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Thirdly, the halving procedure used in the proof can be transformed into an al-
gorithm of approximation, known in Numerical Analysis under the name Bisection

method.
A first application of the Theorem of existence of zeroes comes next.

Example 4.24

The function f(z) = z* +2® — 1 on [0,1] is a polynomial, hence continuous.
As f(0) = —1 and f(1) = 1, f must vanish somewhere on [0, 1]. The zero is
unique because the map is strictly increasing (it is sum of the strictly increasing
functions y = z* and y = 2%, and of the constant function y = —1). o

Our theorem can be generalised usefully as follows.

Corollary 4.25 Let f be continuous on the interval I and suppose it admits
non-zero limits (finite or infinite) that are different in sign for x tending to
the end-points of I. Then f has a zero in I, which is unigue if f is strictly
monotone on I.

Proof. The result is a consequence of Theorems 4.2 and 4.23 (Existence of zeroes).

For more details ~» Continuous functions.

Example 4.26

Consider the map f(z) = z+logx, defined on I = (0, +00). The functions y = z
and y = logx are continuous and strictly increasing on I, and so is f. Since

lim f(z) =—ooand lim f(x)= 400, f has exactly one zero on its domain.
%r,o+ z— 400

Corollary 4.27 Consider f and g continuous maps on the closed bounded
interval [a,b]. If f(a) < g(a) and f(b) > g(b), there exists at least one point
xg in the open interval (a,b) with

F(azo) = (o). (4.14)
Proof. Consider the auxiliary function h(x) = f(x) — ¢g(x), which is continuous in
a,b| as sum of continuous maps. By assumption, h(a) = f(a) — gla) <0
and h(b) f(b) — g(b) = 0. So, h satisfies the Theorem of existence of
zeroes and admits in (a.b) a point xg such that h(xg) (0. But this is

precisely (4.14).
Note that if i is strictly increasing on [a, b]. the solution of (4.14) has to

be unique in the interval.
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g(z) = z and |g(z) — €] = |g(z)| = |z| < €. We say that g has limit 0 for x going
to 0.

As for the function h, it cannot be continuous at the origin, since comparing
the values h(z), for x near 0, with the value at the origin simply makes no sense,
for the latter is not even defined. Neverthless, the graph allows to ‘conjecture’ that
these values might estimate ¢ = 1 increasingly better, the closer we choose z to
the origin. We are lead to say h has a limit for  going to 0, and this limit is 1.
We shall substantiate this claim later on.

The examples just seen introduce us to the definition of continuity and of
(finite) limit.

Definition 3.14 Let xy be a point in the domain of a function f. This func-
tion is called continuous at zq if for any € > 0 there is a § > 0 such that

Yz € dom f, |z —zo|l <d = |f(z)— flzo)| <e. (3.6)

In neighbourhood-talk: for any neighbourhood I.(f(xg)) of f(zo) there exists a
neighbourhood I5(zp) of xg such that

Yz € dom f. z € Is(zg) = f(z) € L(f(x0)). (3.7)

Definition 3.15 Let f be a function defined on a neighbourhood of zg € R,
except possibly at xo. Then f has limit £ € R (or tends to £ or converges
to £) for x approaching xg, written

lim f(z) =¢,

T—Tg
if given any £ > 0 there exists a 6 > 0 such that

Yz € dom f, O0<|z—xo|<d = |f(z)—¢ <e. (3.8)

Alternatively: for any given neighbourhood I.(¢) of ¢ there is a neighbourhood
Is(zg) of xg such that

¥z € dom f, x € Is(zo) \{zo} = [flz) € L.().

The definition of limit is represented in Fig. 3.6.

Let us compare the notions just seen. To have continuity one looks at the values
f(z) from the point of view of f(xg), whereas for limits these f(x) are compared
to £, which could be different from f(zg), provided f is defined in zg. To test the
limit, moreover, the comparison with z = x¢ is excluded: requiring 0 < |z — x|
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y= flx)

fz)
£ —c

zo— & To  xop+ 0

Figure 3.6. Definition of finite limit of a function

means exactly x # zo; on the contrary, the implication (3.6) is obviously true for
T = Ip-

Let f be defined in a neighbourhood of zp. If f is continuous at zg, then (3.8)
is certainly true with £ = f(zp); vice versa if f has limit £ = f(zg) for z going to
Zo, then (3.6) holds. Thus the continuity of f at x is tantamount to

lim f(z) = f(=zo). (3.9)

T— T

In both definitions, after fixing an arbitrary € > 0, one is asked to find at
least one positive number § (‘there is a 6’) for which (3.6) or (3.8) holds. If either
implication holds for a certain ¢, it will also hold for every § < §. The definition
does not require to find the biggest possible § satisfying the implication. With this
firmly in mind, testing continuity or verifying a limit can become much simpler.

Returning to the functions f, g, h of the beginning, we can now say that f is
continuous at xg = 0,
lim f(z)=1= f(0),

z—0

whereas g, despite having limit 0 for z — 0, is not continuous:
lim g(z) =0 # 9(0).
We shall prove in Example 4.6 1) that h admits a limit for z going to 0, and actually

lim A(z) = 1.

xz—0

The functions ¢ and h suggest the following definition.
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Definition 3.16 Let f be defined on a neighbourhood of xy, excluding the
point zo. If f admits limit £ € R for x approaching xy, and if a) f is defined
in xg but f(xo) # £, orb) f is not defined in xp, then we say xq is a (point
of) removable discontinuity for f.

The choice of terminology is justified by the fact that one can modify the function
at zg by defining it in xg, so that to obtain a continuous map at zy. More precisely,

the function
7 f(x) lf r # Zo,
fw =41
if x = xy,

is such that ~ ~
lim f(z)= lim f(z)=14¢= f(xo),
T— T T—Ig
hence it is continuous at xg.
For the above functions we have §(z) = z in a neighbourhood of the origin,

while
sinz

h(z) = ifx#£0,

1 ifz=0.

. . sinzx
In the latter case, we have defined the continuous prolongation of y = ,

T
by assigning the value that renders it continuous at the origin. From now on when
. . sinx ; . .
referring to the function y = ——, we will always understand it as continuously
x

prolonged in the origin.

Examples 3.17
We show that the main elementary functions are continuous.

) Let f : R —» R, f(z) = ar + b and o0 € R be given. For any ¢ > 0,
[f(z) — f(zo)] < € if and only if |a| |z — zo| < e. When a = 0, the condition holds
€

for any z € R; if a # 0 instead, it is equivalent to |x — zp| < ——, and we can put

lal
d= |6—| in (3.6). The map f is thus continuous at every zp € R.

a
ii) The function f : R — R, f(z) = z? is continuous at xy = 2. We shall prove
this fact in two different ways. Given € > 0, |f(z) — f(2)| < ¢, or |z? — 4| < &,
means

4—e<z’ <4d+e. (3.10)

We can suppose ¢ < 4 (for if |f(z) — f(2)] < € for a certain ¢, the same will
be true for all &’ > ¢); as we are looking for z in a neighbourhood of 2, we can
furthermore assume z > 0. Under such assumptions (3.10) yields
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Vi—e<zx<vid+e,

hence
—2-Vi-g)<zx-2<Vid+e-2. (3.11)

This suggests to take d = min(2 — 4 —e,vV4d+c—2) (= Vd+¢e — 2, easy to
verify). If |z — 2| < J, then (3.11) holds, which was equivalent to |22 — 4| < .
With a few algebraic computations, this furnishes the greatest & for which the
inequality |72 — 4| < ¢ is true.

We have already said that the largest value of § is not required by the definitions,
so we can also proceed alternatively. Since

|2 — 4] = |(z - 2)(z +2)| = |z - 2{|z + 2,
by restricting x to a neighbourhood of 2 of radius < 1, we will have -1 <z —2 <
1, hence 1 < z < 3. The latter will then give 3 <2+ 2 = |z + 2| < 5. Thus
|z? — 4| < 5z — 2|. (3.12)
To obtain |22 — 4| < ¢ it will suffice to demand |z — 2| < —;—; since (3.12) holds

3
when |z — 2| < 1, we can set 6 = min (1, —) and the condition (3.6) will be
satisfied. The neighbourhood of radius < 1 was arbitrary: we could have chosen
any other sufficiently small neighbourhood and obtain another 4, still respecting
the continuity requirement.
Note at last that a similar reasoning tells f is continuous at every zg € R.
iii) We verify that f : R > R, f(x) = sinz is continuous at every zo € R. We
establish first a simple but fundamental inequality.

Lemma 3.18 For any © € R,

sinz| < |z|, (3.13)

with equality holding if and only if x = 0.

Proof. Let us start assuming 0 < = < Z and look at the right-angled triangle
PHA of Fig. 3.7. The vertical side PH is shorter than the hypotenuse PA,
whose length is in turn less than the length of the arc PA (the shortest

distance between two points is given by the straight line joining them):

By definition PH = sinz > 0, and PA = & > 0 (angles being in radians).
Thus (3.13) is true. The case —% < & < 0 is treated with the same
argument observing | sin sin |z| for 0 < |z] < Z. At last, when |z| > 2

one has |sinz| < 1 < £ < |z|. ending the proof.



