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The theorem asserts that if f is differentiable on I, the following logic equiva-
lence holds:

fl(z) >0, Vzxel <= fisincreasingon I.

Furthermore,

fl(r) >0, Vzxel = fisstrictly increasing on I.

The latter implication is not reversible: f strictly increasing on I does not imply
f'(z) > 0 for all z € I. We have elsewhere observed that f(z) = z? is everywhere
strictly increasing, despite having vanishing derivative at the origin.

A similar statement to the above holds if we change the word ‘increasing’ with
‘decreasing’ and the symbols >, > with <, <.

Corollary 6.27 Let f be differentiable on I and xy an interior critical point.
If f'(z) > 0 at the left of o and f'(z) < 0 at its right, then xq is a mazimum
point for f. Similarly, f'(x) < 0 at the left, and > 0 at the right of xo implies
To 18 a manimum point.

Theorem 6.26 and Corollary 6.27 justify the search for extrema among the
zeroes of f’, and explain why the derivative’s sign affects monotonicity intervals.

Example 6.28
The map f : R — R, f(z) = ze®® differentiates to f'(z) = (2z + 1)e?®, whence
Ty = —% is the sole critical point. As f'(x) > 0 if and only if z > —%, fzo) is an

absolute minimum. The function is strictly decreasing on (—oo, —3] and strictly
increasing on [—3, +00). 1

6.8 Higher-order derivatives

Let f be differentiable around z, and let its first derivative f’ be also defined
around x.

Definition 6.29 If f’ is a differentiable function at xy, one says f is twice
differentiable at x,. The expression

" (wo) = (f')'(wo)

is called second derivative of f at z,. The second derivative of f,
denoted f", is the map associating to x the number f"(z), provided the latter
is defined.
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Other notations commonly used for the second derivative include

2
Vi) ThE), D).

The third derivative, where defined, is the derivative of the second derivative:

f"(@o) = (") (xo)

In general, for any k£ > 1, the derivative of order & (kth derivative) of f at
To is the first derivative, where defined, of the derivative of order (k — 1) of f at
Zg:

.J'r“')(:ru) = Y ().

Alternative symbols are:

k
o), Tha@), D).

For conveniency one defines £ (zq) = f(zo) as well.

Examples 6.30

We compute the derivatives of all orders for three elementary functions.

i) Choose n € N and consider f(z) = ™. Then
n!
n—1n"

f/(l‘) — nl‘n—l — n—1

More concisely,

with 0 < k < n. Furthermore, f("*1)(z) = 0 for any = € R (the derivative of
the constant function f (")(:E) is 0), and consequently all derivatives f (%) of order
k > n exist and vanish identically.

ii] The sine function f(z) = sinz satisfies f'(z) = cosz, f’(zr) = —sinz,
f"(x) = —cosz and f*)(z) = sinz. Successive derivatives of f clearly re-
produce this cyclical pattern. The same phenomenon occurs for y = cos z.

iii) Because f(z) = e® differentiates to f'(z) = €%, it follows that f(¥)(z) = e®
for every k > 0, proving the remarkable fact that all higher-order derivatives of
the exponential function are equal to e*. 1
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A couple of definitions wrap up the section.

Definition 6.31 A map f is of class C* (k > 0) on an interval I if [ is
differentiable k times everywhere on I and its kth derivative f*) is continuous
on I. The collection of all C* maps on I is denoted by C*(I).

A map f is of class C™ on I if it is arbitrarily differentiable everywhere on
I. One indicates by C>°(I) the collection of such maps.

In virtue of Proposition 6.3, if f € C*(I) all derivatives of order smaller or
equal than k are continuous on I. Similarly, if f € C°°(I), all its derivatives are
continuous on I.

Moreover, the elementary functions are differentiable any number of times (so
they are of class C*°) at every interior point of their domains.

6.9 Convexity and inflection points

Let f be differentiable at the point zg of the domain. As customary, we indicate
by y = t(z) = f(zo) + f/(20)(z — z¢) the equation of the tangent to the graph of
f at zg.

Definition 6.32 The map f is convex at xq if there is a neighbourhood
I-(z¢) C dom f such that

Va € I-(zg), flz) =2 t(z);

[ is strictly convex if f(x) > t(z), V& # xo.

The definitions for concave and strictly concave functions are alike (just change
>, > to <, <.

What does this say geometrically? A map is convex at a point if around that
point the graph lies ‘above’ the tangent line, concave if its graph is ‘below’ the
tangent (Fig.6.9).

y = f(z) y=tz)
y = t(z) : y=f(x)

€Tn A

Figure 6.9. Strictly convex (left) and strictly concave (right) maps at xo



