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172 6 Differential calculus

We next discuss differentiability in terms of operations (algebraic operations,
composition, inversion) on functions. We shall establish certain differentiation
rules to compute derivatives of functions that are built from the elementary
ones, without resorting to the definition each time. The proofs may be found
at ~~» Derivatives.

Theorem 6.4 (Algebraic operations) Let f(x),g(x) be differentiable
maps at xg € R. Then the maps f(z) + g(x), f(z)g(x) and, if g(xo) # 0,
f(z)

——= are differentiable at xy. To be precise,

g()
(f £ 9) (z0) = f'(wo) £ g'(z0), (6.3)
(f 9) (wo) = f'(w0)g(xo) + f(x0)g' (o), (6.4)
i A S J'(x0)g(x0) — f(x0)g' (20) o
(E ) (z0) = rENE : (6.5)

Corollary 6.5 (‘Linearity’ of the derivative) If f(z) and g(z) are dif-
ferentiable at xy € R, the map af(x) + Bg(x) is differentiable at xqy for any
a,B R and

(af + B9)'(x0) = af' (o) + By’ (x0). (6.6)

Proof. Consider (6.4) and recall that differentiating a constant gives zero: then
oy f " . 1 f \ 2 \ ;T - " . 3 "
[ (zn) x] |rg) and ’I’." Vo) 7 (o) follow. The rest is a conse

S
quence of {D.a).

Examples 6.6

i) To differentiate a polynomial, we use the fact that D z™ = nz™~! and apply
the corollary repeatedly. So, f(z) = 32°% — 22 — 22 + 322 — 5z + 2 differentiates
to

fl(z) =3 -5z —2 42 — 322 + 3.2z — 5 = 15¢* — 823 — 322 + 62 — 5.

i1) For rational functions, we compute the numerator and denominator’s deriva-
tives and then employ rule (6.5), to the effect that

z2 -3z +1
foy=——7—

has derivative
(20-3)(2z—1)— (2> -3+ 1)2 22> —2z+1
(22 — 1)2 T 4a? -4z + 1
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iil) Consider f(x) = x3 sin . The product rule (6.4) together with (sinz)’ = cosz
yield
f'(x) = 32%sinz + 2 cos x.

1v ) The function

sinx
flz) =tanz =
cos T
can be differentiated with (6.5)
’ cosx cosx —sinx (—sinx)  cos’x +sinz sin x 9
fix)= > = 5 =1+——=1+tan"z.
cos? x cos?x cos? x
Another possibility is to use cos? z + sin® z = 1 to obtain
1
/ . J—
f (L) - COSZ.I'

Theorem 6.7 (“Chain rule”) Let f(x) be differentiable at xp € R and g(y)
a differentiable map at yo = f(x). Then the composition go f(z) = q(f(J ))
is differentiable at xy and

(g0 f) (x0) = ¢ (y0) f'(z0) = g’ (f(20)) f' (20). (6.7)

Examples 6.8

i) The map h(z) = V1 — 22 is the composite of f(z ) =1 —2?, whose derivative

is f'(x) = —2z, and g(y) = /. for which ¢'(y) = ﬁ Then (6.7) directly gives
1 T

— (-2 = ————.

21 — 22 V1—2?

i} The function h(x) = €537 is composed by f(z) = cos3z, g(y) = Y. But

f(x) is in turn the composite of ¢(z) = 3z and 1 (y) = cosy; thus (6.7) tells

f'(z) = —3sin3z. On the other hand ¢'(y) = e¥. Using (6.7) once again we

conclude

h(x)=

B (x) = —3e“°°37 gin 3z.

Theorem 6.9 (Derivative of the inverse function) Suppose f(x) is a
continuous, invertible map on a neighbourhood of xo € R, and differentiable
at xg, with f'(xo) # 0. Then the inverse map f~'(y) is differentiable at
yo = f(xg), and

1
f’( o) ()

(F71 (%) = (6.8)
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Examples 6.10
i) The function y = f(x) = tanz has derivative f’(z) = 1 + tan®z and inverse
z = f~!(y) = arctany. By (6.8)

1 1
_1 l — — .
(f ) (y) T s tan2 T 1+ y2

Setting for simplicity f~! = g and denoting the independent variable with z,

the derivative of g(z) = arctan z is the function ¢'(z) = Tra2
z

ii) We are by now acquainted with the function y = f(x) = sinz: it is invertible

on [—%, 2], namely = f~'(y) = arcsiny. Moreover, f differentiates to f'(z) =

cosz. Using cos?z + sin?z = 1, and taking into account that on that interval
cosz > 0, one can write the derivative of f in the equivalent form f'(z) =

1 —sin® z. Now (6.8) yields

Y () ! !

N \/1—sin2z: \/1—212.

Put once again f~! = g and change names to the variables: the derivative of

VIZ 2

In similar fashion g(z) = arccosz differentiates to ¢'(z) = —

g(z) = arcsinz is ¢'(z) =
1

Vi-2?

iii) Consider y = f{z) = a®. It has derivative f'(z) = (loga)a® and inverse

z = f~(y) = log, y. The usual (6.8) gives

1 1
—1y () = - :
(f ) (y) (log a)az (log a)y
1
Defining f~! = g and renaming z the independent variable gives ¢’(x) = loga)z

as derivative of g{z) = log, = (z > 0).
Take now h(z) = log,(—z) (with z < 0), composition of z — —z and ¢{y): then

M = Togae Y T

log, |z| (x # 0) has derivative ¢'(z) =

m. Putting all together shows that g(z) =
oga

(loga)z”

1
With the choice of base a = e the derivative of g(z) = log |z| is ¢'(z) = e

Remark 6.11 Let f(x) be differentiable and strictly positive on an interval I.
Due to the previous result and the Chain rule, the derivative of the composite

map g(z) = log f(z) is
f'(z)

flz)

g'(z) =

4
The expression = is said logarithmic derivative of the map f.

f
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The section ends with a useful corollary to the Chain rule 6.7.

Property 6.12 If [ is an even (or odd) differentiable function on all its
domain, the derivative f' is odd (resp. even).

Proof.

Since [ is even, f(—x) = f(x) for any = € dom f. Let us differentiate both
sides. As f(—ur) is the composition of x — —x and y — f(y). its derivative
reads — f'(—z). Then f'{—z) F(x) for all z € dom f, so f' is odd.
Similarly if f is odd. !

We reckon it could be useful to collect the derivatives of the main elementary
functions in one table, for reference.

Dz% =az* ! (Vo € R)
D sinxz = cosx
D cosxz = —sinzx
. 1
D tanz =1+ tan“z = =
cos?
D arcsinz = L
D arccosx = :
V1—a2

D arctanz = 1+—:I'2
Da® = (loga) a” in particular, De® =e”
D log, |z| = ! in particular, D log|z| = :

RS og ) T 2 " SR

6.3 Where differentiability fails

It was noted carlier that the function f(x) = |z| is continuous but not differentiable
at the origin. At each other point of the real line f is differentiable, for it coincides
with the line y = « when = > 0, and with y = —z for x < 0. Therefore f'(z) = +1



