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CHAPTER ©

Vectors and
Vector Spaces

6.1 Vectors in the Plane and 3-Space

Some quantities, such as temperature and mass, are completely specified by a number. Such
quantities are called scalars. By contrast, a vector has both a magnitude and a sense of direction.
If we push against an object, the effect is determined not only by the strength of the push, but its
direction. Velocity and acceleration are also vectors.

We can include both both magnitude and direction in one package by representing a vector
as an arrow from the origin to a point (x, ¥, z) in 3-space, as in Figure 6.1. The choice of the point
gives the direction of the vector (when viewed from the origin), and the length is its magnitude.
The greater the force, the longer the arrow representation.

To distinguish when we are thinking of a point as a vector (arrow from the origin to the
point), we will denote this vector < x, v, z>. We call x the first component of < x, y, z>,
¥ the second component and z the third component. These components are scalars.

Two vectors are equal exactly when their respective components are equal. That is,
< X1, M, 21 >=<Xp, Yo, 72y >

exactly when x; = x;, yi = y2, and 7, = 7.

Since only direction and magnitude are important in specifying a vector, any arrow of the
same length and orientation denotes the same vector. The arrows in Figure 6.2 represent the same
vector.

The vector < —x, — y, —z> is opposite in direction to < x, y, 7>, as suggested in Figure 6.3.

[t is convenient to denote vectors by bold-face letters (such as F, G, and H) and scalars (real
numbers) in ordinary type.
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148 CHAPTER 6  Vectors and Vector Spaces
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FIGURE 6.1 lector < x, y, z> from the

FIGURE 6.2 Arrow representations
origin to the point (X, y, z).

of the same vector.

/X,y,z>7

|

X

FIGURE 6.3 < —Xx, —y, —z > is opposite
<X, V,Z>.

The length (also called the magnitude or norm) of a vector F =< x, y, z> is the scalar

IF|=vx2+ y2+ 2.

This is the distance from the origin to the point (x, y, z) and also the length of any arrow repre-
senting the vector < x, y, z>. For example, the norm of G=< —1,4,2 > is | G ||=+/21, which
is the distance from the origin to the point (—1, 4, 2).

Multiply a vector F = < a, b, ¢> by a scalar « by multiplying each component of F by «.
This produces a new vector denoted «F:

aF=<u«aa,ab,ac>.

Then
| «F [|=c| | F I,
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6.1 Vectors in the Plane and 3-Space 149

because

| oF || = v/ (@a)? + (@b)? + (ac)?

=V(@)( @+ P +E)=a|Vat+ P+
= lo| | F].

This means that the length of «F is |«| times the length of F. We may therefore think of multipli-
cation of a vector by a scalar as a scaling (stretching or shrinking) operation. In particular, take
the following cases:

If « > 1, then «F is longer than F and in the same direction.

If 0 <o <1, then «F is shorter than F and in the same direction.

If —1 <« < 0 then «F is shorter than F and in the opposite direction.

If @ < —1 then «F is longer than F and in the opposite direction.

If @ = —1 then «F has the same length as F, and exactly opposite the direction.

For example, %F is a vector having the direction of F and half the length of F, while 2F
has the direction of F and length twice that of F, and —%F has direction opposite that of F
and half the length.

o [fa=0,then «F=<0,0,0=>, which we call the zero vector and denote Q. This is the only
vector with zero length and no direction, since it cannot be represented by an arrow.

Consistent with these interpretations of «F, we define two vectors F and G to be parallel if
each is a nonzero scalar multiple of the other. Parallel vectors may differ in length and even be
in opposite directions, but the straight lines through arrows representing them are parallel lines
in 3-space.

We add two vectors by adding their respective components:
IfF=<a, a, a; > and G= < by, by, by >, then

F+G=<atab+bhat+te>.

Vector addition and multiplication by scalars have the following properties:

1. F+ G=G+F. (commutativity)

2. F+(G+H)=(F+G)+ H. (associativity)
3. F+O=F.

4. «(F+ G) =oF +«G.

5. (aB)F = a(BF).

6. (¢ +pB)F=aF + BF.

It is sometimes useful to represent vector addition by the parallelogram law. If F and G are
drawn as arrows from the same point, they form two sides of a parallelogram. The arrow along
the diagonal of this parallelogram represents the sum F+ G (Figure 6.4). Because any arrows
having the same lengths and direction represent the same vector, we can also draw the arrows in
F+ G (as in Figure 6.5) with G drawn from the tip of F. This still puts F 4+ G along the diagonal
of the parallelogram.

The triangle of Figure 6.5 also suggests an important inequality involving vector sums and
lengths. This triangle has sides of length | F ||, | G ||, and || F 4+ G ||. Because the sum of the
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X
FIGURE 6.4 Farallelogram law for vector
addition. FIGURE 6.5 Alternative view of the

parallelogram law.

0,0,1)

i Lo

(1,0,0)

X

FIGURE 6.6 Unit vectorsi, j, and k.

lengths of any two sides of a triangle must be at least as great as the length of the third side, we
have the triangle inequality

IF+GlI=<IFl[+IGI.

A vector of length 1 is called a unit vector. The unit vectors along the positive axes are
shown in Figure 6.6 and are labeled

i=<1,0,0>, j=<0,1,0>, k=<0,0,1>.

We can write any vector F=< a, b, c> as
F=<abc>=a<1,000>+b<0,1,0> +¢c<0,0,1 >
=ai+ bj+ k.
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6.1 Vectors in the Plane and 3-Space 151

We call ai+ bj+ ck the standard representation of F. When a component of a vector is zero,
we usually just omit this term in the standard representation. For example, we would usually write
F=<-8 0,3 > as —8i+ 3k instead of —8i+ 0j + 3k.

If a vector is represented by an arrow in the x, y-plane, we often omit the third coordinate
and usei=<1,0> and j=< 0,1 >. For example, the vector V from the origin to the point
< 2,—6, 0> can be represented as an arrow from the origin to the point (2, —6) in the x, y-plane
and can be written in standard form as

V =2i — 6

wherei=<1,0>and j=<0,1 >.
It is often useful use to know the components of the vector V represented by the arrow from
one point to another, say from £ = (x, %, %) to B : (x1, %1, 2z1). Denote

G=xi+ nj+ znkand F=xi+ nj+ 2k
By the parallelogram law in Figure 6.7, the vector V we want satisfies
G+V=F.
Therefore,
V=F-G=(xy —x)i+ (n — w)i+ (z — )k

For example, the vector represented by the arrow from (-1, 6, 3) to (9, —1, —=7) if 10i—7j — 10k.
Using this idea, we can find a vector of any length in any given direction. For example,
suppose we want a vector of length 7 in the direction from (—1, 6, 5) to (—8, 4, 9).
The strategy is to first find a unit vector in the given direction, then multiply it by 7 to obtain
a vector of length 7 in that direction. The vector V= —T7i — 2j + 4k is in the direction from
(—1,6,5) to (—8, 4, 9). Since || V ||=+/69, a unit vector in this direction is

1 1

F= MV EV
Then
T
V69
has length 7 and is in the direction from (—1, 6, 5) to (=8, 4, 9).

7F (=Ti—2j+4k)

(%0 ¥0- 20)

(o)
(x1.51,21)

X

FIGURE 6.7 lector from (xo, o,2) to
(X1, N1, z1).
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FIGURE 6.8 (uadrilateral

with lines connecting successive FIGURE 6.9 Quadrilateral of

midpoints. Figure 6.8 with vectors as sides.

As an example of the efficiency of vector notation, we will derive a fact about quadrilaterals:
the lines formed by connecting successive midpoints of the sides of a quadrilateral form a paral-
lelogram. Figures 6.8 and 6.9 illustrate what we want to show. Draw the quadrilateral again with
vectors A, B, C, and D as the sides (Figure 6.9). The vectors x, y, u, and v connect the midpoints
of successive sides. We want to show that x and u are parallel and of the same length, and the
same for y and v. From the parallelogram law and the choices of these vectors,

11
—_A+-B
X=ga+7
and
11
—_C+-D.
u=ot+s

But also by the parallelogram law, C + D is the vector from F to £, while A+ B is the
vector from F to A. These vectors have the same lengths and opposite directions, so

A+B=—(C+D).

Then x = —u, so these vectors are parallel and of the same length (just opposite in direction).
Similarly, y and v are parallel and of the same length.

Equation of a Line in 3-Space

We will show how to find parametric equations of a line L in 3-space containing two given
points. This is more subtle than the corresponding problem in the plane, because there is no
slope to exploit. To illustrate the idea, suppose the points are (—2, —4, 7) and (9, 1, —7). Form
a vector between these two points (in either order). The arrow from the first to the second point
represents the vector

V=11i+5j— 14k

Because Ky and A are on L,V is parallel to L, hence to any other vector aligned with L. Now sup-
pose (x, y, z) is any point on L. Then the vector (x+ 2)i+ (y+4)j+ (z— Dk from (-2, —4,7)
to (x, y, 2) is also parallel to L, hence to V. This vector must therefore be a scalar multiple of V:

&+ i+ (+Dj+ z-Tk=1V
=114+ 5t — 14¢k
for some scalar ¢. Since two vectors are equal only when their respective components are equal,

x+2=11t, y+4=5¢, z— T=—14¢

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



6.1 Vectors in the Plane and 3-Space 153

X

FIGURE 6.10 Determining
parametric equations of a line.

Usually we write these equations as
x=—-24+11t, y=—4+5¢, z=T7 — 14¢.

These are parametric equations of L. As t varies over the real numbers, the point (—2 +
11¢, —4 + 5¢, 7 — 14¢) varies over L. We obtain (=2, —4, 7) when t =0 and (9, 1, —7) when
t=1.

The reasoning used in this example can be carried out in general. Suppose we are given
points B : (xo, %o, %) and B : (x1, 11, 21), and we want parametric equations of the line I through
B and B. The vector

(1 —x)i+ W — i+ (2 — 2k
is along L, as is the vector
X —x)i+ (y— i+ (Zz—2)k

from £ to an arbitrary point (x, y, ) on L. These vectors (see Figure 6.10), being both along Z,
are parallel, hence for some real ¢,

x—x%)i+ (y—mwi+ (z—- 2k
=1n —x)i+ (5 — i+ (2 — 2kl
Then
X=X =1t —=%), y= 0= —n)z2-20=Uzn—2).
Parametric equations of the line are
X=X+ = X), y=n+tn —n)z=2+ 12— 2),
with ¢ taking on all real values. We get /) when t=0and A when r=1.

EXAMPLE 6.1

Find parametric equations of the line through (=1, —1,7) and (7, —1, 4).

Let one of these points be F and the other A. To be specific, choose Fy=(—1,—-1,7) =
(X0, Yo, 20) and B = (7, —1,4) = (x1, 1. z1). The line through these points has parametric
equations

x=—14+T—- (-1t y=—14+(-1—(=1))t,z=T+ 4 =Dt
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154 CHAPTER 6  Vectors and Vector Spaces

for ¢ real. These parametric equations are
x=—148t, y=-1,2z=7-3¢

for ¢ real. We obtain /) when =0 and F when ¢ =1. In this example, the y-coordinate of every
point on the line is —1, so the line is in the plane y= —1.
We may also say that this line consists of all points (—1 + 8¢, —1, 7 — 3¢) for ¢ real.

SECTION 6.1 PROBLEMS

In each of Problems 1 through 5, compute F+ G, F — G, 8. 12,(—4,5,1),(6,2,-3)
2F, 3G, and | K. 9. 4,(0,0,1),(—4,7.5)
. F=2i—3j+ 5k, G=+/2i+6j — 5k

F=i— 3k, G = 4 In each of Problems 10 through 15, find the para-
’ ' metric equations of the line containing the given
points.

. F=+2i—j—6k,G=8i+2k
. F=i+j+k G=2i—2j+2k 10. (1,0.4),(2,1,1)
11. (3,0,0),(=3,1,0)

1
2
3. F=2i—5j,G=i+5j—k
4
5

In each of Problems 6 through 9, find a vector having the

given length and in the direction from the first point to the 12. (2,1,1),(2,1,-2)
second. 13. (0,1, 3),(0,0,1)

6. 5,0,1,4,(-5,2,2) 14. (1,0, =4), (=2, -2,9)
7.9,(1,2,1),(-4,-2,3) 15. (2,-3,6),(-1,6,4)
6.2 The Dot Product

The dot product F - G of F and G is the real number formed by multiplying the two first
components, then the two second components, then the two third components, and adding
these three numbers. If F = aji + bjj + ¢k and G = ai+ byj + ¢k, then

FG: alaz+b1b2+C1C2.

Again, this dot product is a number, not a vector. For example,
(V3i+4j — 7K) - (—2i+ 6j + 3Kk) = —2+/3 + 24 — 3.
The dot product has the following properties.
. F-G=G F.
. (F+G)-H=F-H+G-H.
a2(F-G)=(«F)-G=F- («G).
. F-F=||F|?.
. F-F=0ifand only if F=0.
- N oaF+BG[*=a? || F |*+228F -G+ B* | G ||*.
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6.2 The Dot Product 155

Dot products of vectors can be computed using MAPLE and the Do tP roduc t command,
which is in the VectorCalcu lus package of subroutines. This command also applies to n-
dimensional vectors, which are introduced in Section 6.4.

Conclusions (1), (2), and (3) are routine computations. Conclusion (4) is often used in
computations. To verify conclusion (4), suppose

F=ai+ bj+ ck.
Then
F-F=a"+rF+J=|F|°.

Conclusion (5) follows easily from (4), since O is the only vector having length 0. For conclusion
(6), use conclusions (1) through (4) to write

| «F + BG |2 = («F + BG) - («F + BG)
=a’F-F+ofF-G+opG -F+B°G-G
=’ | F|*+2apF -G+ B* | G|*.

The dot product can be used to find an angle between two vectors. Recall the law of cosines:
For the upper triangle of Figure 6.11 with 6 being the angle opposite the side of length ¢, the law
of cosines states that

at+ b — 2abcos(®)= .

Apply this to the vector triangle of Figure 6.11 (lower), which has sides of length a=|| G|,
b=||F|, and c=| G —F | . Using property (6) of the dot product, we obtain

IGI*+IFI*~2|F[[ G| cos®) =] G—F|*
= G[*+ | F|*~2G-F.
Assuming that neither F nor G is the zero vector, this gives us
F-G

cos(@)= ——. (6.1)
IFIIGI
Since | cos(®)| < 1 for all @, equation (6.1) implies the Cauchy-Schwarz inequality.
IF-GI=IF[IG].

FIGURE 6.11 The law
of cosines and the angle
between vectors.
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156 CHAPTER 6  Vectors and Vector Spaces

EXAMPLE 6.2

The angle 6 between F = —i+ 3j+ k and G = 2j — 4k is given by
(=i+3j+Kk) - (2j—4k)
=i+ 3j+ k||l 2j — 4k ||
_EDHO+OO+MED 2

JIZ 531 12/22 1 42 V220

cos(f) =

Then 6 ~ 1.436 radians.

EXAMPLE 6.3

Lines ; and 1, have parametric equations

Liix=1+6t y=2—-4t,z=—-1+3¢
and

Ly:x=4-3p, y=2p,z=-5+4p.
The parameters ¢ and p can take on any real values. We want an angle 8 between these lines.

The strategy is to take a vector V| along L; and a vector V, along I, and find the angle

between these vectors. For V, find two points on Ly, say (1, 2, —1) when ¢=0 and (7, -2, 2)
when =1, and form

V= (7= Dit (=2 —2)j+ @ — (—1)k=6i — 4j + 3k.
On L,, take (4, 0, —5) with p=0and (1, 2, —1) with p=1, forming
V,=3i-2j—4k.
Now compute
6(3) —4(=2)+3(-4) 14
V36+16+9/9+4+16 /1769
An angle between L; and L, is arccos(14/+/1769), which is approximately 1.23 radians.

cos(f) =

Two nonzero vectors F and G are orthogonal (perpendicular) when the angle 0 between
them is 77 /2 radians. This happens exactly when

_ FG

CIFIIG

which occurs when F - G = 0. It is convenient to also agree that O is orthogonal to every

vector. With this convention, two vectors are orthogonal if and only if their dot product is
Zero.

cos(0)=10

EXAMPLE 6.4

Let F=—4i+j+ 2k, G=2i+ 4k and H=6i —j— 2k. Then F- G=0, so F and G are orthog-
onal. But F-H and G - H are not zero, so F and H are not orthogonal and G and H are not
orthogonal.

Property (6) of the dot product has a particularly simple form when the vectors are
orthogonal. In this case, F- G =10, and upon setting « = =1, we have

IF+GI*=IFI*+G|*.
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6.2 The Dot Product 157

This is the familiar Pythagorean theorem, because the vectors F and G form the sides of a right
triangle with hypotenuse F + G (imagine Figure 6.5 with F and G forming a right angle).

EXAMPLE 6.5

Suppose two lines are defined parametrically by
Li:ix=2—-4t,y=6+1t,2=3t
and
Lyix=—-24p,y=T+2p,z=3—4p.

We want to know if these lines are orthogonal. Note that the question makes sense even if L; and
L, do not intersect.

The idea is to form a vector along each line and test these vectors for orthogonality. For
a vector along I, take two points on this line, say (2,6,0) when t=0 and (—2,7, 3) when
t=1.Then V; = —4i+ j+ 3k is parallel to ;. Similarly, (=2, 7, 3) is on L; when p=10, and

(1,9, —1)ison L, when p=1,s0 V,=i+ 2j — 4k s parallel to /,. Compute V; - Vo= —14 0.
Therefore, L, and L, are not orthogonal.

Orthogonality is also useful for determining the equation of a plane in 3-space. Any plane
has an equation of the form

ax+by+cz=d.

As suggested by Figure 6.12, if we specify a point on the plane and a vector orthogonal to
the plane, then the plane is completely determined. Example 6.6 suggests a strategy for finding
the equation of this plane.

EXAMPLE 6.6
We will find the equation of the plane IT containing the point (—6, 1, 1) and orthogonal to the
vector N = —2i 4+ 4j + k. Such a vector N is said to be normal to T1 and is called a normal
vector to I1.

Here is a strategy. Because (—6, 1, 1) is on II, a point (x, ¥, z) is on Il exactly when the
vector between (—6, 1, 1) and (x, y, 2) lies in I1. But then (x +6)i+ (y — 1)j+ (z— 1)k must
be orthogonal to N, so

N-((x+6)i+ (y—Dj+(=z—-Dky=0.

FIGURE 6.12 A point P and a normal
vector N determine a plane.
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158 CHAPTER 6  Vectors and Vector Spaces

Then
—2x+6)+4y-DH+(z-1)=0,
or
—2x+4y+z=1T7.
This is the equation of IT.

Following this reasoning in general, the equation of a plane containing a point /: (xy, ¥, %)
and having a normal vector N=ai+ bj+ ck is

N [(x —x)i+ (y— )i+ (z— z)k]=0
or
a(x — x))+ by — )+ c(z— 2)=0. 6.2)

It is also sometimes convenient to notice that the vector ai+ bj + ck is always a normal
vector to a plane ax + by + cz= d, for any d. Changing the value of d moves the plane in 3-
space but does not change its orientation with respect to the axes, so the normal vector remains
the same and is determined by the coefficients a, b, and ¢ only.

Another use for the dot product is in forming vector projections.

Let u and v be given, nonzero vectors, represented as arrows from a common point (for
convenience). The projection of v onto u is a vector proj,v in the direction of u having magnitude
equal to the length of the perpendicular projection of the arrow representing v onto the line along
the arrow representing u. This projection is done by constructing a perpendicular line from the
tip of v onto the line through u. The base of the right triangle having v as hypotenuse is the length
d of proj,v (Figure 6.13).

If 6 is the angle between u and v, then

d
cos(f) = m

Then
u-v u-v

d=|v|cos(@)=|V| —r—=1—.
Tullivi fuf

X

FIGURE 6.13 Orthogonal projection of v
ontou.
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6.3 The Cross Product 159

To obtain a vector in the direction of u and of length d, divide u by its length to obtain a unit
vector, then multiply this vector by d. Therefore,

proj,v= d<L) = LZu.
lal/ fluf

As an example, suppose v=4i — j+ Zk and u =i — j + 2k. Then
u-v=9and |u|’=6,

SO
NI
ProJuV—Gu—z(l—.]‘i‘ ).

If we think of these vectors as forces, we may interpret proj,v as the effect of v in the
direction of w.

SECTION 6.2 PROBLEMS

In each of Problems 1 through 6, compute the dot product 8. (—1,0,0),i—2j
of the vectors and the cosine of the angle between them.

Also determine if the vectors are orthogonal. 9. (2,-3,4),8i—6j + 4k

1. ,2i—-3j+k 10. (—1,-1,-5), —3i+2j

2. 2i—6j+k,i—j 11. (0,-1,4),7i+6j — 5k

3. —4i—2i+3k,6i—-2j—k 12. (=2,1,-1),4i+3j+k

4. 8i—3j+2k,—8i—3j+k

5. i— 3k, 2j+6k In each of Problems 13, 14, and 15, find the projection of
6. i+j+ 2k i—j+2k T onie U

In each of Problems 7 through 12, find the equation of 13. v=i—j+4k u=—3i+2j—k
the plane containing the given point and orthogonal to the
given vector. 14. v=>5i+2j—3k,u=i—5j+2k

7. (=1,1,2),3i—j +4k 15. v=—i+3j+6k u=2i+7j— 3k

6.3 The Cross Product

The dot product produces a scalar from two vectors. The cross product produces a vector
from two vectors.

Let F = aji+ bj+ ¢k and G= ai + b,j + ¢;k. The cross product of F with G is the
vector F x G defined by

FxG=(bc,— bho)i+ (aq —ac)j+ (ah, — a bk

Here is a simple device for remembering and computing these components. Form the determinant

i j ok
ay bl (8]
y bz &)
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160 CHAPTER 6  Vectors and Vector Spaces

having the standard unit vectors in the first row, the components of F in the second row, and the
components of G in the third row. If this determinant is expanded by the first row, we get exactly

FxG:
i j k
a bl (&}
dy bz Co
o b1 Cr|. a Cr| . ay b1
B bz Cy ! d O J+ dy bz ke

= —bho)i+ (@aa —ac)j+ (ah, —ab)k
=F xG.

The cross product of two 3-vectors can be computed in MAPLE using the CrossProduct
command, which is part of the Vec torCa lcu lus package.
We will summarize some properties of the cross product.

FxG=-GxF.

F x G is orthogonal to both F and G. This is shown in Figure 6.14.

|Fx G| =|F|| Gl sin(@) in which 6 is the angle between F and G.

If F and G are nonzero vectors, then F x G= O if and only if F and G are parallel.
Fx(G+H)=FxG+FxH.

d(Fx G)=(¢F) x G=F x («¢G).

e & o o

Property (1) of the cross product follows from the fact that interchanging two rows of a
determinant changes its sign. In computing F x G, the components of F are in the second row
of the determinant, and those of G in the third row. These rows are interchanged in computing
G xF.

For property (2), compute the dot product

F- (FxG)
=albc—bhal+bhlaa —acl+alab —ab]=0.

Therefore, F is orthogonal to F x G. Similarly, G is orthogonal to F x G.

FIGURE 6.14 F x G is orthogonal
toF and to G.
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6.3 The Cross Product 161

To derive property (3), suppose both vectors are nonzero and recall that
cos(@)=F-G)/ | F || G|, where 8 is the angle between F and G. Now write

IF 2G> —(F-G)?
=|FI*IG >~ F[*| G| cos’(®)
=[F|*] G |I*sin*(®).

It is therefore enough to show that
IFxG*=[F|*| GII*—(F- G,

and this is a tedious but routine calculation.

Property (4) follows from (3), since two nonzero vectors are parallel exactly when the
angle 6 between them is zero, and in this case, sin(®) = 0. Properties (5) and (6) are routine
computations.

Property (4) provides a test for three points to be collinear, that is, to lie on a single line. Let
P, Q, and R be the points. These points will be collinear exactly when the vector F from Pto Q
is parallel to the vector G from P to K. By property (4), this occurs when F x G= 0.

One of the primary uses of the cross product is to produce a vector orthogonal to two given
vectors. This can be used to find the equation of a plane containing three given points. The
strategy is to pick one of the points and write the vectors from this point to the other two. The
cross product of these two vectors is normal to the plane containing the points. Now we know
a normal vector and a point (in fact three points) on the plane, so we can use equation (6.2) to
write the equation of the plane.

This strategy fails if the cross product is zero. But by property (4), this only occurs if the
given points are collinear, hence do not determine a unique plane (there are infinitely many planes
through any line in 3-space).

EXAMPLE 6.7

Find the equation of a plane containing the points P: (=1,4,2), Q: (6,—2,8), and
R: (5,-1,-1).
Use the three given points to form two vectors in the plane:

PQ=7i—6j+ 6k and PR=6i—5j — 3k.
The cross product of these vectors is orthogonal to the plane of these vectors, so
N=PQ xPR=48i+57j+k
is a normal vector. By equation (6.2), the equation of the plane is
Bx+1)+57(y -4+ (z—2)=0,
or

48x+ 57y + z=182.

SECTION 6.3 PROBLEMS

In each of Problems 1 through 4, compute F x G and G x F 2. F=6i—k,G=j+2k
and verify the anticommutativity of the cross product. 3. F=2i—3j+ 4k, G=—3i+2j

. . b 4. F=8i+6j, G=14j
1. F=-3i4+6j+k,G=—-i—2j+k
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In each of Problems 5 through 9, determine whether the 11. x—y+22z=0
points are collinear. If they are not, determine an equation 12. x—3y+22=9
for the plane containing these points.

13. Let F and G be nonparallel vectors and let K be the
5. (=1,1,6),(2,0,1),(3,0,0) parallelogram formed by representing these vectors as
6. (4,1,1),(=2,—2,3),(6,0,1) arrows from a common point. Show that the area of

this parallelogram is || F x G ||.

7. (1,0,-2),(0,0,0), (5,1, 1)

14. Form a parallelepiped (skewed rectangular box) hav-
8. (0,0,2),(-4,1,0),(2,-1,-1) ing as incident sides the vectors F, G, and H drawn as
9. (—4,2,-6),(1,1,3),(-2,4,5) arrows from a common point. Show that the volume

In each of Problems 10, 11, and 12, find a vector nor-
mal to the given plane. There are infinitely many such

of this parallelepiped is
|F-(G x H)|.

vectors. This quantity is called the scalar triple product of F,

10. 8x—y+2z=12 G, and H.

6.4 The Vector Space R”

For systems involving n variables we may consider n-vectors
< X1, Xg, 000, Xp >

having n components. The jth component of this n-vector is x; and this is a real number. The
totality of such n-vectors is denoted R” and is called “n-space”. R' is the real line, consisting
of all real numbers. We can think of numbers as 1-vectors, although we do not usually do this.
R is the familiar plane, consisting of vectors with two components. And & is in 3-space. R”
has an algebraic structure which will prove useful when we consider matrices, systems of linear
algebraic equations, and systems of linear differential equations.

Two n-vectors are equal exactly when their respective components are equal:
Xy Mg 70 8 7Xn>:<}/17}127“’ 7Yn>

if and only if
X =M, Xe=Yo, s Xn = Va-

Add n-vectors, and multiply them by scalars, in the natural ways:

< X1, Xpy vt 0y Xy > + <}/17}127H’7Yn>:<X1+}/17XZ+}/Za”’7Xn+YI1>

and

O < X1,Xp, v , Xp>=<0X],0Xp, - ,0X, >.

These operations have the properties we expect of vector addition and multiplication by
scalars. If F, G, and H are in R” and « an 8 are real numbers, then

1. F+G=G+F.

2. F+(G+H)=F+G) +H

3. F+O=F,
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