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o 7.6 Nonhomogeneous Systems
£ Now consider the nonhomogeneous linear system of 77 equations in m unknowns:
anXtapk+-+ agky =b
anxi+anp + ot Xy =10,
=
A Xy + A Xy £+ Ay Xy = by
In matrix form,
AX=B (7.1)
where A is the coefficient matrix,
X by
Xz by
X=]| .| andB=| .
Xy by
The system is nonhomogeneous if at least one b, # 0. Nonhomogeneous systems differ
from linear systems in two significant ways.
1. A nonhomogeneous system may have no solution. For example, the system
had 2x, — 3x, =6
4y, —6x, =8 a
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& We call AX = B consistent if there is a solution. If there is no solution, the system

is inconsistent.
2. A linear combination of solutions of a nonhomogeneous system AX =B need not
be a solution. Therefore the solutions do not have the vector space structure seen

in the homogeneous case.

Nevertheless, solutions of AX =B do have a property that parallels that for solutions of lin-
ear second order differential equations. We will call AX = O the associated homogeneous system
of the nonhomogeneous system AX = B. Although a sum of solutions of the nonhomogeneous
system need not be a solution, we claim that the difference of any two solutions of the nonhomo-
geneous system is a solution, not of the system, but of the associated homogeneous system. The
reason for this is that, if AU, =B and AU, =B, then

A=) AT, =AU, =T B,

This is the key to the fundamental theorem for writing the general solution of AX =B.

=== THEOREM 7.13

Let H be the general solution of the associated homogeneous system. Let U, be any particular
b o solution of AX =B. Then the expression H+ U , contains every solution of the nonhomogeneous

system AX=B.
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- Proof Suppose H,,--- H; form a basis for the solution space of AX = O, where k =
1] m — number of nonzero rows of (Ag). Then the general solution of the homogeneous system is
. H=«uH+-- - +o;H,.
If U is any solution of AX =B, then U— U, is a solution of the associated homogeneous system,
and therefore has the form
U*Up:C1H1+"'+Q‘H]( =
for some constants ¢y, - -+ , ¢;. But then
U=cHi+ -+ aH:+U,,
and this solution is contained in the general expression H+ U,,.
As an immediate consequence, Theorem 7.13 tells us when a nonhomogeneous system can
have only one solution.
= COROLLARY 7.6
A consistent nonhomogeneous system AX =B has a unique solution if and only if the associated
homogeneous system has only the trivial solution.
The corollary follows from the fact that the nonhomogeneous system has a unique solution
exactly when H is the zero vector in Theorem 7.13.
S Theorem 7.13 suggests a strategy for finding all solutions of AX =B, when the system is
consistent.
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8.5 Cramer’s Rule

Cramer’s rule is a determinant formula for the unique solution of a nonhomogeneous system
AX =B when A is nonsingular. Of course, this is X = A~'B, but the following method is
sometimes convenient.
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8.5 Cramers Rule 261 a

=—— THEOREM 85 Cramer’s Rule

Let A be a nonsingular n x n matrix of numbers, and B be an 1 x 1 matrix of numbers. Then the
unique solution of AX =B is determined by

1
xe=—|A(k; B)| (8.7)
T Iz
for k=1.2,--- . n, where A(k; B) is the matrix obtained from A by replacing column & of A

with B.

It is easy to see why this works. Let

Multiply column 4 of A by x;. This multiplies the determinant of A by x;:

an  a;z o auXy o A

a1 dp o Xk vt an
x|Al=

py App v AuXg vt dpg

For each j # k add x, times column j to column £ in the last determinant. Since this operation
does not change the value of a determinant, then
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_ an  aiz o anXit-ooFanX, - an
& a1 Ap v auXitectamXe o
P XAl =
Ay Ap v aAnXiteotamXs 0 Am
an ap - b ag
ay ap o by - Ay i
=l. . . . . .|=A®B) o
Ay dg o by o ay,

and this gives us equation (8.7).

EXAMPLE 8.7
Solve the system
X —3x—4xn=1

—X1+X2—3X3:l4

X, — 3x3=>5.
The matrix of coefficients is
1 -3 —4
- A=|-1 1 -3
0 1 =3
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& We find that |A| = 13, so this system has a unique solution. By Cramer’s rule,
S
L <8 & g
XIZE 14 1 -3 :—F:—Q‘
5 1 -3
1 1 1 -4 10 I=
X2=E -1 14 -3 ==
0 5 3
1 1L —3 1 25
n=—|-1 1 I14|=——.
13 0 1 5 13
SECTION 8.5 PROBLEMS
In each of Problems 1 through 10, solve the system using x1—3x+ x3 —4x; =0
Cramer’s rule, or show that the rule does not apply because —2x1+x—2x5=4
the matrix of coefficients is singular. X3 — X4 —x;=8
7. 2x,—4x+x3—x,=6
b 1. 15x —4x=>5 X, —3x3=10
8x+x=—4 x—4x;,=0
- X, —x3+2x1=4 I

4

RU @ w, ¢80 @

amig e

1550
13052016

=t .ot hon e e e

| H @. & $ 22 meny & & 1% - o £ Hairm -
e TITATTXOT COETITCTEeTIS ™ Jllguldl. . * v -
» 7. 2x—4dx+x;—x, =6
s 1. 15x —4x,=5 X —3x=10
8x+x=—4 x —4x;=0
e 2. x+4dn=3 Xo— X3+ 2x=4
x+x=0 8. 2xi =30+ x =2
3. Bx;—4x; +3x=0 Xp—x+x=2
X1 +5x — xm=-—5 x3—2x;="5

—2x1+6x+x3=—4

X —3xn+4x=0

4. x—bx+x=4 9. 14x, —3x3=5
—x1+ 35 —4x="5 2x — 4+ x=2
2x1+3x+x=—8 X — X+ x—3x=1
5 Xi+x—3x=0 Xy —4x=—5
X —4x=0 10. x—4x =18

1—X—X3=5 X —x4+3n=—1
6. 6x+4x — x5+ 3% —xs=7 X+ =35+ x5=>5
x —4x+x5=->5 x;+3x=0

8.6 The Matrix Tree Theorem

T

In 1847, G.R. Kirchhoff published a classic paper in which he derived many of the electrical
circuit laws that bear his name, including the matrix tree theorem we will now discuss.
Figure 8.1 shows a typical electrical circuit. The underlying geometry of the circuit if shown
% in Figure 8.2. Such a diagram of points and interconnecting lines is called a graph, and was seen
in the context of atoms moving through crystals in Section 7.1.3. A labeled graph has symbols

attached to the points. i
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