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Figure 6.12. The set E for a generic f defined on I (left) and for f(z) = |z| (right)

It is easy to convince oneself that the convexity of Es can be checked by
considering points P;, P, belonging to the graph of f only. In other words, given
x1,22 in I, the segment Sjo between (x1, f(z1)) and (2, f(z2) should lie above
the graph.

Since one can easily check that any x between x; and x5 can be represented as

T —
x=(1—t)z +tr with t=— "1 ¢ [0,1],
T2 — Ty

the convexity of f reads
f((l — t)l‘l + t$2) S (1 - t)f(l1) + tf($2) V$1,l‘2 € I,Vt € [0, 1] .

If the inequality is strict for x1 # x2 and t € (0, 1), the function is called strictly
convex on I.

For differentiable functions on the interval I, Definitions 6.39, 6.32 can be
proven to be equivalent. But a function may well be convex according to Defini-
tion 6.39 without being differentiable on I, like f(z) = |z| on I = R (Fig.6.12,
right). Note, however, that convexity implies continuity at all interior points of [,
although discontinuities may occur at the end-points.

6.10 Qualitative study of a function

We have hitherto supplied the reader with several analytical tools to study a
map f on its domain and draw a relatively thorough - qualitatively speaking —
graph. This section describes a step-by-step procedure for putting together all the
information acquired.

Domain and symmetries

It should be possible to determine the domain of a generic function starting from
the elementary functions that build it via algebraic operations and composition.
The study is greatly simplified if one detects the map’s possible symmetries and
periodicity at the very beginning (see Sect. 2.6). For instance, an even or odd map
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Figure 6.13. The function f(z) = e 1"

can be studied only for positive values of the variable. We point out that a function
might present different kinds of symmetries, like the symmetry with respect to a
vertical line other than the y-axis: the graph of f(x) = e~le2l ig symmetric with
respect to x = 2 (Fig. 6.13).

For the same reason the behaviour of a periodic function is captured by its
restriction to an interval as wide as the period.

Behaviour at the end-points of the domain

Assuming the domain is a union of intervals, as often happens, one should find the
one-sided limits at the end-points of each interval. Then the existence of asymp-
totes should be discussed, as in Sect. 5.3.

For instance, consider

_ log(2 — 1)

1@ = rr=

Now, log(2 — ) is defined for 2 — z > 0, or z < 2; in addition, V2% — 2z has
domain 22 — 2z > 0,s0z < O-or z > 2, and being a denominator, x # 0,2.
Thus dom f = (—00,0). Since liI(I)l_ f(x) = +o0, the line x = 0 is a vertical left

log(2 —
asymptote, while lim f(z) = lim M

T——00 T—-—00 |£L‘|

asymptote y = 0.

= 0 yields the horizontal left

Monotonicity and extrema

The first step consists in computing the derivative f’ and its domain dom f’. Even
if the derivative’s analytical expression might be defined on a larger interval, one
should in any case have dom f’ C dom f. For example f(z) = logz has f'(z) = 2
and dom f = dom f’ = (0,+00), despite g(z) = - makes sense for any z # 0.
After that, the zeroes and sign of f’ should be determined. They allow to find the
intervals where f is monotone and discuss the nature of critical points (the zeroes
of f), in the light of Sect.6.7.

A careless analysis might result in wrong conclusions. Suppose a map f is
differentiable on the union (a,b) U (b, ¢) of two bordering intervals where f’ > 0.
If f is not differentiable at the point b, deducing from that that f is increasing
on (a,b) U (b,c) is wrong. The function f(z) = —21 satisfies f'(z) = 2z > 0 on
(—00,0) U (0, +00), but it is not globally increasing therein (e.g. f(—1) > f(1));
we can only say f is increasing on (—oo,0) and on (0, +00) separately.
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Recall that extremum points need not only be critical points. The function

) = —~x—, defined on =z > 0, has a critical point £ = 1 giving an abso-
142

lute maximum. At the other extremum x = 0, the function is not differentiable,
although f(0) is the absolute minimum.

Convexity and inflection points

Along the same lines one determines the intervals upon which the function is
convex or concave, and its inflections. As in Sect. 6.9, we use the second derivative
for this.

Sign of the function and its higher derivatives
When sketching the graph of f we might find useful (not compulsory) to establish
the sign of f and its vanishing points (the z-coordinates of the intersections of the
graph with the horizontal axis). The roots of f(z) = 0 are not always easy to find
analytically. In such cases one may resort to the Theorem of existence of zeroes
4.23, and deduce the presence of a unique zero within a certain interval. Likewise
can be done for the sign of the first or second derivatives.

The function f(z) = zlogz — 1 is defined for z > 0. One has f(z) < 0 when
2 < 1. On z > 1 the map is strictly increasing (in fact f'(z) = logz +1 > 0 for
x > 1/e); besides, f(1) = —1 < 0 and f(e) = e — 1 > 0. Therefore there is exactly
one zero somewhere in (1,€), f is negative to the left of said zero and positive to
the right.

6.10.1 Hyperbolic functions

An exemplary application of what seen so far is the study of a family of functions,
called hyperbolic, that show up in various concrete situations.
We introduce the maps f(z) = sinhz and g(z) = coshz by

T a4 T -
o e —e & >
sinhg = ——— and coshy = ——.
2 2

They are respectively called hyperbolic sine and hyperbolic cosine. The ter-
minology stems from the fundamental relation

cosh?z — sinh?z =1, Vr € R,

whence the point P of coordinates (X,Y) = (coshz, sinh z) runs along the right
branch of the rectangular hyperbola X2 — Y2 =1 as x varies.

The first observation is that dom f = domg = R; moreover, f(z) = —f(—z)
and g(x) = g(—=x), hence the hyperbolic sine is an odd map, whereas the hyperbolic
cosine is even. Concerning the limit behaviour,

lim sinhz = +o00, lim coshz = +o0.
r—too z—+o00
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and ask ourselves whether there are real numbers ¢ and b rendering f differen-
tiable at the origin. The continuity at the origin (recall: differentiable implies
continuous) forces the two values

lim f(z)= —4, lim f(z)= f(0)=-b+1

z—0~ z—0t
to agree, hence b = 5. With b fixed, we may impose the equality of the right
and left limits of f'(z) for z — 0, to the effect that f’(z) admits finite limit for
x — 0. Then we use Theorem 6.15, which prescribes that

li () = lim 2 2z = 2a, d li "3 = b+e*)=6
zlr(r)lvf(a:) lim 2acos2z = 2a an zi.%l+f(x) rn+( +e%)

li
1}‘&0

are the same, so a = 3. O

Remark 6.17 In using Theorem 6.15 one should not forget to impose continuity
at the point z¢. The mere existence of the limit for f’ is not enough to guarantee
f will be differentiable at zy. For example, f(z) = x + signz is differentiable at
every x # 0: since f/'(z) = 1, it necessarily follows ili% f'(z) = 1. The function is

nonetheless not differentiable, because not continuous, at z = 0.

6.4 Extrema and critical points

Definition 6.18 One calls xg € dom f a relative (or local) maximum
point for f if there is a neighbourhood I..(xg) of xo such that

Yz € I.(zg) Ndom f, Flry= Tz

Then f(xg) is a relative (or local) maximum of f.
One calls xy an absolute maximum point (or global maximum point)
for f if

VY € dom f, J(x) < f(x),

and f(xg) becomes the (absolute) maximum of f. In either case, the max-
imum is said strict if f(x) < f(zg) when x # xy.

Exchanging the symbols < with > one obtains the definitions of relative and
absolute minimum point. A minimum or maximum point shall be referred to
generically as an extremum (point) of f.

Examples 6.19
i) The parabola f(z) = 1422 —12? = 2— (2 — 1)? has a strict absolute maximum
point at g = 1, and 2 is the function’s absolute maximum. Notice the derivative
f'(z) = 2(1 — z) is zero at that point. There are no minimum points (relative or
absolute).
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Figure 6.3. Types of maxima

ii) For g(x) = arcsinz (see Fig. 2.24), o = 1 is a strict absolute maximum point,
with maximum value 7. The point z; = —1 is a strict absolute minimum, with
value —75. At these extrema g is not differentiable. a

We are interested in finding the extremum points of a given function. Provided
the latter is differentiable, it might be useful to look for the points where the first
derivative vanishes.

Definition 6.20 A critical point (or stationary point) of f is a point xq
at which f is differentiable with derivative f'(xq) = Q.

The tangent at a critical point is horizontal.

Lo a0 €Tz

Figure 6.4. Types of critical points

Theorem 6.21 (Fermat) Suppose [ is defined in a full neighbourhood of a
point xog and differentiable at xq. If xo is an extremum point, then it is eritical
forsfo-tte”

f(xo) = 0.
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Fermat’s Theorem 6.21 ensures that the extremum points of a differentiable
map which belong to the interior of the domain should be searched for among
critical points.

A function can nevertheless have critical points that are not extrema, as in
Fig.6.4. The map f(z) = z° has the origin as a critical point (f'(z) = 3z? = 0 if
and only if z = 0), but admits no extremum since it is strictly increasing on the
whole R.

At the same time though, a function may have non-critical extremum point
(Fig. 6.3); this happens when a function is not differentiable at an extremum that
lies inside the domain (e.g. f(z) = |x|, whose absolute minimum is attained at the
origin), or when the extremum point is on the boundary (as in Example 6.19 ii)).
The upshot is that in order to find all extrema of a function, browsing through
the critical points might not be sufficient.

To summarise, extremum points are contained among the points of the domain
at which either

the first derivative vanishes,

or the function is not differentiable,

iii) or among the domain’s boundary points (inside R).



