Теорема Виета

Квадратное уравнение

■ Квадратным уравнением называетсяуравнение вида

$$ax^2+bx+c=0$$
,

где $a, b, c \in R (a \neq 0)$.

Числа *a, b, с* носят следующие названия: *a* - первый коэффициент, *b* - второй коэффициент, *c* - свободный член.

Приведенное уравнение

Если в уравнении вида:

$$ax^2+bx+c=0$$
,

где $a, b, c \in R$

a = 1, то квадратное уравнение вида $x^2 + px + q = 0$ называется

приведенным.

Теорема Виета

- **‡** Сумма корней приведенного квадратного трехчлена $x^2 + px + q = 0$ равна его второму коэффициенту p с противоположным знаком, а произведение свободному члену q.
- **\blacksquare** T. e. $x_1 + x_2 = -p$ u $x_1 x_2 = q$

Применение теоремы Виета

■ Теорема Виета замечательна тем, что, не зная корней квадратного трехчлена, мы легко можем вычислить их сумму и произведение, то есть простейшие симметричные выражения x1 + x2 и x1 x2.

Вычисление корней

Так, еще не зная, как вычислить корни уравнения:

$$x^2 + 2x - 8 = 0,$$

мы, тем не менее, можем сказать, что их сумма должна быть равна — 2, а произведение должно равняться —8.

Пример

- **▼** Теорема Виета позволяет угадывать целые корни квадратного трехчлена.
- **Т**ак, находя корни квадратного уравнения $x^2 7x + 10 = 0$,

можно начать с того, чтобы попытаться разложить свободный член (число 10) на два множителя так, чтобы их сумма равнялась бы числу 7.

Решение

■ Это разложение очевидно:

$$10 = 5 \times 2,$$

 $5 + 2 = 7.$

★ Отсюда должно следовать, что числа 2 и 5 являются искомыми корнями.