — VH (1)

The S2 images used in this study were resampled at a
10 m resolution using the SNAP software after initially
being obtained at varying pixel sizes. Fields in the study
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Table 1
S1 and S2 imagery numbers for each growing season for three years.

Month
April

Year Sentinel-1 Sentinel-2

2020
2021
2022
2020
2021
2022
2020
2021
2022
2020
2021
2022
2020
2021
2022
2020
2021
2022
2020
2021
2022

May

June

July

August

September

October

NNV WRPRARaaaoULmUb,aT U BB W
DO, UNBENUNAANR AN N B DD W

area were identified using an official crop plan map as a
mask layer in QGIS 3.16. To identify the green peak soy-
bean phenological stage, we generated averaged mosaics
of S1 and S2 images for each month by computing their
average values and a box plot was generated by computing
minimum, maximum, mean, median, and standard devia-
tion statistics. A box plot was then created to present the
findings (Fig. 3). To obtain information about S2, the
NDVI values were calculated (Tucker, 1979) and the statis-
tical range from minimum to maximum was determined for
each month (Fig. 4).

The analysis of the data revealed that August had a high
indicator value in each table. This indicates that the best
indicator to reflect the value of mosaic bands and indices,
from minimum to maximum, is in August. The high indica-
tor value in August suggests that it is the peak phenological
period for soybeans and therefore the most suitable time
for crop yield monitoring. Bolton and Friedl, 2013 demon-
strates that considering crop phenology, especially the tim-
ing of peak vegetation index, enhances crop yield
predictions. Identify specific days after greenup, varying
for different crops like maize and soybeans, as optimal
for yield prediction. This highlights the importance of tim-
ing the highest vegetation index values for accurate crop
yield predictions. To demonstrate this, we conducted an
experiment in which we used data from two satellites to
make monthly predictions, and the results substantiated
our approach (See Fig. 5).

Therefore, these results highlight the importance of
using satellite imagery and machine learning techniques
to monitor crop growth during the peak phenological per-
iod, especially in August, to ensure better crop yield and
management. Specifically, we mosaicked the S1 and 2
images from each month to determine the phenological
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stage of soybeans. The process of selecting the greenest
pixel composite is a technique used to create temporal
mosaicking of satellite imagery. To incorporate temporal
data and accommodate various stages of growth of soy-
bean crops, we generated composite images by combining
Sentinel-1 and Sentinel-2 data throughout the growing sea-
sons from April to October. For Sentinel-1 data, we cre-
ated monthly mosaics by averaging the images within
each month (Shendryk et al., 2021). This method aims to
choose the image captured under the least cloudy condi-
tions and to reduce any discrepancies in vegetation phenol-
ogy (Bey et al., 2020). To ensure that the spatial resolution
of the S2 images matched that of the model development, a
grid rectangle (eg polygon) was created at 10 x 10 m to
extract pixel values. This involved combining multiple
images to create a larger and more complete image of the
soybean field at each stage of growth. In addition, we cal-
culated environmental data to include in our model, such
as aspect, slope, and TWI using QGIS 3.16 software. Over-
view of the methodology adopted for the soybean yield pre-
diction procedures given in workflow form (Fig. 6).

2.3. Environmental data

The study area was mapped using LiDAR technology to
create a high-resolution digital terrain model (DTM) with a
spatial resolution of 5 cm. The DTM was derived from
radar data collected during the airborne campaign in
2019. To ensure compatibility with S2’s spatial resolution,
the data were rescaled to 10 m using the cubic convolution
method in ERDAS IMAGINE 2020 software. The rescaled
data was used to calculate slope and aspect, secondary vari-
ables used as input parameters in the estimation model
(Farmonov et al., 2023). The Topographic Wetness Index
(TWI) is a measure of topographic control of the water
flow and the water storage potential in a terrain. It is a
function of the accumulation of slope and flow, and it char-
acterizes the degree of topographic convergence or diver-
gence in a given area. TWI is a useful tool for predicting
hydrological processes, such as soil moisture, groundwater
recharge, and runoff generation. TWI is a topographic
index that characterizes the pattern of water accumulation
pattern across the landscape (Qin et al., 2011; Silva and
Alexandre, 2005) and is known to be correlated with crop
yield (Maestrini and Basso, 2018; Silva and Alexandre,
2005). In the case of LIDAR data, the TWI can be calcu-
lated by first generating a Digital Elevation Model
(DEM) from the LIDAR data, then computing the flow
direction and flow accumulation grids from the DEM using
a hydrological model, and finally applying the TWI equa-
tion, which involves dividing the natural logarithm of flow
accumulation by the slope of the terrain.

2.4. Field data

High-resolution soybean yield data for three years
(2020, 2021 and 2022) were collected using a GPS-
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Fig. 3. Boxplots were generated for each month in 2020 (A), 2021 (B), and 2022 (C). The data is sourced from S1 mosaics, and VH values are represented
in the upper layer, while VV values are in the lower layer.
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Fig. 4. Boxplot displaying NDVI values from April to October for the years 2020, 2021, and 2022 was created using S2 mosaic imagery.

equipped combine harvester. In Hungary, soybeans are
typically planted in April and harvested between Septem-
ber and October. To eliminate biases caused by combine
harvester dynamics and positioning data inaccuracy, raw

yield data were cleaned according to the method proposed
by Lyle et al. (2014). Crop yield data were adjusted and fil-
tered to remove incorrect data caused by overlapping crop
rows, resulting in a linear sequence of near-zero productiv-
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Fig. 5. Seven-Month Yield Prediction Time-Series Analysis Using Sen-
tinel-1 VV+VH and Sentinel-2 NDVI.

ity areas. The company involved in agriculture in the study
area provided the yield data, which were adjusted to match
the head dimensions of the harvester (2 m x 6 m) and con-
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verted to raster format using the inverse distance-weighted
(IDW) interpolation method of QGIS v.3.16 with
10 m x 10 m pixels to match the resolution of the satellite
images. Response variables for yield prediction models
were obtained using RS-derived VIs, VV/VH bands,
LIDAR data and their combinations. Fishnet grid poly-
gons with dimensions of 60 x 30 m were created to accu-
rately predict yield (Fig. 7), which contains S1 and 2
pixels. The average S1 bands, VIs, LIDAR data, and crop
yield values were calculated for the corresponding grids.

2.5. VIs

VIs are commonly used to assess vegetation health and
productivity (Table 2). In this study, we used four different
VIs. The indices were chosen on the basis of their ability
and potential to capture crop growth dynamics. Although
there are various VIs available, the Normalized Difference
Vegetation Index (NDVI) has been the focus of many stud-
ies (Zhao et al., 2015; Shang et al., 2015). The Green Nor-

S1 Image I < $2 Image T°pographic
variables
Apply Orbit File Mask
Thermal Noise Resampling
Radiometric Subset
Spackle Filtering Calculating Vls

)
)
)
)
Terrain Correction J
1
]
]

N Y Y Y ——
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> .
Resampling Yield Data ‘
Feature Extraction
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Backscatter yield dat: ~
ntensi \
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—
[ Mosaic J
@/ Training
RF < DT >
Testing
Soybean yield
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Fig. 6. Schematic diagram of workflow in this study.
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Fig. 7. Fishnet polygons were created to define the field boundaries at the pixel level for predicting crop yield for three years.

Table 2
Definition of the vegetation indices used in the study.

Index

Equation Reference

Normalized difference vegetation index (NDVI)

Green normalized difference vegetation index (GNDVI)
Soil-adjusted vegetation index (SAVI)

Normalized difference water index (NDWI)

NIR—Red

NIR+Red

NIR—Green

NIR+Green

(NIR—Red)

(1 + L) (NIR+Red+L)
NIR—SWIR

NIR+SWIR

(Rouse et al., 1973)
(Gitelson et al., 1996)
(Huete, 1988)
(McFEETERS, 1996)

malized Difference Vegetation Index (GNDVI) is a modi-
fied version of NDVI that replaces the red band with the
green band (Gitelson et al., 1996). This change may be
more advantageous in evaluating changes in green biomass
at the canopy level. To account for soil background effects
that can affect the reflectance of crop canopies, the Soil
Adjusted Vegetation Index (SAVI) was developed (Huete,
1988). SAVI has been applied for the prediction of total
biomass and crop yield (Elwadie et al., 2005; Panda
et al., 2010). It involves an adjustment factor (L) in the
NDVI equation that removes soil noise, the value of L
being dependent on the density of the vegetation. NDWI
was developed to detect water content in vegetation and
is more sensitive to water stress in plants, making it more
effective in capturing the impact of drought on crop yields
(Gu et al., 2008, 2007).

2.6. Machine learning algorithms

The ML algorithms used in this study are RF, MLR,
DT, and KNN. The study used the Scikit-learn library
(Pedregosa et al., 2011) to search for optimal machine
learning pipelines for each response variable, using ran-
domly generated pipelines. The study also employed an
ensemble algorithm called Random Forest (RF), which
uses multiple decision trees to make predictions. RF works
by creating a large number of decision trees and combining
their predictions through methods like averaging or major-
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ity voting (Breiman, 2001). This approach helps to reduce
overfitting and variance issues commonly associated with
single decision tree models. RF is capable of handling
high-dimensional and correlated features and can be used
for classification and regression tasks (Tin Kam Ho,
1995). 1t also provides an estimate of feature importance,
which is beneficial for feature selection and understanding
of the underlying relationships in the data. Optimizing the
number of regression trees (ntree) and the selection of dif-
ferent predictors at each leaf node (mtry) is necessary for
the implementation of the RF algorithm (Dewi et al.,
2019). This study performed a grid search optimization
of these parameters using Python 3.11.3 version with the
Scikit-learn (sklearn) package. The ntree values were tested
from 50 to 500 at intervals of 50, while the mean values
were tested from 5 to 100. The optimal result was achieved
by setting the value at 500 and selecting the default value of
mtry, which is calculated as the total number of predictors
divided by 3, as the number of variables tried at each split
(Amankulova et al., 2023).

MLR has been widely used across diverse fields as a pre-
ferred linear regression technique. Considering that a phe-
nomenon is often associated with multiple influencing
factors, using multiple independent variables in MLR has
proven to be more effective and realistic than the use of a
single independent variable alone, as suggested by Sousa
et al. (2007). Therefore, MLR is considered more practical
than single linear regression and is commonly utilized to
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model linear relationships between a set of multiple inde-
pendent variables and a dependent variable, as pointed
out by Aiken et al. (2012).

KNN is a machine learning method for regression and
classification problems. It uses a distance function such
as Manhattan or Euclidean to calculate the target value
for new samples based on the nearest neighbours of k. K
is directly proportional to the prediction, with a smaller
K indicating high variance and low bias and a larger K
indicating low variance and high bias. The advantage of
KNN is that it does not require training or optimization,
but has higher complexity and time consumption, as it uses
past datasets to predict new ones (Medar et al., 2019).

The DTR method makes predictions for the target vari-
able by building a tree with nodes representing each feature
based on the training data. This method can be used for
both classification and regression problems and has the
advantage of providing easily interpretable results in a tree
structure. The algorithm uses binary splits to separate the
data into two parts and minimize the sum of squared devi-
ations from the mean in each part until a minimum node
size specified by the user is reached (Millan-Castillo et al.,
2020; Xu et al., 2005).

The performance of the yield prediction model was
assessed by calculating the coeflicients of determination
(R2), the root mean square error (RMSE) and the mean
absolute error (MAE) accuracy metrics. These metrics
can be calculated using the following equations: (2)—(4)

- (ZL b=, 1) o
S = y) L =)

(3)

MAE = W (4)

In these equations, n (i=1, 2, .. ., n) represents the num-

ber of samples used to test the ML model, y, represents the
observed yield, y, represents the corresponding mean value,

f; represents the predicted yield, and f; represents the cor-
responding mean value. A high value of R? indicates a bet-
ter performance of the model in predicting the yield. Lower
RMSE values indicate less discrepancy between the pre-
dicted and observed yield.

2.7. Model development

The model was developed through a thorough process
of analyzing and testing the data, which spanned two years.
Various techniques were used to build the machine learning
model, including merging the data from 2020 and 2021 to
create a more comprehensive data set. To ensure accurate
results, each band of S1 and each vegetation index, as well
as environmental data, were individually calculated and
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tested in different combinations. The aim was to determine
the optimal combination of features that would yield the
most accurate predictions. The metrics were computed sep-
arately for each model and the outcomes were compared to
identify the best model. Analysis was carried out in August,
which is the peak phenological period of soybeans, to
ensure that the results were a true representation of the
actual yield during this period.

2.8. Model training

In this study, we combined two years (2020 and 2021) of
crop data to create a model that was used for training. To
test the model, we divided the data into two parts, 70 %
used for training and 30 % for testing. Four machine learn-
ing techniques, namely RF, KNN, MLR, and DTR, were
used to check the model, and three metric values, namely
R-squared, RMSE, and MAE, were calculated from the
results. The calculations were carried out separately for
each of the S1 and VI data and their combination, followed
by the topographic data. Finally, all data were combined
and the regression was calculated (Fig. 8). The results
showed that the R? values for SI ranged from 0.2 to 0.5,
for VIs from 0.54 to 0.90, and for the combination of S1
and VIs from 0.32 to 0.90. When combined with topo-
graphic data (ie, aspect, slope, and TWI), the R2 values
increased from 0.85 to 0.91. The RMSE and MAE values
had similar indicators, with separate calculations for S1
resulting in RMSE values ranging from 0.143 to 0.192 t/
ha, for VIs from 0.119 to 0.132 t/ha, and for their combi-
nation from 0.105 to 0.130 t/ha. The MAE values ranged
from 0.126 to 0.151 t/ha for S1, from 0.116 to 0.141 t/ha
for VI, and from 0.089 to 0.110 t/ha for their combination.
In general, these findings represent that the combination of
S1, VIs and topographic data could potentially improve the
prediction of crop yields.

3. Results
3.1. Future selection

We examine correlation-based feature selection (CFS), a
popular technique for selecting the most relevant features
in a dataset. CFS evaluates the correlation between each
feature and the target variable and selects the features with
the highest correlation. We used Python 3.11.3 software,
several libraries provide CFS functionality. One of the
most commonly used libraries is scikit-learn. Scikit-learn
provides a SelectKBest function, which can be used to
select the K-highest features based on a scoring function.
The scoring function can be set to correlation, which will
select the features with the highest correlation with the tar-
get variable. The analysis revealed that GNDVI, NDVI
and SAVI were the most significant features in predicting
crop yield, with correlation coefficients (r) of almost 1,
0.95, and 0.85, respectively (Fig. 9). These results suggest
that these VIs are highly indicative of crop productivity.
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Furthermore, the r values for the polarization types HH
and HV were 0.55 and 0.5, respectively, indicating that they
have moderate relevance to predict crop yield. Further-
more, topographic factors such as aspect, slope, and TWI
were found to have the lowest impact, ranging from 0.1
to 0.2 for productivity prediction. These findings suggest
that the combination of VIs, polarization types, and topo-
graphic data in crop productivity models can improve the
accuracy of prediction.

3.2. Model validation

After creating and testing the model using four different
machine learning techniques and various metric values, we
found that RF consistently performed the best in predict-
ing soybean yield. Therefore, we chose RF as the preferred
ML technique and used it for model validation. We vali-
dated the two-year RF training model on independent soy-
bean yield from 2022. We calculated S1, VIs and
topographic values for the 2022 yield and divided the plots
into fishnet sections for analysis. To demonstrate the
results, we present an example of six parcels. The R? values
in fields 2 and 5 were found to be the lowest with values
ranging from 0.41 to 0.77, while fields 1 and 3 showed aver-
age values of 0.82 to 0.81, and fields 4 and 6 presented the
best value of 0.89. It is important to note that low values of
RMSE and MAE are generally observed in areas where R>
is high, while high RMSE and MAE are associated with
lower R? values. The MAE values in fields 2 and 5 were cal-
culated as 0.089 and 0.117 t/ha, respectively, while fields 1
and 3 had values of 0.163 and 0.129 t/ha, and fields 4 and 6
yielded values of 0.103 and 0.126 t/ha. Similarly, RMSE
values in fields 2 and 5 were found to be 0.122 and
0.153 t/ha, respectively, while fields 1 and 3 had values of
0.224 and 0.171 t/ha, and fields 4 and 6 produced values

Advances in Space Research 73 (2024) 4052-4066

of 0.138 and 0.165 t/ha. We employed a boxplot to visually
represent the RMSE and MAE values in the context of
accuracy metrics.

4. Discussion
4.1. Analyzing the vegetative period at peak

The S1 and S2 data was utilized by mosaicing each
month to identify the optimal growing season. Minimum,
maximum, mean, median, and standard deviation were cal-
culated for each month over three years. The VV and VH
bands were calculated for S1 (Fig. 3), while the NDVI
index was calculated for S2 (Fig. 4). The study revealed
that the peak period of soybean harvest was August in both
sensors and all three years, which corresponds to the begin-
ning pod, the phenological period of the entire pod of soy-
bean. Numerous research studies have shown that peak
phenological stages can yield superior outcomes. Bai
et al., (2019) employed the optimal phenological stage to
determine the best time for yield estimation, relying pri-
marily on phenological stages and VIs derived from Land-
sat 8 imagery, and utilized the month of peak phenology to
forecast crop yield. Using the peak phenological period, we
based our selection on previous results (Amankulova et al.,
2023), monitored the growth period of sunflowers through
VIs acquired from S2, and developed a yield prediction
model using the highest phenological stage.

4.2. The benefits of using RF compared to other machine
learning techniques

In our study, we evaluated the performance of four dif-
ferent machine learning techniques to predict soybean
yield. After testing each method in the training dataset,
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Fig. 9. Correlation-based Feature Selection results.
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we found that RF produced the most accurate predictions.
Fig. 8 shows the comparison of R? values between the four
ML techniques, where RF had the highest value of 0.91
than other techniques KNN 0.88, MLR 0.86, DT 0.85.
This indicates that RF outperformed the other methods
in terms of predicting soybean yield using combined satel-
lite and topographic data. In addition, high R* values indi-
cate low RMSE and MAE values, which are important
metrics for evaluating prediction accuracy. The RF model
demonstrated the lowest RMSE and MAE values of 0.105
and 0.089 t/ha, respectively. After considering the results of
other relevant studies, Kumar et al., (2018) concluded that
the analysis of SIA SAR was utilized to estimate the
growth parameters of winter wheat crops in Varanasi dis-
trict, India. In general, RF was the most precise algorithm
for estimating winter wheat parameters, followed by the
SVR, ANNR and LR algorithms. Pang et al., (2022) used
RF models on satellite imagery to predict wheat yields in
three south-east Australian paddocks. The RF composite
region-wide RF model had an R? of 0.86 and an RMSE
of 0.18 t ha~', while individual paddocks in Victoria and
New South Wales performed well with R? values of 0.89
and 0.87 and low RMSE values of 0.15 and 0.07 t ha™".
However, the South Australia model had moderate perfor-
mance with an R? of 0.45 and an RMSE of 0.25 t ha™'. The
study highlights the potential of using RF models on satel-
lite imagery for regional- and local-scale yield prediction.
In our previous article (Amankulova et al., 2023), we con-
ducted a study to investigate the feasibility of using remote
sensing data to monitor crop phenology and predict sun-
flower crop yield at the field scale. Multiple linear regres-
sion and two machine learning approaches were used to
predict sunflower crop yield using remote sensing data.
The best performing model was found to be the RF with
an R? of approximately 0.6 and an RMSE of 0.284-
0.473 t/ha.

4.3. Importance of future combination S1, S2, and
topographical data for soybean yield prediction

The S1 data provide important information on soil
moisture, which is a key factor in crop growth and yield,
while the S2 data provide high-resolution multispectral
imagery, allowing a detailed analysis of crop health and
growth patterns. We also investigated VIs derived from
S2 images to predict soybean yield. The use of VIs in the
prediction of crop yield is an important area of research
and several studies have examined its significance. VIs are
indicators of crop health and can provide information on
vegetation density, photosynthetic activity, and other plant
characteristics (Joshi et al., 2023). However, according to
other studies, yield accuracy estimates could not be
improved by calculating independent VIs (Hunt et al.,
2019). This would imply that RF can obtain important
information for the estimation of the yield from the specific
satellite bands themselves, which is often provided by Vls.
When developing a training model, it was observed that the
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use of only S1 RMSE = 0.180 t / ha or only VIs RMSE =
0.119 t/ha did not produce satisfactory results.

The generated model outperformed the previously
established models when the environmental data was inte-
grated with the S1, S2 and topographical data. According
to several studies (Burt, 2012; Hunt et al., 2019; Schwalbert
et al., 2020), combining environmental data with satellite
data to improve crop production assessment produced
superior results. Consequently, a decision was made to
combine these two satellite images. The integration of
topographic data with satellite images led to a significant
improvement in the performance of the model. This combi-
nation increased the accuracy of the estimate. Specifically,
the RMSE value decreased to 0.105, while the MAE was
reduced to 0.089 t/ha (Fig. 8) for the random forest regres-
sion model. These findings highlight the importance of
using a combination of satellite images and topographic
data for accurate yield prediction. In the results section,
we demonstrate that the combined data approach was
effective by conducting a validation for 2022. We applied
the combined data approach to all six parcels and observed
favorable results with R2 values ranging from 0.41 to 0.89,
RMSE values ranging from 0.122 to 0.224 t / ha and MAE
values ranging from 0.089 to 0.163 t/ha (Fig. 10). These
results highlight the potential of using the combined data
approach for soybean yield prediction, as it offers a more
comprehensive and accurate assessment of crop conditions
and provides valuable insights for farmers and decision
makers in the agricultural industry (See Fig. 11).

4.4. Limitations of the study

The main limitation of using combine harvester yield
data for yield mapping and monitoring. Inaccurate data
could have a variety of causes. These include operating
multiple machines with various calibrations, choosing the
wrong header height and cut width settings, and making
mistakes with speed and travel distance. This can make it
difficult to accurately capture within-field variations in
crop yield, which can be influenced by a variety of factors,
such as soil type, topography, and plant health. Addition-
ally, combine harvester yield data are only available after
harvest, which limits their usefulness for making in-
season management decisions. Finally, yield data from
combine harvesters may be affected by factors such as
machine calibration, crop lodging, and operator variabil-
ity, which can introduce errors and uncertainty into yield
estimates (Thylén and Murphy, 1996).

5. Conclusions

This study has demonstrated the potential of using a
combination of S1 and S2 satellite imagery along with
other geographic attributes to forecast soybean yield in
the field at an early stage. The study first determined the
optimal phenological stage for soybean harvest in August
by analyzing satellite images. Two years were used for
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RMSE and MAE for validation datasets accross all fields.

model training and testing, while the model was validated
on the data set of 2022 years, utilizing S1 bands and VIs
obtained from monthly mosaiced images, as well as topo-
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graphic data. The individual calculations were subse-
quently combined and it was determined that the RF
regression algorithm was the most effective machine learn-
ing technique. The combination data was then calculated
using RF in the validation process, resulting in high accu-
racy rates, with R? ranging from 0.41 to 0.89 in parcel sec-
tions, RMSE ranging from 0.122 to 0.224 t/ha, and MAE
ranging from 0.089 to 0.163 t/ha. The results of this study
indicate that the integration of satellite data S1 and 2 with
topographical information can facilitate the monitoring,
mapping and forecasting of crop yields on small and frag-
mented farmlands, thus aiding agricultural decision-
making and allowing early warnings.

By combining data from S1 and S2, the outcomes were
found to be more effective than using data only from S2.
However, further research is needed to improve our under-
standing of the relationship between backscattering and
crop yield. In future studies, it would be useful to consider
high-resolution meteorological and soil variables such as
temperature, precipitation, and soil moisture to gain a bet-
ter understanding of the factors affecting crop yield.
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