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Figure 6.15. Hyperbolic tangent

The inverse map to the hyperbolic sine, appropriately called inverse hyper-
bolic sine, is defined on all of R, and can be made explicit by means of the
logarithm (inverse of the exponential)

sinh ™'z = log(z + Va2 + 1), relR. (6.14)

There normally is no confusion with the reciprocal 1/sinhz, whence the use of
notation'. The inverse hyperbolic cosine is obtained by inversion of the hyper-
bolic cosine restricted to [0, +00)

cosh™ 'z = log(z + V22 — 1), x € [l,+0x). (6.15)

To conclude, the inverse hyperbolic tangent inverts the corresponding hyper-
bolic map on R

1+x ;
tanh™ 'z = = log — ° re(—-1,1). (6.16)
— 1

The inverse hyperbolic functions have first derivatives

1 1
Dsinh ‘o = ——— Dcoshflrc:———,
— T
D tanh™ = .
an T 2

6.11 The Theorem of de I"'Hoépital

This final section is entirely devoted to a single result, due to its relevance in
computing the limits of indeterminate forms. As always, c¢ is one of zg, a:g > T 5
+o00, —00.

! Some authors also like the symbol Arcsinh.
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Theorem 6.40 Let f,g be maps defined on a neighbourhood of ¢, except
possibly at ¢, and such that

lny/(2) = limg(0) = L.

where L = 0,400 or —oo. If f and g are differentiable around c, except
possibly at ¢, with ¢ # 0, and if

Tl
lim f(z)
T—c g"(;r;)
exists (finite or not), then also
lim (@) (6.18)
T—e g(z:)
exists and equals the previous limit.
Proof. ~» De 1’H6pital’s Theorem. o

Under said hypotheses the results states that

im f(z) = lim f'(z)
: ) ,L(; g'(z)’

z—c g(a (6.19)

Examples 6.41

i] The limit
] e2z — e~
lim -
z—0 sinbdzx

2z

gives rise to an indeterminate form of type g. Since numerator and denominator
are differentiable functions,

. e 4 9e7 2 4
lim ———— = —.
z—0  5cosbx 5
Therefore

lim ————— =
z—0  sindx

eZz _ e—2z 4
5
ii] When the ratio f'(x)/¢'(z) is still an indeterminate form, supposing f and g
are twice differentiable around ¢, except maybe at ¢, we can iterate the recipe of
(6.19) by studying the limit of f”(z)/g"(z), and so on.
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Consider for instance the indeterminate form 0/0

y 143z —+/(1+ 2z)3
im .

z—0 rsing

Differentiating numerator and denominator, we are lead to
i 3-3vV1+2zx
z-08inz + T CcosT’

still of the form 0/0. Thus we differentiate again
3

g Vi 3
z—02cosT — rsinz 2’

Applying (6.19) twice allows to conclude

y 143z — /(14 2z)3 3
im =
z—0 sin® z 2

Remark 6.42 De I'Hépital's Theorem is a sufficient condition only, for the exis-
tence of (6.18). Otherwise said, it might happen that the limit of the derivatives’
difference quotient does not exist, whereas we have the limit of the functions’ dif-
ference quotient. For example, set f(z) = « + sinz and g{x) = 2z + cosz. While
the ratio f'/¢’ does not admit limit as * — 400 (see Remark 4.19), the limit of

f/g exists:
. r+sinz . rz+o(x) 1
lim ——— = lim ———% ==,
g—+oc 20 4+ cosx  z—+oo 2z +o(z) 2

6.11.1 Applications of de I'Hopital’s theorem
We survey some situations where the result of de I’'Hépital lends a helping hand.

Fundamental limits
By means of Theorem 6.40 we recover the important limits

x

hrf — +o00, lim [z|{%" =0, Va € R, (6.20)
1
lim —2% lim z%logz =0,  Va > 0. (6.21)
z—4oo I z—0+

These were presented in (5.6) in the equivalent formulation of the Landau symbols.
Let us begin with the first of (6.20) when a = 1. From (6.19)

x xz

. € . €
lIm — = lim - = +4oco.
z—+o00 I z—+oo |

For any other a > 0, we have

. e” . lea\” 1 . eV \ ¥
lim — = lim - = — lim — = +o0.
z—+o0 T  z—+oo \a £ a® \y—+oo y
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At last, for o < 0 the result is rather trivial because there is no indeterminacy. As
for the second formula of (6.20)

01 o 161
lim |z]%® = lim =* = lim B= = lim L =o.
T——00 T——o00 €77 T——00 e,z[ y—+oo e¥
Now to (6.21):
1 & 1 1
lim L lim Z = — lim — =
z—+o0 ¢ z—+oo a1 & v—+oo T
and
1 = 1
lim z%logz = lim 8% _ lim —= __ — _Z lim z*=0.
0+ z—0t 7% zoot (—a)zTo! @ z—0t

Proof of Theorem 6,15
We are now in a position to prove this earlier claim.

Proof. DBy definition only.

lim (f(z) — f(xo)) = lim (z — xp) = 0,

hence de I'Hopital .il':!'JIII, =

Computing the order of magnitude of a map

Through examples we explain how de 'Hopital’s result detects the order of mag-
nitude of infinitesimal or infinite functions, and their principal parts.

The function
flz) =€ —1—sinzx

is infinitesimal for £ — 0. With infinitesimal test function p(z) = z we apply the

theorem twice (supposing for 2 moment this is possible)

. e —1—sinz . e¥ —cosz . e +sinz
lim —————— = lim ———— = lim —————.
0 = t0  are s—0 afa — 1)zo—
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When o = 2 the right-most limit exists and is in fact —% This fact alone justifies the
use of de 'Hopital’s Theorem. Thus f(x) is infinitesimal of order 2 at the origin
with respect to ¢(x) = x; its principal part is p(z) = %J,’Q.

Next. consider

f(x) =tanz,
P . e . _
an infinite function for v — 5. Setting p(z) = ¢ , we have
2
[e3
. tanx . : ; (% - $)
lim —— = lim sinz lim -————
T < 1 ) - z—%- COST
7%

While the first limit is 1, for the second we apply de 'Hopital’s Theorem
__a(l — :L-)afl

T [ed
T _
lim M = lim 2
z—I~  COST z— I —sinz

The latter equals 1 when a = 1, so tan x is infinite of first order, for x — 57, with
1

respect to p(z) = = .
g~ &

The principal part is indeed p(z).

6.12 Exercises

1. Discuss differentiability at the point xy indicated:

a) fla)=xz+|x—1], z=1 'b) f(z)=sin|z|, x0=0
?f(“’)_{ew TEO 0= 0 A fl@)=Vital, wo=-1
0 =0

2. Say where the following maps are differentiable and find the derivatives:

a)  flz)=z\x| b) f(x) = cos|z|

x?2+1 ifz>0, 2?4+ -—5 ifa>1,
c) flz)= ) flz) =
e’ —zx ifx <0 E z—4 ifx<l
3. Compute, where defined, the first derivative of:

a) f(x)=3zxV1+x? b) f(x) =log|sinz|
&) J(x) = cos () a0 fla) = —

- zlogz

4. On the given interval, find maximum and minimum of:

a) f(z)=sinz+cosz, 10, 27]



