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CHAPTER 8

Analytic Geometry in Two
and Three Dimensions

8.1

8.2
8.3
8.4

8.6

8.6

Conic Sections and
Parabolas

Ellipses
Hyperbolas

Translation and
Rotation of Axes

Polar Equations of
Conics

Three-Dimensional
Cartesian
Coordinate System

The oval-shaped lawn behind the White House in
Washington, D.C. is called the Ellipse. It has views of the
Washington Monument, the Jefferson Memorial, the
Department of Commerce, and the Old Post Office Building.
The Ellipse is 616 ft long, 528 ft wide, and is in the shape of
a conic section. Its shape can be modeled using the methods
of this chapter. See page 652.
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CHAPTER 8 Analytic Geometry in Two and Three Dimensions

8.4
Translation and Rotation of Axes

What you'll learn about

® Second-Degree Equations in
Two Variables

B Translating Axes versus
Translating Graphs

® Rotation of Axes

® Discriminant Test

. . » and why

You will see ellipses, hyperbo-
las, and parabolas as members
of the family of conic sections
rather than as separate types of
curves.

OBJECTIVE

Students will be able to determine equa-
tions for translated and rotated axes for

conic sections.
MOTIVATE
Have students solve y> — 2xy + 2x? = 4

for y and graph the result using a function

grapher. Describe the graph.
LESSON GUIDE

Day 1: Second-Degree Equations in Two

Vari

ables; Translating Axes versus

Translating Graphs

Day
Test

2: Rotation of Axes; Discriminant

IIIII/(mIIIII

[-9.4,9.4] by [-6.2, 6.2]

FIGURE 8.32 The graph of

9x2 +

16y> — 18x + 64y — 71 = 0.

(Example 1)

Second-Degree Equations in Two Variables

In Section 8.1, we began with a unified approach to conic sections, learning that
parabolas, ellipses, and hyperbolas are all cross sections of a right circular cone. In
Sections 8.1-8.3, we gave separate plane-geometry definitions for parabolas,
ellipses, and hyperbolas that led to separate kinds of equations for each type of curve.
In this section and the next, we once again consider parabolas, ellipses, and hyperbo-
las as a unified family of interrelated curves.

In Section 8.1, we claimed that the conic sections can be defined algebraically in the
Cartesian plane as the graphs of second-degree equations in two variables, that is,
equations of the form

Ax2+ Bxy+ Cy> + Dx+ Ey + F =0,

where A, B, and C are not all zero. In this section, we investigate equations of this type,
which are really just guadratic equations in x and y. Because they are quadratic equa-
tions, we can adapt familiar methods to this unfamiliar setting. That is exactly what we
do in Examples 1-3.

EXAMPLE 1 Graphing a Second-Degree Equation
Solve for v, and use a function grapher to graph
Ox2+ 16y> — 18x + 64y — 71 = 0.
SOLUTION Rearranging terms yields the equation:
16y2 + 64y + Ox? — 18x — 71) = 0.
The quadratic formula gives us

—64 = V642 — 4(16)9x2 — 18x — 71)
2(16)

—8+3V—x+2x+ 15
4

:fZi%\/foJerJrlS

y:

Let
Y1=-2+075V—=x+2x+15and Y2 = -2 — 0.75V —x2 + 2x + 15,

and graph the two equations in the same viewing window, as shown in Figure 8.32.
The combined figure appears to be an ellipse.

Now try Exercise 1.
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In the equation in Example 1, there was no Bxy term. None of the examples in Sections
8.1-8.3 included such a cross-product term. A cross-product term in the equation causes
the graph to tilt relative to the coordinate axes, as illustrated in Examples 2 and 3.

EXAMPLE 2 Graphing a Second-Degree Equation

Solve for y, and use a function grapher to graph

2xy — 9 =0.
(54, B8 oy [6262] SOLUTION This equation can be rewritten as 2xy = 9 or as y = 9/(2x). The graph
FIGURE 8.33 The graph of 2xy — 9 = 0. of this equation is shown in Figure 8.33. It appears to be a hyperbola with a slant focal
(Example 2) axis. Now try Exercise 5.

& EXAMPLE 3 Graphing a Second-Degree Equation

\_ Solve for y, and use a function grapher to graph
X2+ 4xy + 4y? — 30x — 90y + 450 = 0.

\5 SOLUTION We rearrange the terms as a quadratic equation in y:

4y2 + (4x — 90)y + (x2 — 30x + 450) = 0.

The quadratic formula gives us
_ —(@x —90) = V(4x — 90)2 — 4(4)(x2 — 30x + 450)

[-23, 23] by [-5, 25]
@ 2(4)
_ 45— 2x* V225 — 60x
B 4
Let
\; 45 —2x+ V225 — 60x 45— 2x— V225 — 60x
= and y, = "
- 4 4
= =" and graph the two equations in the same viewing window, as shown in Figure 8.34a.
X=3.75 Y=9.375 The combined figure appears to be a parabola, with a slight gap due to grapher failure.
[=23, 23] by [-5, 25] The combined graph should connect at a point for which the radicand 225 — 60x = 0,
() that is, when x = 225/60 = 15/4 = 3.75. Figure 8.34b supports this analysis.

Now try Exercise 9.
FIGURE 8.34 The graph of

xZ + 4xy + 4y — 30x — 90y + 450 = 0

(a) with a gap and (b) with the trace feature The graphs obtained in Examples 1-3 all appear to be conic sections, but how can we

activated at the connecting point. (Example 3) e sure? If they are conics, then we probably have classified Examples 1 and 2 cor-
rectly, but couldn’t the graph in Example 3 (Figure 8.34) be part of an ellipse or one
branch of a hyperbola? We now set out to answer these questions and to develop meth-
ods for simplifying and classifying second-degree equations in two variables.

Translating Axes versus Translating Graphs

The coordinate axes are often viewed as a permanent fixture of the plane, but this just
isn’t so. We can shift the position of axes just as we have been shifting the position of
eraphs since Chapter 1. Such a translation of axes produces a new set of axes paral-
lel to the original axes, as shown in Figure 8.35 on the next page.

——
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Px, y) =P, ¥)

O'(h, k) a4 l ’

—o—[T

OF—h—

FIGURE 8.35 A translation of Cartesian coordinate axes.

Figure 8.35 shows a plane containing a point P that is named in two ways: using the
coordinates (x, y) and the coordinates (x', ¥'). The coordinates (x, y) are based on the
original x- and y-axes and the original origin O, while (x’, y'} are based on the trans-
lated x'- and y’-axes and the corresponding origin O’.

Translation-of-Axes Formulas

The coordinates (x, v) and (x', y") based on parallel sets of axes are related by
either of the following translation formulas :

x=x"+h and y=y +k
or

xX'=x—h and Yy =y —k
We use the second pair of translation formulas in Example 4.

EXAMPLE 4 Revisiting Example 1

Prove that 9x% + 16y2 — 18x + 64y — 71 = 0 is the equation of an ellipse. Translate
the coordinate axes so that the origin is at the center of this ellipse.

SOLUTION We complete the square of both x and y:

9x2 — 18x + 16y? + 64y = 71
9(x? — 2x + 1) + 16(y% + 4y + 4) = 71 + 9(1) + 16(4)

y 9x — 1)2 + 16(y + 2)*> = 144
i )2 2
i -0 +r2?
1 16 9
0 This is a standard equation of an ellipse. If we letx’ = x — landy’ = y + 2, then the
PR B R N equation of the ellipse becomes
F A\ 7 . .
N @2, 0P _,
I 16 9 '
Figure 8.36 shows the graph of this final equation in the new x'y" coordinate system,
FIGURE 8.36 The graph of with the original xy-axes overlaid. Compare Figures 8.32 and 8.36. ‘
(x)¥/16 + (y)*/9 = 1. (Example 4) Now try Exercise 21.

——
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FIGURE 8.37 A rotation of Cartesian
coordinate axes.

FIGURE 8.38 The graph of 2xy — 9 = 0.

(Example 5)
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Rotation of Axes

To show that the equation in Example 2 or 3 is the equation of a conic section, we need
to rotate the coordinate axes so that one axis aligns with the (focal) axis of the conic.
In such a rotation of axes, the origin stays fixed, and we rotate the x- and y-axes
through an angle « to obtain the x'- and y’-axes. (See Figure 8.37.)

Figure 8.37 shows a plane containing a point P named in two ways: as (x, v) and as
{(x’, ¥"). The coordinates (x, y) are based on the original x- and y-axes, while (x', y') are
based on the rotated x’- and y’-axes.

Rotation-of-Axes Formulas

The coordinates (x, y) and (x', y") based on rotated sets of axes are related by
either of the following rotation formulas:

x'=xcosa +ysine and Yy = —xsina + ycos «,
or
x=x"cosa —y sina and y=x"sina + y cosa.

where a, 0 < a < 71/2, is the angle of rotation.

The first pair of equations was established in Example 10 of Section 7.2. The second
pair can be derived directly from the geometry of Figure 8.37 (see Exercise 55) and is
used in Example 5.

EXAMPLE 5 Revisiting Example 2

Prove that 2xy — 9 = 0 is the equation of a hyperbola by rotating the coordinate axes
through an angle o = 7/4.

SOLUTION Because cos (7/4) = sin (7/4) = 1/\/5, the rotation equations
become , '

and y= ¥y
Va2 V2
So by rotating the axes, the equation 2xy — 9 = 0 becomes
x/ o y/ x/ - o y/> -
2 -9=0
WP~ ()2 -9=0

To see that this is the equation of a hyperbola, we put it in standard form:

WP~ (P =9
@2 00,
9 9
Figure 8.38 shows the graph of the original equation in the original xy system with the
x'y'-axes overlaid. Now try Exercise 37.

——
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In Example 5 we converted a second-degree equation in x and y into a second-degree
equation in x" and vy’ using the rotation formulas. By choosing the angle of rotation
appropriately, there was no x'y’ cross-product term in the final equation, which allowed
us to put it in standard form. We now generalize this process.

Coefficients for a Conic in a Rotated System

If we apply the rotation formulas to the general second-degree equation in x and y,
we obtain a second-degree equation in x” and y’ of the form

A Bay + Oy + By +EY +F =0,
where the coefficients are

A" =Acos?>a + Bcosasina + Csin’ a

B’ = B cos 2a + (C — A) sin 2«

C'=Ccos’a — Bcos a sina + A sin® o

D' =Dcosa + Esin «

E'=Ecosa — Dsina

F'=F

In order to eliminate the cross-product term and thus align the coordinate axes with the
focal axis of the conic, we rotate the coordinate axes through an angle « that causes B’
to equal 0. Setting B’ = B cos 2a + (C — A) sin 2a = 0 leads to the following useful
result.

Angle of Rotation to Eliminate the Cross-Product Term
It B # 0, an angle of rotation « such that

& andO<a < %
will eliminate the term B'x’y’ from the second-degree equation in the rotated x'y’

coordinate system.

COt2a:A7

EXAMPLE 6 Revisiting Example 3

Prove that x? + 4xy + 4y? — 30x — 90y + 450 = 0 is the equation of a parabola by
rotating the coordinate axes through a suitable angle «.

SOLUTION The angle of rotation o must satisfy the equation
A-C 1—4 3

cot 2o —

B 4 4
So

3
cos2a = ——, )
5 continued
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FOLLOW-UP

Ask students to explain why it was okay
to assume cos & > 0 and sin @ > 0 in
Example 6.

20 ~10 /

FIGURE 8.39 The graph of x? + 4xy +
4y — 30x — 90y + 450 = 0. (Example 6)
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and thus
Cosa\/lJrcosZa \/1+(3/5) _ 1
2 2 V5
sina\/10082a\/1(3/5)2
2 2 V5
Therefore the coefficients of the transformed equation are
1 2 4 25
A=le—+4. - +4. =" =
5 5 5 5 y
B'=0
1 2 4
"=4e——4. S+ 1.— =
¢ 5 5 5 0
1 2 210
D'=-30.——90.——=-"—=—42V5
V5 V5 V5
B = Bl F oo e o iR

V5 Vs V5
F' =450

So the equation x? + 4xy + 4y> — 30x — 90y + 450 = 0 becomes
5% — 42V5x — 6V5y + 450 = 0.

After completing the square of the x-terms, the equation becomes

-2 - -25)

x - — — Yy
V5 V5 10

If we translate using 7 = 21/ V5 and k = 3V/5/10, then the equation becomes

//2:767 ”
") \E(y),

a standard equation of a parabola.

Figure 8.39 shows the graph of the original equation in the original xy coordinate sys-

tem, with the x"y"-axes overlaid. Now try Exercise 39.

Discriminant Test

Example 6 demonsirates that the algebra of rotation can get ugly. Fortunately, we can

determine which type of conic a second-degree equation represents by looking at the
sign of the discriminant B> — 4AC.

Discriminant Test

The second-degree equation Ax> + Bxy + Cy? + Dx + Ey + F = ( graphs as
* ahyperbola if B> — 4AC > 0,

* aparabola if B2 — 4AC = 0,

» an ellipse if B> — 4AC < 0,

except for degenerate cases.

——
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ASSIGNMENT GUIDE

Day 1: Ex. 3-30, multiples of 3
Day 2: Ex. 33-54, multiples of 3

COOPERATIVE LEARNING
Group Activity: Ex. 65
NOTES ON EXERCISES

Ex. 31-32 ask students to prove the trans-
lation formulas.

Ex. 33-52 are basic problems involving
rotation of axes.

Ex. 55-56 ask students to prove the rota-
tion formulas.

Ex. 57-62 provide practice for standard-
ized tests.

ONGOING ASSESSMENT

Self-Assessment: Ex. 1, 5, 9, 21, 37, 39,
43
Embedded Assessment: Ex. 31

—p—

CHAPTER 8 Analytic Geometry in Two and Three Dimensions

This test hinges on the fact that the discriminant B> — 4AC is invariant under
rotation ; in other words, even though A, B, and C do change when we rotate the coor-
dinate axes, the combination B2 — 4AC maintains its value.

EXAMPLE 7 Revisiting Examples 5 and 6

(a) In Example 5, before the rotation B2 — 4AC = (2)> — 4(0)(0) = 4, and after the
rotation B> — 4A4'C’ = (0)2 — 4(1)(—1) = 4. The positive discriminant tells us
the conic is a hyperbola.

(b) In Example 6, before the rotation B2 — 4AC = (4)2 — 4(1)(4) = 0, and after the
rotation B'2 — 4A'C’ = (0)2 — 4(5)(0) = 0. The zero discriminant tells us the
conic is a parabola. Now try Exercise 43.

Not only is the discriminant B> — 4AC invariant under rotation, but also its sign is
invariant under translation and under algebraic manipulations that preserve the equiv-
alence of the equation, such as multiplying both sides of the equation by a nonzero
constant.

The discriminant test can be applied to degenerate conics. Table 8.2 displays the three
basic types of conic sections grouped with their associated degenerate conics. Each
conic or degenerate conic is shown with a sample equation and the sign of its discrim-
inant.

Table 8.2 Conics and the Equation Ax?> + Bxy + Cy> + Dx + Ey + F=0

Sample Sign of
Conic Equation A B ¢ D E F Discriminant
Hyperbola x2—-2yr=1 1 —2 -1 Positive
Intersecting lines x2+xy=0 1 1 Positive
Parabola x? =2y 1 —32, Zero
Parallel lines x2=4 1 —4 Zero
One line y2=0 1 Zero
No graph xr=-1 1 1 Zero
Ellipse 2+2yr=1 1 2 -1 Negative
Circle x2+y2=9 1 1 -9 Negative
Point x2+y2=0 1 1 Negative
No graph 2+yr=—-1 1 1 1 Negative

QUICK REVIEW 8.4 (For help, go to Sections 4.7 and 5.4.)

In Exercises 1-10, assume 0 < a < /2.

1. Given that cot 2a¢ = 5/12, find cos 2a. cos 20 = 5/13
2. Given that cot 2a = 8/15, find cos 2a. cos 2o = 8/17
3. Given that cot 2a = 1/\/5, find cos 2ar. cos 20 = 1/2
4. Given that cot 2a = 2/\/5, find cos 2ar. cos 20 = 2/3
B. Given that cot 2a = 0, find a. o = 7/4

6. Given that cot 2a = \/5, findew. o = 7/12

7. Given that cot 2a = 3/4, find cos @. cos @ = 2/\/5

8. Given that cot 2 = 3/\/7, find cos a. cos & = \V14/4

9. Given that cot 2a = 5/\/H, find sin . sin o = 112
10. Given that cot 2a = 45/28, find sin a. sin o = 2/\/53

——



