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6.5 Theorems of Rolle and of the Mean Value

The results we present in this section, called Theorem of Rolle and Mean Value
Theorem, are fundamental for the study of differentiable maps on an interval.

Theorem 6.22 (Rolle) Let f be a function defined on a closed bounded
interval [a,b], continuous on [a,b] and differentiable on (a,b) (at least). If
f(a) = f(b), there exists an xo € (a,b) such that

f‘(.’L‘n) =

In other words, f admits at least one critical point in (a,b).

fla) = f(b)

a To b

Figure 6.5. Rolle’s Theorem

Proof. By the Theorem of Weierstrass the range f([a,b]) is the closed interval
[, M] bounded by the minimum and maximum values m, M of the map:
m= min f(z)= flzm), M = max f(x)= f(zum),
z€[a,b] ' z€la,b]
for suitable @, zar € [a, b].
In case m = M, f is constant on [a,b], so in particular f'(x) = 0 for any
xr € (a,b) and the theorem follows.

Suppose then m < M. Since m < f(a) = f(b) < M, one of the strict
inequalities f(a) = f(b) < M, m < f(a) = f(b) will hold.
If f(a) = f(b) < M, the absolute maximum point x;s cannot be a nor b

thus, 5 € (a,b) is an interior extremum point at which f is differentiable.
By Fermat’'s Theorem 6.21 we have that x,; = ¢ is a critical point.
[f m < fla) = f(b), one proves analogously that x,, is the critical point

xy of the claim. &

The theorem proves the existence of one critical point in (a, b); Fig. 6.5 shows that
there could actually be more.
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Theorem 6.23 (Mean Value Theorem or Lagrange Theorem) Let f
be defined on the closed and bounded interval [a,b], continuous on [a,b] and
differentiable (at least) on (a,b). Then there is a point xo € (a,b) such that

J(b) - f(a) - F(a). (6.9)

e
Every such point o we shall call Lagrange point for f in (a,b)

Introduce an auxiliary map

Proof.
s L "(b)
glz) = f(z) = 'f(-——J’ fla) (r—a)
b—a

defined on [a,b]. It is continuous on [a,b] and differentiable on (a,b), as
lifference of f and an affine map, which is differentiable on all of R. Note

It is easily seen that
gla) = f(a). g(b) = f(a),
so Rolle’s Theorem applies to g, with the consequence that there is a point

xg € (a.b) satisfying
B) — fla)
f0) - fle) _,

.f;’,[J‘t,}J = fr[i*»'u.} i o

But this is exactly (6.9).
4
FO)
J‘»’
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a To b

Figure 6.6. Lagrange point for f in (a,b)



6.6 First and second finite increment formulas 183

The meaning of the Mean Value Theorem is clarified in Fig.6.6. At each La-
grange point, the tangent to the graph of f is parallel to the secant line passing
through the points (a, f(a)) and (b, f(b)).

Example 6.24

Consider f(z) = 1+ z + V1 — 22, a continuous map on its domain [—1,1] as
composite of elementary continuous functions. It is also differentiable on the

open interval (—1,1) (not at the end-points), in fact
T

"z)=1— e,
Fa=l-7=5
Thus f fulfills the Mean Value Theorem’s hypotheses, and must admit a La-
grange point in (—1,1). Now (6.9) becomes
fH-5=n Zo
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satisfied by zy = 0.

6.6 First and second finite increment formulas

We shall discuss a couple of useful relations to represent how a function varies
when passing from one point to another of its domain.
Let us begin by assuming f is differentiable at zg. By definition

lim f(z) = f(@o)

Tz T — T

= f'(zo),
that is to say

lim <M B f’(m0)> — i L) = flzo) = F(@o) (@ — o) _ 0

Tr — To I—To r — Ip

L—T(

Using the Landau symbols of Sect. 5.1, this becomes
f(x) ~ fzo) = f'(z0)(z — x0) = o(x ~ 20), 2z — 0.

An equivalent formulation is

f(z) — f(zo) = f(zo)(x — ) + 0(x — T0), T — =0, (6.10)

or

Af = §'(@0)Az + o(Az), Az — 0, (6.11)

by putting Az =z — ¢ and Af = f(z) — f(x0).
Equations {6.10)-(6.11) are equivalent writings of what we call the first formula
of the finite increment , the geometric interpretation of which can be found in



